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FOREWORD

Pouyr des simplifications plus substan-
- tielles, le développement futur de la
~ géometrie algdbrique ne saurait manquer
“sans doute d'en faive apparaitre.

- It is with considerable pleasure that we have seen in recent
. years the simplifications expected by Weil realize themselves, and
it has seemed timely to incorporate them into a new book.

We treat exclusively abelian varieties, and do not pretend to
write a treatise on algebraic groups. Hence we have summarized
_in a first chapter all the general results on algebraic groups that
are used in the sequel. They are all foundational results.

We then deal with the Jacobian variety of a curve, the Albanese
variety of an arbitrary variety, and its Picard variety, i.e., the
theory of cycles of dimension 0 and codimension 1. As we shall
see, the numerical theory which gives the number of points of
finite order on an abelian variety, and the properties of the
trace of an endomorphism are simple formal consequences of the
theory of the Picard variety and of numerical equivalence. The
same thing holds for the Lefschetz fixed point formula for a curve,
and hence for the Riemann hypothesis for curves.

Roughly speaking, it can be said that the theory of the Albanese
and Picard variety incorporates in purely algebraic terms the
theory which in the classical case would be that of the first
homology group. It is far from giving a complete theory of abelian
varieties, and a partial list of topics which we do not discuss
includes the following:

* The theory of differential forms and the cohomology theory.
The infinitesimal and global theory proper to characteristic .
The theory of linear systems and the Riemann-Roch theorem.
The theory of moduli, i.e., the classification of algebraic families

of abelian varieties, and the characterization of Jacobians among
abelian varieties.
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Various applications to arbitrary varieties, such as, for instance,
the equivalence criteria and the theorem of Néron-Severi.

Arithmetic applications like class field theory (which actually
. belongs to the general theory of algebraic groups) or the theorem
of Mordell-Weil. , '

To a large extent, these toplcs have not reached the same state
of maturity as those with which we deal in this book. Many
deserve to have a whole book devoted to them. In any case, weA'
have included at least all the results of Weil’s treatise [85] (and,
of course, considerably many more).

We shall now make some remarks concerning the formal struc-
ture of the book.- We begin by a list of prerequisites necessary
for a rigorous understanding of the proofs given here. It should
be understood, however, that much less is actually required for a
general appreciation of the results stated and the methods of
proofs. 'We hope that a good acquaintance wﬂ;h the language of
algebraic geometry would suffice.

At the end of each chapter, we append a historical and biblio-
graphical notice, one of whose purposes is to acquaint the reader
with the current literature. We have also made comments
concerning some of the directions in which the present research
is leading. Further historical comments of a more general
nature have been made preceding the bibliography given at the
end of the book. The index includes all the terms defined here,
and the table of notation includes the symbols used most fre-
quently. Finally, we point out that the reader who wishes to
. get a more detailed summary account of the contents of this book
can get it by reading through the brief mtroductmns with which
we begin each chapter.

S. LanG -

New York, Fall 1958



PREREQUISITES

They are of order 4.

1. Elementary qualitative algebraic geometry, as it is treated
for instance in Introduction to Algebraic Geometry, Interscience,
New York, 1958. This book will be referred to as IAG. It
treats of varieties, cycles, linear systems, topics in field theory,
Zariski topology, and other topics of a heterogeneous nature.

2. The Riemann-Roch theorem for curves.

3. The elementary theory of algebraic groups: definitions,
subgroups, factor groups, and the possibility of recovering. a
group starting with birational data. We have recalled all the
results needed in Chapter I, without proofs. A complete self-
contained exposition can be found in [90], [91], [92]. .

4. Intersection theory, of type F-X; Th. Z. Occasionally
we have given an argument in the language of specialization of
cycles, for which we refer to Matsusaka -[65].

In an appendix we have recalled certain theorems on cor- 3
respondences properly beionging to the Foundations of Algebraic
Geometry.

The terminology is that of Foundations [83] except for the
following modifications.

