LNCS 3409

Nicolas Guelfi
Gianna Reggio
Alexander Romanovsky (Eds.)

Scientific Engineering
of Distributed
Java Applications

4th International Workshop, FIDJI 2004
Luxembourg-Kirchberg, Luxembourg, November 2004
Revised Selected Papers

Springer

Nicolas Guelfi Gianna Reggio
Alexander Romanovsky (Eds.)

Scientific Engineering
of Distributed
Java Applications

4th International Workshop, FIDJI 2004
Luxembourg-Kirchberg, Luxembourg, November 24-25, 2004
Revised Selected Papers

@ Springer

Volume Editors

Nicolas Guelfi

University of Luxembourg

Faculty of Science, Technology and Communication

6, rue Richard Coudenhove-Kalergi, 1359 Luxembourg-Kirchberg, Luxembourg
E-mail: nicolas.guelfi@uni.lu

Gianna Reggio

University of Genoa

Department of Informatics

Via Dodecaneso 35, 16146 Genoa, Italy
E-mail: reggio @disi.unige.it

Alexander Romanovsky

University of Newcastle upon Tyne
School of Computing Science

Newcastle upon Tyne, NE1 7RU, UK
E-mail: alexander.romanovsky @ncl.ac.uk

Library of Congress Control Number: 2005921148

CR Subject Classification (1998): D.2, H.4, H.3, H.5.3-4,C.2.4,D.1.3

ISSN 0302-9743
ISBN 3-540-25053-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11398066 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3409

Preface

FIDJI 2004 was an international forum for researchers and practitioners inter-
ested in the advances in, and applications of, software engineering for distributed
application development. Concerning the technologies, the workshop focused on
“Java-related” technologies. It was an opportunity to present and observe the
latest research, results, and ideas in these areas.

All papers submitted to this workshop were reviewed by at least two members
of the International Program Committee. Acceptance was based primarily on
originality and contribution. We selected, for these post-workshop proceedings,
11 papers amongst 22 submitted, a tutorial and two keynotes.

FIDJI 2004 aimed at promoting a scientific approach to software engineering.
The scope of the workshop included the following topics:

— design of distributed applications
— development methodologies for software and system engineering
— UML-based development methodologies
— development of reliable and secure distributed systems
— component-based development methodologies
— dependability support during system life cycle
fault tolerance refinement, evolution and decomposition
— atomicity and exception handling in system development
software architectures, frameworks and design patterns for developing dis-
tributed systems
— integration of formal techniques in the development process
— formal analysis and grounding of modelling notation and techniques (e.g.,
UML, metamodelling)
— supporting the security and dependability requirements of distributed appli-
cations in the development process
— distributed software inspection
— refactoring methods
— industrial and academic case studies
— development and analysis tools

|

|

The organization of such a workshop represents an important amount of
work. We would like to acknowledge all the program committee members, all
the additional referees, all the organization committee members, the University
of Luxembourg, Faculty of Science, Technology and Communication administra-
tive, scientific and technical staff, and the Henri-Tudor public research center.

FIDJI 2004 was mainly supported by the “Ministére de 1’enseignement
supérieur et de la recherche” and by the “Fond National pour la Recherche
au Luxembourg.”

November 2004 Nicolas Guelfi
Gianna Reggio
Alexander Romanovsky

Organization

FIDJI 2004 was organized by the University of Luxembourg, Faculty of Sc1ence,
Technology and Communication.

Program Chairs

Guelfi, Nicolas
Reggio, Gianna
Romanovsky, Alexander

University of Luxembourg, Luxembourg
DISI Genoa, Italy
DCS, Newcastle, UK

International Program Committee

Astesiano, Egidio
Biberstein, Olivier

Bouvry, Pascal

Di Marzo, Giovanna
Dubois, Eric
Fourdrinier, Frédéric
Gengler, Marc
Guelfi, Nicolas
Guerraoui, Rachid
Huzar, Zbigniew

Keller, Rudolf
Kienzle, Jorg
Koskimies, Kai
Majzik, Istvan
Mammar, Amel
Molli, Pascal
Parnas, David
Petitpierre, Claude
Razavi, Reza
Reggio, Gianna
Romanovsky, Sacha
Rothkugel, Steffen
Rottier, Geert
Souquieres, Jeanine
Troubitsyna, Elena
Vachon, Julie
Warmer, Jos

