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Preface

This is the third volume of the Paris-Princeton Lectures in Mathematical Finance.
The goal of this series is to publish cutting edge research in self-contained articles
prepared by well known leaders in the field or promising young researchers invited
by the editors. Particular attention is paid to the quality of the exposition, and the aim
is at articles that can serve as an introductory reference for research in the field.

The series is a result of frequent exchanges between researchers in finance and
financial mathematics in Paris and Princeton. Many of us felt that the field would
benefit from timely exposés of topics in which there is important progress. René
Carmona, Erhan Cinlar, Ivar Ekeland, Elyes Jouini, José¢ Scheinkman and Nizar
Touzi serve in the first editorial board of the Paris-Princeton Lectures in Finan-
cial Mathematics. Although many of the chapters involve lectures given in Paris or
Princeton, we also invite other contributions. Given the current nature of the colla-
boration between the two poles, we expect to produce a volume per year. Springer
Verlag kindly offered to host this enterprise under the umbrella of the Lecture Notes
in Mathematics series, and we are thankful to Catriona Byrne for her encouragement
and her help in the initial stage of the initiative.

This third volume contains five chapters. In the first chapter, René Carmona
demonstrates how the HIM approach to the construction of dynamic models can
be used for different financial markets. The original proposal of Heath, Jarrow and
Morton was framed for the world of Treasury bonds, but its applicability was exten-
ded soon after its publication. However implementation of the same modeling phi-
losophy in the case of credit and equity markets had to wait. Purely for pedagogical
reasons, this chapter starts with a review of the original HIM approach to fixed
income markets. Then, the recent works of Sidenius, Pitterbarg and Andersen and
Schoenbucher on credit portfolio modeling are presented. Finally, the last part of the
chapter explains how Carmona and Nadtochiy developed the program outlined a few
years ago by Derman and Kani for equity markets.

The second chapter, by Ivar Ekeland and Erik Taflin, also develops the HIM
framework. The emphasis here is on the optimal management of bond portfolios,
that is, on Merton’s problem of expected utility maximization. The authors intro-
duce a special class of assets, the rollovers, which have a constant time to maturity,
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and describe the bond portfolios as a combination of rollovers rather than a com-
bination of zero-coupon bonds, as is usual in the literature. The advantage of this
approach is that a rollover does not mature, in contrast to a bond. By considering
bond portfolios as a combination of rollovers, one brings them close to stock port-
folios, which do not mature either, and one paves the way for a unified theory of
money markets and equity markets. In addition, the authors derive explicit formulas
for the optimal portfolios, at least in the case when the drift and volatility are deter-
ministic processes. These advantages come at a price: a mathematical setting must be
found, which will accommodate the curves describing the term structure of interest
rates, and allow them to vary randomly, subject to possibly infinitely many sources
of noise, while remaining sufficiently smooth. The Musiela parametrization (that is,
taking time to maturity instead of date of maturity as the relevant variable), although
it is natural in that context, considerably complicates matters, for it introduces an ad-
ditional (and discontinuous) term in the equations of motion. Roughly speaking, that
chapter complements the preceding one: taken together, they highlight the flexibility
and generality of the HIM model, as well as its many unexplored consequences.

The third one is written by Arturo Kohatsu-Higa and is based on a short course
given in Paris in November and December 2004. It reviews recent results on models
for insider trading based on the theory of enlargement of filtrations. After reviewing
the case of an insider having extra information given by the knowledge of the dis-
tribution of certain random variables, the author concentrates on the case when the
insider benefits from almost sure additional information, leading naturally to the use
of anticipative calculus. This review can be viewed as a natural companion to the
chapter delivered by Fabrice Baudouin in the first volume of the series. The style of
this chapter is purposedly pedagogical, emphasizing discrete time approximations as
a way to illustrate the differences between anticipative and non-anticipative calculus,
and exercises with solutions as a way to isolate proofs of technical results.