Let /: U -V be a rational map We say that fis defined
over a field k if k is a field of definition for U, V and the graph
of f, usually denoted by I,. Let P be a point of U. We say
that f is holomorphic at P, or defined at P, instead of saying (as
in Foundations) that f is regular at P. :

On the other hand, let f be defined over %, and let « be a generic

pointof Uoverk. Letv = f(u). We shall say that fis respectively
" regular, separable, primary, purely inseparable if the extemsion
k(u) of k(v) is of the corresponding type. If v is a generic point
of V over k, we say that f is generically surjective. Suppose this

vyii
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is the case. Then one sees easily that the above four conditions
are respectively equivalent to the following ones concerning the
cycle »

) =pr [Ty (U X 0)]:

It is a variety with multiplicity 1.
. All the components of f~*(v) have multiplicity 1.

There is only one component having multiplicity p” (where
is the characteristic). : 5 :

It has only one component, which is a point with multiplicity p™.

We observe that in the above notation, the support of ~%(v)
is the locus of # over k(v). i :
2 Let f: U~ V be again a rational map of U into V, defined
over k. Let W be a subvariety of U also defined over k. 'Let
w be a generic point of W over %. We say that f is defined at
W if f is defined at w. The locus of thé point f(w) over & will
then be denoted by f(W). It is in general distinct from the cycle .
prs [, - (W X V)] even when this intersection is defined. We
shall also use f(W) to denote this cycle, and the context will
usually make our meaning clear. To avoid confusion, we may
also call the first the sei-theoretic image f(W), and the second .
~ the cycle (W), or f(W) in the sense of intersection theory.

Finally (added in proof), to conform with the functorial ter-
minology which is -generally becoming accepted, we would like
to recommend the use of the word “isomorphism” instead of the
words ‘‘birational isomorphism.” What we here call ‘‘isomor-
phism” should be called a “‘bijective homomorphism.”

e
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CHAPTER I

Algebraic Groups

The purpose of this chapter is to recall briefly the fundamental
notions of the theory of algebraic groups. In the sequel, we shall
use only elementary properties of algebraic groups, and we shall
not need structure theorems, for instance. All the results ‘which
we shall need are stated explicitly below. We-give no proofs in
§ 1.'Granting IAG, a complete self-contained exposition can be
found in the papers of Weil and Rosenlicht. '

_ The numerical theory in § 2, together with the Pontrjagin
products requires intersection theory, and the proofs depend on
Foundations. et b

Finally in § 3, we have stated the theorems concerning the field
of definition of a variety, and indicated how they can be used
to lower the field of definition of a group variety provided certain
coherent isomorphisms are given. For the proof, we refer the reader
to [92]. We shall use § 3 in the sequel only at the end of the
theory of the Alpanese variety, and in the last chapter, for the
theory of algebraic systems of abelian varieties. The rest of this
book is independent of § 3, and we advise the reader to skip § 2
and § 3 until he comes. to a place where they are used.

§ 1. Groups, subgroups, and factor groups

.An algebraic group is the union of a finite number of disjoint
varieties (abstract) G, called its components, on which a group
structure is given by everywhere defined rational maps. More
precisely, for each pair G,, G, of components of G, we are given -
a rational map f,;:6G, X G, — G,, everywhére defined into a
third component G, determined by « and B, such that the group
law (z, y) > a2y for xe G, and y.e G is given by zy = f,,(z, y).
In addition, for each G,, we are given a birational biholomorphic

i
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map @,:G,—~ G,\ into .another component' G, such that the
inverse z — ¢~ is given by z! = ¢, ().

If there is only one component, the algebraic group is s called
a group variety, or a connected algebraic group. An algebraic
group is defined over a field % if all the G, are defined over &
and the f,; @, are also defined over k. One then sees that the
identity e of .G is rational over k.

