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Preface

The trouble with solving differential equations is that whenever we are
successful we seldom stop to ask why. The concept of one-parameter
transformation groups which leave the differential equation invariant
provides the only unified understanding of all known special solution
techniques. 1In these notes I have attempted to present a fairly concise and
self-contained account of the use of one-parameter groups to solve
differential equations. The presentation is formal and is intended to appeal
to Applied Mathematicians and Engineers whose principal concern is obtaining
solutions of differential equations. I have included only the essentials of
the subject, sufficient to enable the reader to attempt the group approach
when solving differential equations. I have purposely not included all known
results since this would inevitably lead to unnecessarily reproducing large
portions of existing accounts. For example, for ordinary differential
equations, the account of the subject by L.E. Dickson, '"Differential equations
from the group standpoint", is still extremely readable and is recommended to
the reader interested in pursuing the subject further. For partial
differential equations the books by G.W. Bluman and J.D. Cole, "Similarity
methods for differential equations', and by L.V. Ovsjannikov '"Group properties
of differential equations'", contain several applications and examples which
I have not reproduced here.

The first two chapters are introductory. Chapter 1 gives a general
introduction with simple examples involving both ordinary and partial

differential equations. In Chapter 2 the concepts of one-parameter groups



and Lie series are introduced. Just as ordinary methods of solving
differential equations often require a certain ingenuity so does the group
.approach. In order to establish some familiarity with the group method I
have attempted to exploit our experience with linear equations. Most of us
are aware that linear differential equations for y(x) remain linear under
the transformation Xy = £(x) ¥i = g(x)y and Chapter 3 of these notes is
devoted to implications of this result. 1In Chapters 4 and 5 I have tried to
relate the usual theory for the group method with the results obtained in the
third chapter. In this respect these notes differ from most accounts of the
subject and I believe that a number of results given, especially in Chapter 3
are new.

The remaining two chapters are devoted to partial differential equations.
For the most part the theory is illustrated with reference to diffusion
related partial differential equations. The theory for linear partial
differential equations is introduced in Chapter 6 for the classical diffusion
or heat conduction equation and the Fokker-Planck equation. Non-linear
equations are treated in Chapter 7. For partial differential equations the
group approach is less satisfactory since for boundary value problems both
the equation and boundary conditions must remain invariant. In these notes
we principally consider only the invariance of the equation and view the
group method as a means of systematically deducing solution types of a given
pagtial differential equation.

Although these notes appear as a research monograph they actually represent
advanced teaching material and in fact form the basis of a post-graduate
course given at the University of Wollongong for the past six years. I have
therefore included numerous examples and exercises. 1In addition to the

exercises I have used the problems at the end of each chapter to conveniently



locate standard ¥esults for differential equations; On occasions I héve also
used these problems to include summaries of theory which is already adequately
described in the literature.

The éxisting theory of the solution of differential equations by means of
one-parameter groups is by no means complete. Many of the inadequacies of
the subject are highlighted in the text. When it does work it is very easy
and it is therefore an area of knowledge which every Applied Mathematician
ought to be aware of. Whatever the limitations of the group method may be,
it will always represent a profoundly interesting idea towards solving
differential equations. 1 hope these notes prove to be useful and complement

the existing literature.

James M. Hill,
The University of Wollongong,

Australia.
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1 Introduction

Although a good deal of research over the past two centuries has been devoted
to differential equations our present understanding of them is far from
complete. These notes are concerned with obtaining solutions of differential
equations by means of one-parameter transformation groups which leave the
equation invariant. This subject was initiated by Sophus Lie [1] over a
hundred years ago. Such an approach is not always successful in deriving
solutions. However it does provide a framework in which existing special
methods of solution can be properly understood and also it is applicable to
linear and non-linear equations alike. In formulating differential equations
the Applied Mathematician inevitably makes certain assumptions. Using group
theory these assumptions can be seen to hold the key to obtaining solutions
of their equations.

The purpose of this chapter is to present a simple introduction to the
subject for both ordinary and partial differential equations by means of
simple familiar examples. For ordinary differential equations comprehensive
accounts of the subject are given by Cohen [2], Dickson [3], Page [4] and
more recently Bluman and Cole [5] and Chester [6]. For partial differential
equations the reader may consult Bluman and Cole [5] and Ovsjannikov [7]

where additional references may also be found.

1.1 ORDINARY DIFFERENTIAL EQUATIONS

In order to illustrate some of the ideas developed in these notes we consider
a simple example. It is well known that the 'homogeneous' first order

differential equation
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can be made separable by the substitution u(x,y) = y/x and the resulting

solution is given by

1 2
log x - 5 {%] =0, (1%2)

 'where C denotes an arbitrary constant. We might well ask the following

questions:
Question 1 Why does the substitution wu(x,y) = y/x lead to a separable

Y
equation for wu ?