DISI Genoa, Italy

Berne University of Applied Sciences, HTI,
Bienne, Switzerland

University of Luxembourg, Luxembourg

CUI, Geneva, Switzerland

CRP Henri-Tudor, Luxembourg

Hewlett-Packard, France

ESIL, Marseille, France

University of Luxembourg, Luxembourg

EPFL, Lausanne, Switzerland

Wroclaw University of Technology, Wroclaw,
Poland

Ziihlke Engineering, Schlieren, Switzerland

McGill University, Montreal, Canada

University of Helsinki, Finland

BUTE, Budapest, Hungary

University of Luxembourg, Luxembourg

LORIA, Nancy, France

University of Limerick, Limerick, Ireland

EPFL, Lausanne, Switzerland

University of Luxembourg, Luxembourg

DISI, Genoa, Italy

DCS, Newcastle, UK

University of Luxembourg, Luxembourg

Hewlett-Packard, Belgium

LORIA, Nancy, France

Aabo Akademi, Turku, Finland

DIRO, Montreal, Canada

De Nederlandsche Bank, Netherlands

VIII Organization

Organizing Committee

Amza, Catalin University of Luxembourg/DISI, Genoa, Italy
Berlizev, Andrey University of Luxembourg, Luxembourg
Capozucca, Alfredo University of Luxembourg, Luxembourg
Guelfi, Nicolas University of Luxembourg, Luxembourg
Mammar, Amel University of Luxembourg, Luxembourg
Perrouin, Gilles University of Luxembourg, Luxembourg
Pruski, Cédric University of Luxembourg, Luxembourg
Reggio, Gianna DISI, Genoa, Italy

Ries, Angela University of Luxembourg, Luxembourg
Ries, Benoit University of Luxembourg, Luxembourg
Sterges, Paul University of Luxembourg, Luxembourg

Additional Referees

Hnatkowska, Bogumila
Sterges, Paul

Sponsoring Institutions

mil

‘ fonds national de la
UNIVERSITE DU

LUXEMBOURG rech f‘TChe

This workshop was supported by the University of Luxembourg, the Ministry
for Culture, Higher Education and Research, and the National Research Fund.

Lecture Notes in Computer Science

For information about Vols. 1-3306

please contact your bookseller or Springer

Vol. 3418: U. Brandes, T. Erlebach (Eds.), Network Anal-
ysis. XII, 471 pages. 2005.

Vol. 3416: M. Béhlen, J. Gamper, W. Polasek, M.A. Wim-
mer (Eds.), E-Government: Towards Electronic Democ-
racy. XIII, 311 pages. 2005. (Subseries LNAI).

Vol. 3412: X. Franch, D. Port (Eds.), COTS-Based Soft-
ware Systems. XVI, 312 pages. 2005.

Vol. 3410: C.A. Coello Coello, A. Herndndez Aguirre,
E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XVI, 912 pages. 2005.

Vol. 3409: N. Guelfi, G. Reggio, A. Romanovsky (Eds.),
Scientific Engineering of Distributed Java Applications.
X, 127 pages. 2005.

Vol. 3406: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVII, 829 pages. 2005.
Vol. 3404: V. Diekert, B. Durand (Eds.), STACS 2005.
XVI, 706 pages. 2005.

Vol. 3403: B. Ganter, R. Godin (Eds.), Formal Concept
Analysis. XI, 419 pages. 2005. (Subseries LNAI).

Vol. 3401: Z. Li, L. Vulkov, J. Wasniewski (Eds.), Numer-
ical Analysis and Its Applications. XIII, 630 pages. 2005.

Vol. 3398: D.-K. Baik (Ed.), Systems Modeling and Sim-
ulation: Theory and Applications. XIV, 733 pages. 2005.
(Subseries LNAI).

Vol. 3397: T.G. Kim (Ed.), Artificial Intelligence and Sim-
ulation. XV, 711 pages. 2005. (Subseries LNAI).

Vol. 3396: R.M. van Eijk, M.-P. Huget, FE. Dignum (Eds.),
Advances in Agent Communication. X, 261 pages. 2005.
(Subseries LNAI).

Vol. 3393: H.-J. Kreowski, U. Montanari, F. Orejas, G.

Rozenberg, G. Taentzer (Eds.), Formal Methods in Soft-
ware and Systems Modeling. XXVII, 413 pages. 2005.

Vol. 3391: C. Kim (Ed.), Information Networking. XVII,
936 pages. 2005.

Vol. 3388: J. Lagergren (Ed.), Comparative Genomics.
VIII, 133 pages. 2005. (Subseries LNBI).

Vol. 3387: J. Cardoso, A. Sheth (Eds.), Semantic Web
Services and Web Process Composition. VIII, 147 pages.
2005.

Vol. 3386: S. Vaudenay (Ed.), Public Key Cryptography -
PKC 2005. IX, 436 pages. 2005.

Vol. 3385: R. Cousot (Ed.), Verification, Model Checking,
and Abstract Interpretation. XII, 483 pages. 2005.

Vol. 3383: J. Pach (Ed.), Graph Drawing. VIII, 514 pages.
2005.