Let G be a group variety. Then G is non-singular. This comes
from the fact that foc each point @ € G there is a birational biholo=
morphic ‘transformation T,: G — G of G onto itself such that
T,(x) = ax. We call it the left translation. On the whole, we shall
deal only with commutative groups and thus do not need to
distinguish our left from our right. If U is a subvariety of G, we
derote by aU, or U,, the left translation of U by g, ie., T,(U).

Let H be an abstract subgroup of the group variety G, and
assume that H is also an algebraic subset of G. Then H is an
algebraic group, whose law of composition is induced by that of
G. The components of H are all translations of the connected
component: (of identity) of H.-If G is defined over k, and if H
is k-closed, then the connected component of H is also k-closed,
and is therefore defined over a purely inseparable extension of .

Indeed, every automorphism of the universal domain leaving &
fixed leaves H fixed, permutes the components of H, and must
leave the comnected component .of identity fixed because it
leaves e fixed since e is rational over k.

Let G, G’ be group varieties.

By a rational homomorphism, or simply homomorphism 2. G—>G'
we shall mean an everywhere defined rational map of G into G
which verifies the condition A(xy) = A(z)4(y), ie., is an abstraet
homomorphism. We shall say that 1 is an zsomorﬁhzsm if it is
injective {i.e., one-one). As a rational map, A is then purely
inseparable, of finite degree. If this degree is equa.l to 1, we shall
call 4 a birational isomorphism. -

We say that A is defined over k if G, G', and the graph of 4 are
defined over k. This is compatible with our definition for rational
maps. - ‘
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Let 2: G - G’ be a homomorphism defined over k. Then A
is continuous (for the k-topology of Zariski, of course) and its
kernel is therefore an algebraic subgroup H of G, which is -
closed. :

Let H be an algebraic subgroup of a group variety G and assume
that H is a normal subgroup (in the abstract sense). Then one
can give the factor group the structure of a group variety. More
precisely, there exists a group variety G' and a surjective homo-
morphism § .G — G’ such that:

(i) the kernel of A is equal to H;

(ii) the map A is separable;

(iil) the pair (G', 1) satisfies the universal mapping property for
komomorphisms of G whose kernel coniains H.

More precisely, if « : G — G" is a homomorphism of G whose
kernel contains H, then there exists a homomorphism § : G’ — G”’
such that « = gA. We shall call 1 the canonical komomor{;hzsm
- on the factor group G'.

We shall say that the algebraic subgroup H of G is rational
over k if the cycle consisting of the components of H taken with
multiplicity 1 is rational over k. If G is defined over %, and
_if H'is rational over %, then we may take the canonical homo-
morphism A : G > G’ = G/H also defined over k.

-~ Suppose in addition that H is connected and both G, H are
defined over k. Let b be a point of G'. Then A-1(d) = H, for
any point @ € G such that A{a) = b. This is true both set-theo-
retically and in the sense of intersection theory i.e., 1-1() has
exactly one component with multiplicity 1. Let % be a generic
point of G over &, and put v = A(»). Then 1-1(v) = H,. Further-
more, H, is a homogeneous space for H under left translation.
The variety H,, is defined over %(v), and is the locus of « over &(v)
according to the gemeral theory of rational maps. «

-More generally, we shall say that a variety V is a homogeneous
space of a group variety G if we are given an everywhere defined
rational map f:G X ¥V — V such that if ‘we write zP instead
of f(x, P), then (zy)P = x(yP), and for any two points P, Q
of V, there exists an element & € G such that zP = Q. In particular,
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if P is a generic point of ¥ over a field of definition % for f, and
if 2 is a generic point of G over %(P), then 2P is a generic point
of V over k(P). We shall almost never use homogeneous spaces
in the sequel. The only point where a homogeneous space will
occur will be in the proof of the complete reducibility theorem
“of Poincaré. i :
For the sake of completeness, recall that a homogeneous space
Vis said to be principal if the operation of G is simply transitive
and is separable. In other words, if P is a point of ¥, and 2 is a
generic point of G over k(P) then the map « —> zP establishes a
~ birational biholomorphic correspondence between G and V. A
homogeneous-space V defined over k& may of course not have a-
rational point over k. The search for conditions under which it
has such points is an interesting diophantine problem.