The fourth chapter is contributed to by Pierre Louis Lions and Jean Michel Lasry.
It is concerned with the influence of hedging on the dynamics of the underlying
asset price. The problem is completely solved in the case of a large investor. The
results are based on a detailed analysis of liquidation and indifference prices studied
via the solutions of non-standards stochastic control problems. This paper is more
of a technical nature, and reads more like a research article than an introductory
review. However, the importance of the issue and the originality of the mathematical
approach fully justify its inclusion in the series.

The last chapter is concerned with applications of large deviations to problems
in finance and insurance. It is contributed by Huyén Pham. Large deviation approx-
imations and importance sampling methods are discussed in the context of option
pricing. Credit risk losses and portfolio benchmarking are also analyzed with the
tools of large deviations.

The Editors
Paris / Princeton
January 31, 2007
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HJM: A Unified Approach to Dynamic Models
for Fixed Income, Credit and Equity Markets*

René A. Carmona

Bendheim Center for Finance

Department of Operations Research & Financial Engineering,
Princeton University, Princeton, NJ 08544, USA

email: rcarmonalprinceton.edu

Summary. The purpose of this paper is to highlight some of the key elements of the HIM
approach as originally introduced in the framework of fixed income market models, to explain
how the very same philosophy was implemented in the case of credit portfolio derivatives and
to show how it can be extended to and used in the case of equity market models. In each case
we show how the HIM approach naturally yields a consistency condition and a no-arbitrage
condition in the spirit of the original work of Heath, Jarrow and Morton. Even though the
actual computations and the derivation of the drift condition in the case of equity models
seems to be new, the paper is intended as a survey of existing results, and as such, it is mostly
pedagogical in nature.

Keywords: Implied volatilty surface, Local Volatility surface, Market models,
Arbitrage-free term structure dynamics, Health—Jarrow—Morton theory

Mathematics Subject Classification (2000) 91B24
JEL Classification (2000) G13

1 Introduction

The motivation for this paper can be found in the desire to understand recent attempts
to implement the HIM philosophy in the valuation of options on credit portfolios.
Several proposals appeared almost simultaneously in the literature on credit port-
folio valuation. They were written independently by N. Bennani [3], J. Sidenius,
V. Piterbarg and L. Andersen [26] and P. Shonbucher [41], the latter being most
influential in the preparation of the present survey. After a sharp increase in volume
and liquidity due to the coming of age of the single tranche synthetic CDOs, markets
for these credit portfolios came to a stand still due to the lack of dynamic mod-
els needed to price forward starting contracts, options on options, . ... So the need

* This research was partially supported by NSF DMS-0456195.



2 R.A. Carmona

for dynamic models prompted these authors to build analogies between the original
HJIM approach to interest rate derivatives and derivatives on credit portfolio losses.
The common starting point of these three papers is the lithany of well documented
shortcomings of the market standard for the valuation of Collaterized Debt Oblig-
ations (CDOs). The standard Gaussian copula model is intrinsically a one period
static model which cannot be used to price forward starting contracts. The valuation
by expectation of these forward starting contracts require the analysis of a term struc-
ture of forward loss probabilities. The HIM modeling of the dynamics of the forward
instantaneous interest rates, suggests how to choose dynamic models for these for-
ward loss probabilities. The three papers mentioned above try to take advantage of
this analogy with various degrees of generality and success.

The goal of this paper is to review the salient features of the HIM modeling
philosophy as they can be applied to three different markets: the fixed income mar-
kets originally considered by Heath, Jarrow and Morton, the credit markets and the
equity markets. In each of the three cases considered in this paper, the financial mar-
ket model is based on a set of financial securities which are assumed to be liquidly
traded. A basic assumption is that the price of each such security is observable, and
any quantity of the security can be sold or bought at this observed price. These prices
are used to encapsulate what the market is telling the modeler, and the thrust of the
HIM modeling approach is to postulate dynamical equations for the prices of all
these liquid instruments and to check that the multitude of all these equations do not
introduce inconsistencies and arbitrage opportunities in the market model.