Vol. 3382: J. Odell, P. Giorgini, J.P. Miiller (Eds.), Agent-
Oriented Software Engineering V. X, 239 pages. 2005.

Vol. 3381: P. Vojtas, M. Bielikov4, B. Charron-Bost, O.
Sykora (Eds.), SOFSEM 2005: Theory and Practice of
Computer Science. XV, 448 pages. 2005.

Vol. 3379: M. Hemmje, C. Niederee, T. Risse (Eds.), From
Integrated Publication and Information Systems to Infor-
mation and Knowledge Environments. XXIV, 321 pages.
2005.

Vol. 3378: J. Kilian (Ed.), Theory of Cryptography. XII,
621 pages. 2005.

Vol. 3376: A. Menezes (Ed.), Topics in Cryptology — CT-
RSA 2005. X, 385 pages. 2004.

Vol. 3375: M.A. Marsan, G. Bianchi, M. Listanti, M. Meo
(Eds.), Quality of Service in Multiservice IP Networks.
XIII, 656 pages. 2005.

Vol. 3374: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems. X, 279 pages.
2005. (Subseries LNAI).

Vol. 3372: C. Bussler, V. Tannen, I. Fundulaki (Eds.), Se-
mantic Web and Databases. X, 227 pages. 2005.

Vol. 3368: L. Paletta, J.K. Tsotsos, E. Rome, G.W.
Humphreys (Eds.), Attention and Performance in Com-
putational Vision. VIII, 231 pages. 2005.

Vol. 3366: 1. Rahwan, P. Moraitis, C. Reed (Eds.), Argu-
mentation in Multi-Agent Systems. XII, 263 pages. 2005.
(Subseries LNAI).

Vol. 3363: T. Eiter, L. Libkin (Eds.), Database Theory -
ICDT 2005. XI, 413 pages. 2004.

Vol. 3362: G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
T. Muntean (Eds.), Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices. IX, 257 pages.
2005.

Vol. 3361: S. Bengio, H. Bourlard (Eds.), Machine Learn-
ing for Multimodal Interaction. XII, 362 pages. 2005.

Vol. 3360: S. Spaccapietra, E. Bertino, S. Jajodia, R. King,
D. McLeod, M.E. Orlowska, L. Strous (Eds.), Journal on
Data Semantics II. XI, 223 pages. 2004.

Vol. 3359: G. Grieser, Y. Tanaka (Eds.), Intuitive Human
Interfaces for Organizing and Accessing Intellectual As-
sets. XIV, 257 pages. 2005. (Subseries LNAI).

Vol. 3358: J. Cao, L.T. Yang, M. Guo, FE. Lau (Eds.), Par-
allel and Distributed Processing and Applications. XXIV,
1058 pages. 2004. .

Vol. 3357: H. Handschuh, M.A. Hasan (Eds.), Selected
Areas in Cryptography. XI, 354 pages. 2004.

Vol. 3356: G. Das, V.P. Gulati (Eds.), Intelligent Informa-
tion Technology. XII, 428 pages. 2004.

Vol. 3355: R. Murray-Smith, R. Shorten (Eds.), Switching
and Learning in Feedback Systems. X, 343 pages. 2005.

Vol. 3353: J. Hromkovi¢, M. Nagl, B. Westfechtel (Eds.),
Graph-Theoretic Concepts in Computer Science. XI, 404
pages. 2004.

Vol. 3352: C. Blundo, S. Cimato (Eds.), Security in Com-
munication Networks. XI, 381 pages. 2005.

Vol. 3350: M. Hermenegildo, D. Cabeza (Eds.), Practical
Aspects of Declarative Languages. VIII, 269 pages. 2005.

Vol. 3349: B.M. Chapman (Ed.), Shared Memory Parallel
Programming with Open MP. X, 149 pages. 2005.

Vol. 3348: A. Canteaut, K. Viswanathan (Eds.), Progress in
Cryptology - INDOCRYPT 2004. X1V, 431 pages. 2004.

Vol. 3347: R.K. Ghosh, H. Mohanty (Eds.), Distributed
Computing and Internet Technology. XX, 472 pages.
2004.

Vol. 3346: R.H. Bordini, M. Dastani, J. Dix, A.EF.
Seghrouchni (Eds.), Pro, ing Multi-Agent Systems.
X1V, 249 pages. 2005. (Subseries LNAI).

Vol. 3345: Y. Cai (Ed.), Ambient Intelligence for Scientific
Discovery. XII, 311 pages. 2005. (Subseries LNAI).

Vol. 3344: J. Malenfant, B.M. @stvold (Eds.), Object-
Oriented Technology. ECOOP 2004 Workshop Reader.
VIII, 215 pages. 2005.