In the example of the factor group above, the coset H, is in

fact a principal homogeneous space for H, defined over k(v).
~ One can recover‘a group variety from birational data in the
following manner. :

Let V be an arbitrary variety, and suppose we are given a
normal law of composition. By this we mean a rational map
1:V X V -V which is generieally surjective, and such that if
%, v are two independent generic points of V over a field of defini-
tion % for f, then w = f(«, v) is a generic point of V over %, and
k(u, v) = k(v, w) = k(u, w). In addition, f is assumed to be
generically associative, i.e., if %, v, w are three independent
generic points of V over k, then ,

(w, (v, w)) = f(f(u, ), w).

We denote f(u, v) by uv. If U is a variety birationally equivalent
to ¥V, and if T :V — U is a birational transformation, then we
can obvioysly define a law of composition on U by the formula

T(0)T () = T ().

We say that this law .is obtained by transferring that of V. A
fundamental theorem then asserts that if V and its normal law
[ ave defined over k, there exists a group variety G also defined over
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k, such that the law of composition on G is obtained by transferring
that of V. This group G is umguely determined up io a birational
isomorphism.

This uniqueness property is an 1mne¢ate consequence of the
following remarks which are extremely useful in handling group
varieties.

Let 4:G — G’ be a rational map of a group variety into
another one, and assume that A satisfies

Azy) = Az)A(y)

whenever z, y are independent generic points of G. We shall
‘then say that A is a generic homomorphism. It then follows that
A ts everywhere defined, is a homomorphism, and that A(G) is a
< group subvariety of G'. Indeed, we can write A(x) = A(zy)i(y)—t.
For any z, we take y generic. Then xy and y are géneric, and:
this shows that 1 is defined at z. From ﬂys we conclude that 4
is a ho*nomorphmm Let H’ be the closufe of A(G) in G’ for the
Zariski topology. Then A(G) contains a non-empty open subset
“of H'. Since H' is the closure of an abstract subgroup of G, it is
a subgroup of G’, and the cosets of 4(G) contain a non-empty
open subset-of H'. This can happen only if A(G) = H'.

We finish this paragraph by stating an important property
of commutative groups.

Let G be a commutative group variety. Let a be a cycle of
dimension 0 on G. It is a formal sum of points, which we write

a= 3 n, ,
VVnung the law of composmon on G addltlvely, we can take the
sum of the poirits #, on G, each one taken n; times. We thus
obtain a point of G which will be denoted by S(a). This sum
_ will be written without parentheses, to distinguish it from the
formal sum above. Thus we have ' - >

= wg e X onp ki
In this notation, if z, y are two points of G, then (z)+ (y) is the
0-cycle of degree 2 having #, y as components with multiplicity 1,
while 4 % is the sum on G of z and y.
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Let %k be a field of definition for G. The fundamental theorem
on symmelric functions then asserts that if a is a O-cycle of G,
rational over k, then the point S(a) is rational over k.

Of course, this is a special case cf a more general theorem
concerning arbitrary symmetric functions ([85] Th. 1), but the
above statement will suffice for this book. It is obvious in the
case where 2ll the points of a are rational over a separable ex-
tension of k. Indeed, the composition law of -G being 'defined
over k, for every automorphism ¢ of the algebraic closure of %
leaving k£ fixed, we have : Eri

(S@)7 = S() = Sa).
This shows that in general, S(a) is purely inseparable over .
The proof in this case is pure technique in characteristic .

Left f: U — G be a rational map of a variety into the com-
mutative group variety G. Let a be a O-cycle on U, and assume
that f is defined at all the points of a. Then f(a) is a cycle on
C G If a= 3 n,(P,), then f(a) = 2 n,(#(P,)). Furthermore, if f

is defined over %, and if a is rational over k, then f(a) is rational
“over k, because i

/(@) = pryll, (@ X G)].

It follows that S(f(a)) is a point of G, rational over 4. We shall
denote it by S,(a). . .