The classical HIM approach is reviewed in Section 3. Our informal presentation
does not do justice to the depth of the original contribution [14] of Heath, Jarrow and
Morton. It is meant as a light introduction to the modeling philosophy, our main goal
being to introduce notation which are used throughout the paper, and to emphasize
the crucial steps which will recur in the discussion of the other market models. Sec-
tion 5 is devoted to the discussion of the recent works [26] of Sidenius, Pitterbarg and
Andersen and [41] Schoenbucher on the construction of dynamic models for credit
portfolios in the spirit of the HIM approach. These two papers are at the root of our
renewed interest in the HIM modeling philosophy. It is while reading them that we
realized the impact they could have on the classical equity models. The latter are
usually calibrated to market prices by constructing an implied volatility surface, or
equivalently a local volatility surface as advocated by Dupire and Derman and Kani
in a series of influential works [19][16]. As we explain in Section 6, the construc-
tion of these surfaces is only the first step in the construction of a dynamic model.
A dynamic version of local volatility modeling was touted by Derman and Kani in a
paper [17] mostly known for its discussion of implied tree models. Motivated by the
fact that the technical parts of [17] dealing with continuous models are rather infor-
mal and lacking mathematical proofs, Carmona and Nadtochiy developed in [7] the
program outlined in [17]. On the top of providing a rigorous mathematical derivation
of the so-called drift condition, they also provide calibration and Monte Carlo im-
plementation recipes, and they analyze the classical Markovian spot models as well
as stochastic volatility models in a generalized HIM framework. We present their
results in the last section of this paper.
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Acknowledgements. 1 would like to thank Dario Villani and Kharen Musaelian for
introducing me to the intricacies of the credit markets. Their insights were invaluable:
what they taught me cannot be found in textbooks !!!

2 General Mathematical Framework

This section is very abstract in nature. Its goal is to set the notation and the stage for
the discussion of a common approach to three different markets.

2.1 Mathematical Notation

Throughout this paper we assume that ({2, . P) is a probability space and {F; }+>¢
is a right continuous filtration of sub-o-fields of F, F containing all the null sets
of P. Most often, we assume that this filtration is a Brownian filtration in the sense
that it is generated by a Wiener process {W;};>,. We allow this Wiener process
to be multi-dimensional, and in fact, it can even be infinite dimensional. The facts
from infinite dimensional stochastic analysis which are actually needed to prove the
results discussed in this paper in the infinite dimensional setting can be found in
many books and published articles. Most of them can be derived without using too
much functional analysis. For the sake of my personal convenience, I chose to refer
the interested reader to the book [9] for definitions and details about those infinite
dimensional stochastic analysis results which we rely upon.

In order to compute cash flow present values, we use a discount factor which we
denote by {/3; }+>0. The latter is a non-negative adapted stochastic process. Typically
we use for (; the inverse of the bank account B; which is defined as the solution of
the ordinary (possibly random) differential equation:

dBf = 7'fo df. B() = 1, (l)

where the stochastic process {r; };> has the interpretation of a short interest rate. In
this case we have

’d, — e j() Ta {IH. (2)
Notice that {/3; };>( is multiplicative in the sense that
Bsit(w) = Bs(w)Be(Qsw), w € 12,

where {6, }+>( is a semigroup of shift operators on {2. For the sake of illustration, we
should think of the w’s in 2 as functions of time, in which case [f,w]|(t) = w(s+1).

We shall assume that P is a pricing measure. This means that the market price at
time ¢ = 0 of any liquidly traded contingent claim which pays a random amount
at time 7, say po, is given by (notice that the pay-off ¢ is implicitly assumed to be a
Fr integrable random variable):

po = E{Br&}

where E{ -} = EF{ -} denotes the expectation with respect to the probability mea-
sure [P. In other words, [P is a pricing measure if prices of contingent claims are given
by P-expectations of present values of their future cashflows.
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If we also assume that the market is free of arbitrage, then the price p; at time
t<T of the same contingent claim is necessarily given by the conditional
expectation

1
bt = E]E{/f?‘ﬂfr}

which shows that {3:p;}+>0 is a P-martingale in the filtration {F;};>0. In other
words, if P is a pricing measure, the discounted prices are P-martingales.

Notice that we do not assume that such a pricing measure is unique. In other
words, we allow for incomplete market models in our discussion.