Question 2 How do we interpret the degree of freedom embodied in the
~arbitrary constant C in the solution?
Answers to these questions can be provided within the framework of

 transformations which leave the differential equation unaltered. Consider

the following transformation,
€ €
X = ex, S Ml (1.3)

~where € is an arbitrary constant. We notice that (l.1) remains invariant
- under (1.3) in the sense that the differential equation in the new variables

Xy and Yy is identical to the original equation, namely

dy1 xi + yi
L b S 44
1 171

Moreover we see that (1.3) satisfies the following:

(i) € = 0 gives the identity transformation X =X,y =y,

(ii) -€ characterizes the inverse transformation x = e—exl, y = e_gyl,
e L GRIERA G X, = e5xl, ¥y = eéyl then the product transformation is also a
member of the set of transformations (1.3) and moreover is

characterized by the parameter e+§, that is X, = eE+6x, ¥y e€+6y.




A transformation satisfying these three properties is said to be a one-

parameter group of transformations. We observe that the usual associativity
law for groups follows from the property (iii). With this terminology
established we might answer the above questions as follows:

Answer 1 The substitution u(x,y) = y/x leads to a séparable equation for ;
u because u(x,y) is an invariant of (1.3) in the sense that
u(xl’yl) = u(x,y) . since,

e 48
X

U(Xl’yl) . = U(X’Y) 5

and it is this property which results in a simplification of (1.1). In
general we shall see that if a differential equation is invariant under a
one-parameter group of transformations then use of an invariant of the group
results in a simplification of the differential equation. If the
differential equation is of first order then it becomes separable while if the
equation is of higher order then use of an invariant of the group permits a
reduction in the order of the equation by one.

Answer 2 From (1.2) and (1.3) we see that we have

log %, =~ %— ==l =C+ € ,

1

so that the degree of freedom in the solution (1.2) resulting from the
arbitrary constant C is related to the invariance of the differential
equation (1.1) under the group of transformations (1.3) which is characterized
by the arbitrary parameter €. That is, the transformation (1.3) permutes
the solution curves (1.2). 1In general we shall see that for every one-
parameter group in two variables there are functions u(x,y) and v(x,y)
such that the group becomes

u(xl,yl) = u(x,y) , V(xl,yl) = (R it e

JAL)



‘then in terms of these new variables u and v it takes the form,

: dyi
i i ¢(u) , (1.8)

,énd consequently has a solution of the form
v i+ Pu) ‘= C , (1.9)

 for appropriate functions ¢(u) and Y(u).
In order to give the reader some indication of the usefulness of the above

we consider the following non-trivial equation,

L SR
x3 xzy. ¢1.140)

see is not readily amenable to any of the standard devices. However the

equation is clearly invariant under the group

X, = ex 2 Iy, %@ Ey i (1119

“and therefore we choose u(x,y) = xy as the new dependent variable and the

 differential equation (1.10) becomes,

it et = u2 SoFuleRligl o (1.12)

quations can be solved in such a simple manner. Consider for example,
b -2
¥ e [ 3 + 6] [ > Fibx|y i, (1:13)

X X

which arises in finite elasticity (see Hill [91). This equation is again an

In this general introduction it may be appropriate to mention here possible

research areas for which group theory has not yet been applied. The reader



might well like to bear these problems in mind with a view to developing
results in these areas.

Research area 1 Differential-difference equations.

It is well known that formal solutions of linear differential-difference

equations, for example

- .. QNS
dx y(x XO) s
where Xq is a constant, can be expressed as
¥ix) = ¥ cje"“’jX : (1.15)

J
i bie
where Cj are arbitrary constants and wj denote the roots of w = %0,

If the equation is non-linear then there are no such general methods of

solution. Consider for example Hutchinson's equation which can be written as

d
—Yfl = y()[1 - ylx—xy] . (1.16)
This equation arises in theory of populations (see Hutchinson [10]). What arei“

the implications of group theory, if any, for equations of this type? (See

problems 19 and 20 of Chapter 4).

Research area 2 Differential equations invariant under transformations which
cannot be characterized as one-parameter groups.

A differential equation occurring in fluid dynamics is Tuck's equation

(see Tuck [111),

P dt ¥ 4x(14x)

d7x _ 5 dx | (5+3%) |dx 2, 3x(1-n)
dt (14+x)

It can be verified that if x(t) is a solution then so is x(t) .
the usual way we let y = dx/dt then (1.17) becomes

(543%): . 2

dy ¢ 3x(l-x)
Gbx(14x) 7

g6 vl sl

(1.18)

which is again an Abel equation of the second kind. From the invariance



1pxoperty of (1.17) we can deduce that (1.18) remains invariant under the

transformation

o b o
Xl o < s yl X2 ) (1.19)

t}‘Which_clearly cannot be characterized as a one-parameter group. Can we use

such invariance properties to determine solutions of differential equations?