Vol. 3342: E. $ahin, W.M. Spears (Eds.), Swarm Robotics.
IX, 175 pages. 2005.

Vol. 3341: R. Fleischer, G. Trippen (Eds.), Algorithms and
Computation. XVII, 935 pages. 2004.

Vol. 3340: C.S. Calude, E. Calude, M.J. Dinneen (Eds.),
Developments in Language Theory. XI, 431 pages. 2004.

Vol. 3339: G.I. Webb, X. Yu (Eds.), AI 2004: Advances in
Artificial Intelligence. XXII, 1272 pages. 2004. (Subseries
LNAI).

Vol. 3338: S.Z.Li, J. Lai, T. Tan, G. Feng, Y. Wang (Eds.),
Advances in Biometric Person Authentication. XVIII, 699
pages. 2004.

Vol. 3337: J.M. Barreiro, FE. Martin-Sanchez, V. Maojo, F.
Sanz (Eds.), Biological and Medical Data Analysis. XI,
508 pages. 2004.

Vol. 3336: D. Karagiannis, U. Reimer (Eds.), Practical
Aspects of Knowledge Management. X, 523 pages. 2004.
(Subseries LNAI).

Vol. 3335: M. Malek, M. ReitenspieB, J. Kaiser (Eds.),
Service Availability. X, 213 pages. 2005.

Vol. 3334: Z. Chen, H. Chen, Q. Miao, Y. Fu, E. Fox, E.-p.
Lim (Eds.), Digital Libraries: International Collaboration
and Cross-Fertilization. XX, 690 pages. 2004.

Vol. 3333: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part III. XXXV, 785 pages. 2004.

Vol. 3332: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part II. XXXVI, 1051 pages. 2004.

Vol. 3331: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part I. XXXVI, 667 pages. 2004.

Vol. 3330: J. Akiyama, E.T. Baskoro, M. Kano (Eds.),
Combinatorial Geometry and Graph Theory. VIII, 227
pages. 2005.

Vol. 3329: PJ. Lee (Ed.), Advances in Cryptology - ASI-
ACRYPT 2004. X VI, 546 pages. 2004.

Vol. 3328: K. Lodaya, M. Mahajan (Eds.), FSTTCS 2004:
Foundations of Software Technology and Theoretical
Computer Science. XVI, 532 pages. 2004.

Vol. 3327:Y. Shi, W. Xu, Z. Chen (Eds.), Data Mining and
Knowledge Management. XIII, 263 pages. 2005. (Sub-
series LNAI).

Vol. 3326: A. Sen, N. Das, S.K. Das, B.P. Sinha (Eds.),
Distributed Computing - IWDC 2004. XIX, 546 pages.
2004.

Vol. 3325: C.H. Lim, M. Yung (Eds.), Information Security
Applications. XI, 472 pages. 2005.

Vol. 3323: G. Antoniou, H. Boley (Eds.), Rules and Rule
Markup Languages for the Semantic Web. X, 215 pages.
2004.

Vol. 3322: R. Klette, J. Zuni¢ (Eds.), Combinatorial Image
Analysis. XII, 760 pages. 2004.

Vol. 3321: M.J. Maher (Ed.), Advances in Computer Sci-
ence - ASIAN 2004. Higher-Level Decision Making. XII,
510 pages. 2004.

Vol. 3320: K.-M. Liew, H. Shen, S. See, W. Cai (Eds.), Par-
allel and Distributed Computing: Applications and Tech-
nologies. XXIV, 891 pages. 2004.

Vol. 3319: D. Amyot, A.W. Williams (Eds.), System Anal-
ysis and Modeling. XII, 301 pages. 2005.

Vol. 3318: E. Eskin, C. Workman (Eds.), Regulatory Ge-
nomics. VIII, 115 pages. 2005. (Subseries LNBI).

Vol. 3317: M. Domaratzki, A. Okhotin, K. Salomaa, S.
Yu (Eds.), Implementation and Application of Automata.
XII, 336 pages. 2005.

Vol. 3316: N.R. Pal, N.K. Kasabov, R.K. Mudi, S. Pal,
S.K. Parui (Eds.), Neural Information Processing. XXX,
1368 pages. 2004.

Vol. 3315: C. Lemaitre, C.A. Reyes, J.A. Gonzélez (Eds.),
Advances in Attificial Intelligence — IBERAMIA 2004.
XX, 987 pages. 2004. (Subseries LNAI).

Vol. 3314: J. Zhang, J.-H. He, Y. Fu (Eds.), Computational
and Information Science. XXIV, 1259 pages. 2004.