2.2 Liquidly Traded Instruments

We next assume that our economy is driven by a set of liquidly traded instruments
whose prices at time ¢, we denote by P;*. We can think of the vector P; = (P/*)aca
of these observable prices as a state vector for our economy. We will not make the
completeness assumption that

Fi =0{Ps; 0 < s <t} t>0.

These instruments are fundamental for the analysis of the market, and a minimal
requirement on a dynamical model of the economy will be that such a model provides
prices for forward starting contracts and European call and put options on these basic
instruments. In particular, at each time ¢, we should be able to compute the quantity

E{Gr(P¥ — K)*|F} 3)

for every maturity T > ¢ and strike A > 0. Since a measure £ on the half line R,
is entirely determined by the knowledge of its call transform, i.e. the values of the
integrals

/ (x — K)T p(dr),
Ry

for K > 0, the knowledge at time ¢, of the prices of all the call options completely
determines the distributions under the conditional measure P;, of all the random
variables Py forall T > t and all o € A.

Here, for each t > 0, we define the random measure PP; as the (regular version of
the) conditional distribution given J; of the discounted version of P. In other words,
IP; is characterized by the requirement that the equality

E{Bi17P¥ 0 §,} = E{3,PEF {5r¥}}

holds for all bounded random variables @ and ¥ which are F; and Fp measurable
respectively.

Remark. Notice that if instead of simply requiring the knowledge of the prices of
all the European call options we were to also require the knowledge of the prices of
all the path dependent options, then for each o € A, the entire (joint) distribution
under P; of (Pg)7>; would be determined. In the situation of interest to us, only the
one-dimensional marginal distributions of IP; are determined by the prices we can
observe.
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2.3 Dynamic Market Model

All the information about the market model should be contained in the specification
of a pricing measure P. However, as we explained earlier, it seems that a reasonable
market model should

e be consistent with the prices of the liquidly traded instruments quoted on the
market, in other words, the numerical values P observed on the market should
be recovered as conditional expectations under the pricing measure P of the
discounted cashflows of the corresponding instruments;

o allow for the pricing of forward starting contracts (e.g. European call options
on call options using the identified liquidly traded instruments as underlyers.
In other words, it should provide a way to compute the time evolution of the
conditional (random) measures P;, or at least its marginal distributions.

The first bullet point involves simply reproducing the prices of the basic liquid instru-
ments at time ¢ = (. It usually goes under the name of calibration. The restriction of
the measure P to Fy is typically trivial and the computation of these prices involves
only regular expectations with respect to P which can be computed at time ¢ = 0. So
this first bullet point does not seem to involve the dynamics of the stochastic evolu-
tion of the characteristics of the market model: it looks like a static requirement for
a one period model.

On the other hand, the second bullet point involves information about the model
(and hence the pricing measure IP) of a more dynamic nature. For this reason, if will
appear to be preferable to specify this dynamic information about P by specifying
{P;}+>0 as a stochastic process in the space of probability measures on the possible
future time evolutions of the vectors {P;},>0 of basic instruments. This is the
main thrust of the HIM approach to fixed income market models as it was originally
introduced by Heath, Jarrow and Morton, and this is the point of view we take to
review in the remaining part of this paper, recent developments in modeling credit
and equity markets.

3 The Classical HJM Approach

The goal of this section is purely of a pedagogical nature. It is not intended as a
rigorous exposé of the original work of Heath, Jarrow and Morton: it is merely an
informal discussion aimed at a very general audience. In the case of fixed income
markets (also called interest rate derivatives markets), the simplest form of interest
rate is the spot rate whose value at time ¢ we denote by ;. As we will emphasize
in several instances, any market model needs to provide with the distribution of the
stochastic process {r; };>0, even if its role is limited to the introduction of the bank
account and the discount factor as in the previous section. Many market models have
been based on the specification of the dynamics of this process. For this reason they
are called short rate models. Despite the limitations which we are about to document,
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they remain very popular, mostly because of their versatility and the existence of
closed form formulae for the prices of many liquidly traded instruments.