§ 2. Intersections and Pontrjagin products

We shall give here special formulas concerning .intersections
on group varieties. They show how certain operations can be
defined in terms of intersection theory.

ProrosITION 1. Let G be a group variety, V a subvariety of G,
' both defined over k. Let (u, %) be independent generic points of
G, V over k. Let V be the locus of (u, ux) over k, ((w, w + ) if G
ts commutative). Then we have :
: V-(uxG =uxV,
Proof: We need but to apply F—VII; Th, 12.
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We shall denote by s,:G X ... X G—>G the rational map
of the product of G with itself # times obtained by the formula:
Sn(thy, <o, y) =y .., If G is commutative, then s, is a
homomorphism, which will be called the sum. In the non-com-

mutative case, we say it is the product. Its crraph will be denoted
bS5

PROPOSITION 2. Let s,:G X G — G be the product, and V a
subvariety of G. Let (u, x) be as in Proposmon 1. Then the cycle

sg 1(V) = Prlz[s (G X G XxV)] :
s a variety, which is the locus of (u, wx) over k, and we have
S (V) (u X G) = u X 4V
or in the additive case, u X V_,

Proof: Every point (a, b, c¢) of S, N (G X G X V) is such that
ab = c and cisin V. We see therefore that the support of s,~1(V)
is a variety, locus of the point (#, #~'z). The single component
of Sp+ (G X G X V) has multiplicity 1, according to F—VII,
Th. 17. Since s, is everywhere defined on G X G, the projection
on the first two factors conserves this multiplicity.

Note particularly the sign — in the intersection

s V) - (w X G =9y xV_.,.

-We shall now define the Pontrjagin products. Let V%, W be
two subvarieties of G. We denote by V ® W their set-theoretic
product on G, or if G is commutative, by V ® W or V 4 W.
If z, y are two independent generic points of ¥, W over a field
k, then by definition, V' ® W is the locus of zy over k. We have
a rational map F:V X W -V ® W induced by s, and we
shall denote the degree of F by d(V, W) if it is finite, and by 0
otherwise. We thus have d(V, W) = »(F).

PROPOSITION 3. Let V, W be two subvarieties ef G. Then
Prs[Sy - (V X W X G)] = d(V, W)(V @ WY.

Proof: Since s, is everywhere defined, S, (V¥ x W x G) has
one component with multiplicity 1 by F—VII; Th. 17. Our
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proposition is then a consequence of the definition of the projec-
tion.

The cycle d(V, W)(V ® W) will be denoted by V «W. We
have V #« W = 0 if and only if the dimension of V' ® W is smaller
than dim V + dim W. We shall say that V- @ W, or VW, is
the Pontrjagin product of V and W. It will always be clear from
the context whether we mean the set theoretic product, or the
cycle. e

If V is a point a ¢ G, then V ® W = W, is the translation of
W by a.

The Pontrjagin product is associative. In order to see this, let
U, V, W be three subvarieties of G, defined over k, and let =,
Y, z be three independent generic points of U, V, W over k. It is
clear that (UQ@V)QW =UQ (V ® W), this variety being
~ the locus of zyz over k. On the other hand, if we put d = d(U, V)
and e=d({U @V, W), then de = [k(z, y, 2): k(xyz)] if this
degree is finite, and 0 otherwise. 43 ;

e

ke, v, 2)
R

Mz y) ke, 2)
LT
Kay) k()

R
k

'Indeed, k(z, y) and k(z) are linearly disjoint over &, and hence
[k(z, y) : k(xy)] = [k(z, y, z) : k(zy, 2z)}. Our assertion is then
obvious, taking into account the inclusion
R(zyz) <= k(zy, - z) <Rz, y, 2).
We have thus shown that
U*(V*W) = (U*V)*W

and that the Pontrjagin product is associative from the point of
view of intersection theory. :

Of course, we can define the symbol d(V,, ..., V,,) for several
subvarieties of G: It is the degree of the rational map of the