Vol. 3313: C. Castelluccia, H. Hartenstein, C. Paar, D.
‘Westhoff (Eds.), Security in Ad-hoc and Sensor Networks.
VIII, 231 pages. 2005.

Vol. 3312: A.J. Hu, A K. Martin (Eds.), Formal Methods
in Computer-Aided Design. XI, 445 pages. 2004.

Vol. 3311: V. Roca, F. Rousseau (Eds.), Interactive Mul-
timedia and Next Generation Networks. XIII, 287 pages.
2004.

Vol. 3310: U.K. Wiil (Ed.), Computer Music Modeling
and Retrieval. XI, 371 pages. 2005.

Vol. 3309: C.-H. Chi, K.-Y. Lam (Eds.), Content Comput-
ing. XII, 510 pages. 2004.

Vol. 3308: J. Davies, W. Schulte, M. Barnett (Eds.), For-
mal Methods and Software Engineering. XIII, 500 pages.
2004.

Vol. 3307: C. Bussler, S.-k. Hong, W. Jun, R. Kaschek,
D.. Kinshuk, S. Krishnaswamy, S.W. Loke, D. Oberle, D.
Richards, A. Sharma, Y. Sure, B. Thalheim (Eds.), Web
Information Systems — WISE 2004 Workshops. XV, 277
pages. 2004.

Table of Contents

Component-Based Design of Embedded Software:
An Analysis of Design Issues i, 1
Christo Angelov, Krzysztof Sierszecki, and Nicolae Marian

How Design Patterns Affect Application Performance —
A Case of a Multi-tier J2EE Application 12
Jakub Rudzki

An MDA-Based Approach for Inferring Concurrency
in Distributed Systems 24
Raul Silaghi and Alfred Strohmeier

Task-Based Access Control for Virtual Organizations 38
Panos Periorellis and Savas Parastatidis

Self-deployment of Distributed Applications 48
Ichiro Satoh

- Modeling and Analysis of Exception Handling
by Using UML Statecharts 58
Gergely Pintér and Istvdin Majzik

Coordinated Anonymous Peer-to-Peer Connections with MoCha 68
Juan Guillen-Scholten and Farhad Arbab

A Survey of Software Development Approaches
Addressing Dependabilityc.ooiiiiiiii i 78
Sadaf Mustafiz and Jorg Kienzle

FreeSoDA: A Web Services-Based Tool to Support Documentation
in Distributed Projects i 91
Frank Padberg

A JMM-Faithful Non-interference Calculus for Java 101
Viadimir Klebanov

A Java Package for Transparent Code Mobility 112
Lorenzo Bettini

Keynote Talks

Dependability-Explicit Computing: Applications in e-Science
and Virtual Organisations................ it inninenennnnn.. 123
John Fitzgerald

X Table of Contents

Towards a Precise UML-Based Development Method

Gianna Reggio
Tutorials

Fault Tolerance — Concepts and Implementation Issues

Jorg Kienzle
Author Index

Component-Based Design of Embedded Software:
An Analysis of Design Issues

Christo Angelov, Krzysztof Sierszecki, and Nicolae Marian

Mads Clausen Institute for Product Innovation, University of Southern Denmark
Grundtvigs Alle 150, 6400 Soenderborg, Denmark
{angelov,ksi,nicolae}@mci.sdu.dk

Abstract. Widespread use of embedded systems mandates the use of industrial
production methods featuring model-based design and repositories of prefabri-
cated software components. The main problem that has to be addressed in this
context is to systematically develop a software architecture (framework) for
embedded applications, taking into account the true nature of embedded sys-
tems, which are predominantly real-time control and monitoring systems. There
are a great number of design issues and unresolved problems with existing ar-
chitectures, which have to be carefully analyzed in order to develop a viable
component-based design method for embedded applications. Such an analysis is
presented in this paper, which focuses on a number of key issues: specification
of system structure; specification of system behaviour; component scheduling
and execution; program generation vs. system configuration. The analysis has
been used to formulate the guidelines used to develop COMDES — a software
framework for distributed embedded applications.

1 Introduction

The widespread use of embedded systems (including time-critical and safety-critical
systems) poses a serious challenge to software developers in view of diverse, severe
and conflicting requirements, e.g. reduced development and operating costs and re-
duced time to market, as well as specific issues that are particularly important for
embedded systems: dependable operation through reliable and error-free software;
predictable and guaranteed behaviour under hard real-time constraints; open architec-
ture supporting software reuse and reconfiguration; architectural support for software
scalability, including both stand-alone and distributed applications.