There are several sets of liquid interest rate derivatives actively traded and quoted
daily. Coupon bearing bonds, caps, floors, swaptions, are some of them. But because
most of them can be viewed as portfolios of zero coupon bonds, or European options
on zero coupon bonds, and because this section aims at recasting classical material
(which can be found in most financial mathematics textbooks) into the framework
adopted in the paper, we find convenient to choose, for the set of liquidly traded
securities, the ensemble of all the zero coupon non-defaultable bonds.

For the sake of definiteness, we denote by B(t,7") the price at time ¢ of such
a zero coupon bond with maturity 7. We shall often use the term “Treasury”
(which essentially means that the bond will not default) interchangeably with "non-
defaultable”. The entire face value will be paid at time 7" by the issuer of the bond to
the buyer as long as T' > t. So at time ¢ = 0, all the prices B(0,T") can be observed
and the entire curve

T — Bo(T) = B(0,T) 4

is known. So as stated in the first bullet point of Subsection 2.3 above, a first require-
ment for a model given by a pricing measure P is to reproduce these prices exactly.
As we are about to see, this innocent looking condition cannot always be sat-
isfied by the short interest rate models which need to be re-calibrated frequently to
satisfy, at least approximatively this requirement. Indeed, short interest rate models
are endogenous term structure models as the initial term structure of zero coupon
bond prices (4) is an output of the model instead of being an input observed in the
market place. This last point is one of the main components of the HIM approach.
Since the cash flows of a zero coupon bond reduce to paying its nominal amount
(which we conveniently normalize to 1) at time 7', the price has to be given by

Bo(T) = E{fr} = E{e” Jo "%}, )

recall that 3y = 1. So if the parameters of the pricing measure P allow for the com-
putation of the expectation in the above right hand side, the value of this expectation
will have to coincide with the observed price By(7) if we want to satisfy the first
bullet point above.

Using Instantaneous Forward Rates Instead. For reasons that will become clear
later, if the zero coupon prices B(t,T') are (or assumed to be) smooth in the maturity
variable 7', it is more convenient to work with the forward rates defined by

J .
f(t,T):—a—TlogB(f.F) (6)
rather than the bond prices directly. Since the bond prices can be recovered from the
forward rates

p
B(t,]w) _ (]—jl f(t,u) du (7)

the term structure of interest rates can be given equivalently by the forward curves.
In particular, observing all the bond prices By(7') at time ¢ = 0 is equivalent to
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observing all the forward rates fy(7"), and the initial forward rate curve
T — fo(T)

can be the object of the calibration efforts (in the case of short rate models) or it can
serve as initial condition (in the case of HIM models).

3.1 Short Rate Models

Since the prices of the basic instruments of the market can be computed as expec-
tations over the short interest rate, recall formula (5), the simplest prescription for
a pricing measure P is to describe the dynamics of the short rate process. Typi-
cally, a short rate model assumes that under the pricing measure P, the short interest
rate 7; is the solution of a stochastic differential equation of the diffusion form (i.e.
Markovian):

dry = p(t,re) dt + o (t, 1) AW, (8)

where the drift and volatility terms are given by real-valued (deterministic) functions
(t,r) = p'(t,r) and (t,r) — o' (t,7)

such that existence and uniqueness of a strong solution hold. For the sake of illustra-
tion, we consider only one specific example. Indeed, the goal of this section is not to
present the theory of short rate models. They are mentioned only as motivation for
the introduction of the HIM modeling approach.

We choose the Vasicek model because of its simplicity, but for the purpose of
the present discussion, a CIR model of the square root diffusion could have done as
well. In the case of the Vasicek model, the dynamics of the short rate are given by
the stochastic differential equation:

dry = (o — Bry) dt + o dWs. 9)

This equation is simple enough (linear) to be solved explicitly. The solution is
given by (
re = e Plrg + (1 — r_‘”)(—; 4 / e =8) gdW,. (10)
* J0O
{7‘,},2(, is a Gaussian process whenever 7 is, and at each time ¢ > 0 there is a
positive probability that 7, is negative. Despite this troubling feature (not only can
an interest rate be negative in this model, but it is almost surely unbounded below!),
this model is very popular because of its tractability and because a judicious choice
of the parameters can make this probability of negative interest rate quite small.
The tractability of the model is due to the fact that the random variable ](: reds is
Gaussian with mean and variance which can be explicitly computed from the para-
meters a, 3 and o of the model, and from this fact, one gets an explicit formula for
the expectation (5) giving the price of the zero coupon bonds. We get:
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B()(T) _ ea(T)+b(T)r() (l 1)

where r is the current value of the short rate, and where the functions a(7") and b(T")
are given by:

WT) = —% (1—e7T) (12)

and

_dap— 302 N a? — QOﬁT N % — af __pr _ o?  _osp

i) a3 232 3 4p3"

(13)

Alternatively, if we use the forward curve instead of the zero coupon bond curve we
get:

2 2
f(t,T) = re AT 4 % (1 _ e—/i(T—r)) _ 2‘7? (1 _ (,VB(TA)) . (14)

from which we get an expression for the initial forward curve 7' — fy(7') by setting
t = 0. Notice that such a forward curve converges to the constant (2a3 — 02)/23?
when T' — oc. This limit can be given the interpretation of a long rate (as opposed
to the short rate) when o2 < 2a/3. In any case, a Vasicek forward curve flattens and
becomes horizontal for large maturity 7". The graph of a typical example of a forward
curve given by the Vasicek model is given in the left pane of Figure 1. We used the
parameters o = 13.06, # = 2.5 and o = 2 to produce this plot. We clearly see the
flattening of the curve on the right part of the plot.

Rigid Term Structures for Calibration

As we explained earlier, choosing values for the parameters of the model (a,  and
o in the Vasicek model discussed in this section) in order for the model to reproduce
the observed forward curve is what is usually called calibration of the model. Since
the Vasicek model depends upon three parameters, three quoted prices, say By(71),
Bo(T») and By (T3) for three different maturities 77, 75 and 73 should in principle
be enough to determine these parameters. But unfortunately, the curve 7' <— By (T))
constructed from formulae (11), (12), and (13) and three parameter values derived
from three bond prices does not always look like the curve produced by the market
quotes, and most importantly, it changes with the choices of the three maturities 77,
T, and T3. For the sake of illustration, we give in the right pane of Figure | the plot
of the market zero-coupon forward curve on 3/28/1996, and we super-impose on the
same graph the plot of the best least squares fit among the possible forward curves
produced by the Vasicek model. This optimal Vasicek forward curve was obtained
for the values a = 13.06, # = 2.401 and o0 = 1.724 of the parameters. The fact that
a Vasicek forward curves flattens for large maturity makes it impossible to match the
typical increase in 7" found in most practical instances.
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Example of a Vasicek Forward Curve Forward Curve on 3/28/96 and calibrated Vasicek Forward Curve
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Fig. 1. Typical forward curve produced by the Vasicek model (left) and calibrated Vasicek
forward curve (dotted line) to the zero-coupon forward curve on 3/28/1996

A Possible Fix

Several solutions have been proposed to the undesirable rigidity of the initial term
structure curves produced by short rate models. The most popular one is to force
some of the coefficients to be time dependent in order for the model to match any
market forward curve T' — fo(7T'). This is especially simple and useful in the case
of the Vasicek model for if the time dependent coefficients are deterministic, the
solution process remains Gaussian, and closed form solutions for the values of the
forward rates and zero coupon prices can still be derived. To be more specific, for-
mula (10) becomes

[ B.d ¢ [ Budu ¢ [ Budu
— sds — u = B
re=-e Jo" g +/ e Jut agds +/ e Js o, dWs. (15)
0 0

5 oy . . . -~ . -t . . 5
and since the conditional distribution of the integral js fudu is Gaussian, bond prices

B(t,T) = E{e~ . |7}

can still be derived from the expression of the Laplace transform of the Gaussian
distribution.

This strategy was successfully implemented in the case of the Vasicek model (9)
by Hull and White. These two authors proposed to leave the volatility o and the mean
reversion rate 3 constant, and to replace the parameter « by a deterministic function
t — «(t). In this case, the solution 7; is given by the formula

t t
re=e Plrg + / e Plt=9) . ds + 0/ e Pt=s)qw,, (16)
Jo 0