Research area 3 Abel equation of the second kind.

As we have already indicated one of the most frequently occurring
differential equations which is not always amenable to standard devices is

- the Abel equation of the second kind. The general equation can be expressed

in the form (see Murphy [81], page 26)
y &= at) + by . (1.20)

Equation (1.20) with arbitrary functions a(x) and b(x) would appear to be

~ a problem worthwhile studying.

- 1.2 PARTIAL DIFFERENTIAL EQUATIONS

Unlike ordinary differential equations the success of the group approach for
‘J?partial differential equations depends to a considerable extent on the
-‘accompanying boundary conditions. That is, the group approach is only
_ effective in the solution of boundary value problems if both the equation and
'boundary conditions are left unchanged by the one-parameter group. For the
imost part we confine our attention to specific differential equations rather
vthan boundary value problems. For any particular boundary value problem we
,hshould always first look for any simple invariance properties. These may be
~more apparent from the physical hypothesis of the problem rather than its
- mathematical formulation. If no such invariance can be found and if the

- problem merits a numerical solution then the group approach might still be




relevant as a means of checkingvthe numerical technique with artificially
imposed boundary conditions which permit an exact analytic solution.

As an illustration we consider a boundary value problem for which both the
partial differential equation and the boundary conditions are invariant under
a simple one-parameter group. Consider the problem of determining the source
solution for the one-dimensional diffusion or heat conduction equation for

c(x,t), namely

S
BE ——{% (t >0, = < x < ®) . (1.215

ox
The source solution of (1.21) is a solution which vanishes at infinity for

all times and initially satisfies

c(x,0) = COS(X) 4 (122

where o is a constant specifying the strength of the source and &(x) is
the usual Dirac delta function. We observe that both of (1.21) and (1.22)

are left unchanged by the transformation
SR -, _
X = ex, o= by c, =e ¢, CL234

where ¢ denotes an arbitrary constant and we have made use of the

elementary property of delta functions,

5Ox) = A T80 (1.24)
for any non-zero constant A. Thus if ¢ = ¢(x,t) is the solution of (1.21)
and (1.22) then we have also g ¢(xl,tl). Clearly this is the case if
¢(x,t) has the functional form

1 1
% -2

Gl ) v= e TG ) (le25)
for some function Y of the argument indicated. Upon substituting (1.25)

into (1.21) we obtain the ordinary differential equation

29"(E) + &I(E) + W& =0,



= o
where & denotes xt ? and primes indicate differentiation with respect to

€. Equation (1.26) can be reduced to the confluent hypergeometric equation
(see Murphy [8], page 321). However the solution vanishing at infinity can

be readily verified to be simply,

s
Y(E) = Ae b s 127
where A denotes an arbitrary constant. This constant is determined from

(1.22), namely

fw c(x,t)dx = cy - (1.28)

From this equation, (1.25) and (1.27) we find that the required solution of
-the boundary value problem (1.21) and (1.22) becomes

e—x2/4t

0 1

= (t >0, —© < x <) , (1.29)
(4mt)

clxit) ='c

This solution is of course well known. For our purposes it firstly serves as
a specifié non-trivial boundary value problem for which the differential
equation and boundary conditions are both invariant under a one-parameter
group. Secondly it serves to illustrate that knowledge of a one-parameter
group leaving the equation invariant enables, at least in the case of two
independent variables, the partial differential equation to be reduced to an
~ordinary differential equation. For more independent variables knowledge of
a group leaving the equation unchanged reduces the number of independent
variables by one.
In these notes we give the general procedure for determining the group

such as (1.23) which leaves a specific equation invariant. We also give the
general technique for establishing the functional form of the solution such

" as that given by (1.25).




PROBLEMS

1o

(a)

(b)

(c)

Determine in each case the constants o and R such that the one—

parameter group

Ryoeo@ on , ¥y =€ ¥ s

leaves the following differential equations invariant. Use an invariant

of the group to integrate the equation.

-4 2 4 By3 (A and B are constants) ,

4
R = 2y3) g% + (2X4 i Y3)y =0

x(A + xyn) gﬁ + By = 0 (A, B and n are constants) .

Verify that,
~2€
o + ey X, T & Y o
is a one-parameter group of transformations and hence integrate the

differential equation
fL=ox = Bog gy B 49y 2 g,
dx

Integrate the differential equation

(X"Y)z g% = A2 (A 1is a constant) A

by observing that the equation admits the group

R m=igec ok e y1 =y + E .

Given that p(x) is a solution of the linear differential-difference
equation (l.14) show that

p(x=x4)
e R

is a solution of the non-linear differential-difference equation

Q,‘%(XL) = y@yx) - ylx-xy17 .