The above requirements cannot be met by currently used software technology,
which is largely based on informal design methods and manual coding techniques.
Recently, there have been successful attempts to overcome the above problem
through model-based design and computer-aided generation of embedded software
from high-level specifications. However, this approach has a serious drawback: it
does not provide adequate support for dynamic (in-site and on-line) reconfiguration
since it requires the generation and compilation of new code, which has to be subse-
quently downloaded into the target system. The ultimate solution to the above prob-
lem can be characterized as computer-aided configuration of embedded software
using formal frameworks and pre-fabricated executable components. The latter may

N. Guelfi et al. (Eds.): FIDJI 2004, LNCS 3409, pp. 1-11, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 Christo Angelov, Krzysztof Sierszecki, and Nicolae Marian

be implemented as re-locatable silicon libraries stored in non-volatile memory
(ROM).

The main problem to be solved in this context is to develop a comprehensive
framework that would reflect the true nature of embedded systems, which are pre-
dominantly real-time control and monitoring systems [16]. Developing such a frame-
work and the associated software design method is a highly complex engineering task,
which is currently in the focus of attention of many research groups but so far, there
has been no widely accepted solution [16-26]. This is due to a number of factors: very
high complexity, great diversity of applications and the absence of common approach
towards embedded software development, which is further aggravated by the lack of
previous research [17].

There are a great number of design issues and unresolved problems with existing
architectures, which have to be carefully analyzed in order to develop a viable com-
ponent-based design method for embedded applications. Such an analysis is presented
in this paper, which focuses on a number of key issues: specification of system struc-
ture (section 2); specification of system behaviour (section 3); component scheduling
and execution (section 4); program generation vs. system configuration (section 5).
The analysis carried out has been used to define guidelines used to develop COMDES
— a software framework for distributed embedded systems [2-4] whose main features
are summarized in section 6.

2 Specification of System Structure

A great number of embedded systems use a process-based configuration specification
in the context of static and/or dynamic process scheduling. A process-based system is
conceived as a set of interacting processes (tasks) running under a real-time kernel or
a static schedule. Process-based specifications are criticized for emphasizing the func-
tional rather than the structural decomposition of real-time systems. Such specifica-
tions address naturally the problems of scheduling and schedulability analysis but the
resulting solutions are usually far from being open and easily reconfigurable (espe-
cially in the case of static process scheduling).

Conversely, object-based specifications emphasize structural decomposition,
which facilitates the implementation of open and reconfigurable systems, e.g. indus-
trial software standards such as IEC 61131-3 [12] and IEC 61499 [13]. In that case
the system is conceived as a composition of interacting components, such as function
blocks and port-based objects, which are then mapped onto real-real-time tasks [13,
20], or alternatively — executed under a static schedule [24, 26]. Unfortunately, ob-
ject-based design methods often disregard the problems of timing behaviour and
schedulability analysis, which are of paramount importance for hard real time systems
(e.g. the above two standards). There are some notable exceptions, however, e.g.
HRT-HOOD, which has a sound foundation in modern Fixed-Priority Scheduling
Theory [5].

Object-based design uses a number of fundamental principles such as encapsula-
tion, aggregation and association of objects (components). Therefore, it is inherent to
component-based design methods. However, a major problem that has to be overcome
is the informal and largely ad-hoc definition of application objects. This can be ob-

Component-Based Design of Embedded Software: An Analysis of Design Issues 3

served in many software design methods, where it is left to the system designer to
define system objects and object classes for each particular application. That applies
not only to component functionality and interfacing, but also — to the way components
are mapped onto real-time tasks (e.g. one component mapped onto one task [21, 24],
several components mapped onto one task [13, 20], several tasks mapped onto one
component [8, 11]).

It can be argued that a software design method should incorporate both types of
specification into a hierarchical model, taking into account both the structural and
computational aspects of system architecture. This has resulted in the development of
hybrid architectures and design methods such as ARTS [8] and SDL [11] that are both
object and process-based. That is, the system is conceived as a composition of active
objects, each of them encapsulating one or more threads of control. Threads invoke
the operations of passive objects and the latter may invoke the operations of other
objects, etc. This approach results in well-structured systems, featuring a well-
specified hierarchy of active and passive objects, but once again, these are defined by
the system designer for each particular case.

Ad-hoc specification and design severely limits component reusability. Therefore,
it is necessary to develop a formal framework that will allow for a systematic specifi-
cation of reconfigurable components, which will be reusable by definition. The proper
way of doing this is to specify software components using decomposition criteria that
are derived from the areas of control engineering and systems science rather than
human experience and intuition, taking into account that modern embedded systems
are predominantly control and monitoring systems [16].

This has been achieved to some extent in industrial software standards (e.g. those
mentioned above) but at a relatively low level, i.e. the level of passive objects such as
function blocks [12, 13]. However, no provision is made for reconfigurable state ma-
chines or hybrid models involving reconfigurable state machines and function blocks.
Conversely, there are a few systems featuring reconfigurable state machines, e.g.
AIRES [20] and StateWORKS [23], but they do not provide support for function
blocks and function block diagrams in the sense of IEC 61131-3 and similar stan-
dards.

Component interaction is another major issue that has to be resolved while specify-
ing system configuration. There are a number of interaction patterns, which are
widely used in the context of both process-based and object-based systems: client-
server, producer-consumer(s) and publisher-subscribers. Client-server is highly popu-
lar in the IT community and is also used in industrial computer systems and protocols.
However, it has limitations, such as the blocking nature of communication and point-
to-point interactions. Therefore, producer-consumer is considered better suited for
real-time systems because it is non-blocking and supports one-to-many interactions
[7]. Publisher-subscriber combines the useful features of the former two methods and
it is also widely used in practice.

The above patterns can be implemented via component interfaces, which are de-
fined in the component interface model. Embedded systems use basically two types of
such models: a) the IEC 61131 type of model specifying component interfaces in
terms of signal inputs and outputs, whereby a component output is directly linked to
one or more inputs of other components (function blocks); b) port-based objects inter-
acting via suitably linked input and output ports that are implemented as shared mem-

4 Christo Angelov, Krzysztof Sierszecki, and Nicolae Marian

ory locations. The latter model has been specifically developed for robotics applica-
tions [21] but similar models have been widely used in other application domains as
well, e.g. ROOM [10], SDL [11], SOFIA [22], PECOS [25], etc. Port-based objects
provide a high degree of flexibility but at the same time their use may result in rela-
tively complex models (diagram clutter) because it is necessary to explicitly specify
all ports and port connections for a given application.

This problem is overcome in IEC 61131-like models through implicit definition of
1/O buffers and softwiring of inputs and outputs resulting in simple and easy to under-
stand models — function block diagrams [12]. In this case I/O buffers are defined
within the corresponding execution records of interconnected function block in-
stances, whereby an input variable value can be obtained from the corresponding
output using either an I/O assignment statement, or even better — a pointer specifying
the source of data for the corresponding input-to-output connection. However, this
technique is directly applicable to low-level components such as function blocks but it
does not scale up well to distributed applications. It the latter case, it is necessary to
use special-purpose components, e.g. service interface function blocks [13], with the
resulting loss of transparency.

Distributed applications require higher-level components (function units). These
are software agents implementing autonomous subsystems, such as sensor, controller,
actuator, etc., that are usually allocated to different network nodes and interact with
one another within various types of distributed transactions. Therefore, the basic con-
trol engineering approach has to be extended into a systems engineering approach, in
order to take into account the complexity of real-world applications. Accordingly, it is
necessary to extend the softwiring technique, so that function units are connected with
each other in a uniform manner and signals are exchanged transparently between
them, independent of their physical allocation. This would require the development of
a special-purpose protocol supporting the transparent exchange of signals, i.e. labeled
messages, between interacting function units [1].

3 Specification of System Behaviour

At the operational level of specification, there is a controversy between various para-
digms, e.g. event-driven vs. time-driven operation and control flow vs. data flow
models. Consequently, some architectures and design methods emphasize event-
driven reactive behavior and control flow, whereas others focus on time-driven opera-
tion and the data flow between interacting components and subsystems. The former
type of software architecture is usually associated with discontinuous event-driven
systems, whereas the latter is preferred with continuous control systems. This situa-
tion reflects a gap between continuous and discontinuous systems modeling and de-
sign (e.g. state machines vs. data flow diagrams), which has been recognized by the
control engineering community.

However, such a differentiation of system models is largely artificial and it clearly
comes into conflict with the nature of real plants, which are more or less hybrid, even
if they are treated as predominantly discrete or continuous. That is even more obvious
in the case of complex hybrid control systems and applications. On the other hand, it
can be shown that a sequential control system can be represented with a function

Component-Based Design of Embedded Software: An Analysis of Design Issues 5

block diagram (in terms of gates and flip-flops) and likewise — a continuous control
system can be entirely specified in terms of state machines, even though these are not
perhaps the typical modeling techniques for the above two types of system.

Similarly, a discontinuous event-driven system can be specified and implemented
as a time-driven synchronous state machine; on the other hand, time-driven behaviour
can be considered a special case of event-driven behaviour, where periodic activities
are triggered by regularly arriving timing events, e.g. timeout events as defined in
Statecharts.

Synchronous time-driven implementation is actually preferred by real-time engi-
neers, because such systems have periodic task execution patterns, and this is a major
prerequisite for the estimation of task response times using analysis techniques devel-
oped in modern Real-Time Scheduling Theory. It is worth noting that synchronous
time-driven systems are preferred not only by real-time engineers but also, by control
engineers: most practical examples of industrial control systems — both continuous
and sequential — are synchronous systems triggered by periodically arriving timing
events.

That is also the choice of hardware engineers, who implement sequential circuits as
synchronous (clock-driven) state machines. However, this example prompts another
interesting observation: hardware systems generate signals (i.e. reactions to timing
events) with a very small delay, which can be ignored for the purpose of analysis.
That is, it is possible to assume zero delay between the clock event and the corre-
sponding reaction. This is the well-known synchrony hypothesis, which has been also
adopted for a class of real time systems in a more general event-driven context, as-
suming that events are clocked and subsequently processed by the system before the
next tick arrives. There are a number of architectures and programming languages
illustrating this approach, e.g. real-time languages such as ESTEREL, LUSTRE, and
SIGNAL [9]. However, these languages use an interleaved model of execution,
whereby concurrent processes (state machines) are compiled into sequential programs
with the resulting loss of modularity [18].

The above discussion has outlined the duality of various paradigms used to specify
system behaviour. Nonetheless, there is seemingly no model combining naturally the
reactive and the transformational aspects of system behavior, both of which are inher-
ent to real-world systems and especially — to complex hybrid control systems. There
have been attempts to solve this problem, and most notably the MoBIES project being
developed at the University of California, Berkeley [18]. That project combines nu-
merous computational models into a hybrid object-oriented framework, whereby the
notion of computational model includes not only “pure” operational models such as
state machines and data flow diagrams, but also — process interaction and execution
models. Unfortunately, this has resulted in an overly complex framework featuring
multiple operational domains and “polymorphic” component interfaces, which seems
to be too complicated for practical purposes. This framework is supported by an
equally complex software engineering environment featuring a multi-stage program
generation process.

Another attempt to bridge the gap between event-driven and time-driven behaviour
and accordingly — between control flow and data flow, is illustrated with the compo-
nent model introduced in standard IEC 61499 [13]. In that case reactive (event-
driven) and data transformation aspects are combined into low-level components such

6 Christo Angelov, Krzysztof Sierszecki, and Nicolae Marian

as function blocks. Whereas this is a big step forward in comparison with the previous
standard IEC 61131-3 [12], it has also substantial limitations: for each function block,
event-driven behaviour is specified in terms of a limited subset of input and output
events that are defined in the interface specification of the function block. Accord-
ingly, event-driven behaviour is specified with a state transition graph, which is
“hardwired” in the function block. Hence, it is impossible to reconfigure the state
machine, without re-designing and re-implementing the function block.

This limits substantially component reusability, since in the general case a function
block may be expected to execute in different contexts, e.g. operational modes of a
complex modal controller whose behaviour is specified with a state transition graph
that is different from the one encoded in the function block. On the other hand, it
might be possible to execute a sequence of function blocks within a given mode of
operation. Hence, it is not necessary to replicate the state transition graph in all func-
tion blocks involved, which could result in undue overhead.

Instead, state transition logic might be implemented within a higher level of ab-
straction, i.e. a state machine that would be capable of executing function blocks
and/or function block sequences (function block diagrams) within different
states/modes of operation. This is essentially a hybrid state machine, which combines
in a natural way the reactive and transformational aspects of component behaviour. It
can be eventually encapsulated into a function block of class reconfigurable state
machine, which can be used to implement complex behaviour for a broad range of
embedded applications.

4 Component Scheduling and Execution

Component operations are mapped onto real-time processes (tasks) that have to be
executed concurrently in a multi-tasking and possibly — multiple-node distributed
environment. This is related to another aspect of operational behaviour, i.e. process
scheduling and execution, which has to be provided by some kind of operational envi-
ronment, guaranteeing that processes are executed within specified deadlines. This
problem is further complicated when processes are executed as integral part of (possi-
bly complex) sequences — transactions, which have to satisfy the corresponding end-
to-end deadlines. It becomes even more complex in the case of distributed transac-
tions, where computational and communication tasks have to be executed in different
scheduling domains — network nodes, communication media, etc., observing once
again the corresponding end-to-end deadlines. However, in all cases the adopted
scheduling mechanism has to provide a safe operational environment for application
tasks, i.e. predictable and guaranteed behaviour under hard real-time constraints.
There are basically two approaches to process scheduling for dependable embed-
ded systems: static scheduling vs. predictable dynamic scheduling using algorithms
developed in modern Real-Time Scheduling Theory. Static scheduling is widely used
with dependable real-time systems in application areas such as aerospace and military
systems, automotive applications, etc., and it is illustrated with the timed-triggered
architecture specifically developed for this type of system [7]. It has also been used
with a number of component-based design methods as well, see e.g. [24, 26]. How-
ever, this approach has a major disadvantage: its use results in closed systems that are

