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Preface

The material in this book was first presented as a one-semester course in Relia-
bility Theory and Preventive Maintenance for M.Sc. students of the Industrial
Engineering Department of Ben Gurion University in the 199 7/98 and 1998/99
academic years.

Engineering students are mainly interested in the applied part of this theory.
The value of preventive maintenance theory lies in the possibility of its imple-
mentation, which crucially depends on how we handle statistical reliability data.
The very nature of the object of reliability theory — system lifetime — makes it
extremely difficult to collect large amounts of data. The data available are usu-
ally incomplete, e.g. heavily censored. Thus, the desire to make the course
material more applicable led me to include in the course topics such as mod-
eling system lifetime distributions (Chaps. 1,2) and the maximum likelihood
techniques for lifetime data processing (Chap. 3).

A course in the theory of statistics is a prerequisite for these lectures. Stan-
dard courses usually pay very little attention to the techniques needed for our
purpose. A short summary of them is given in Chap. 3, including widely used
probapbility plotting.

Chapter 4 describes the most useful and popular models of preventive main-
tenance and replacement. Some practical aspects of applying these models are
addressed, such as treating uncertainty in the data, the role of data contamina-
tion and the opportunistic scheduling of maintenance activities.

Chapter 5 presents the maintenance models which are based on monitoring a
“prognostic” parameter. Formal treatment of these models requires using some
basic facts from Markov-type processes with rewards (costs). In recent years,
there has been a growing interest in maintenance models based on monitoring
the process of damage accumulation. A good example is the literature dealing
with the preventive maintenance of such “nontypical” objects as bridges, con-
crete structures, pipelines, dams, etc. The chapter concludes by considering a
general methodology for planning preventive maintenance when a system has a
multidimensional state parameter. The main idea is to make the maintenance
decisions depending on the value of a one-dimensional system “health index.”

The material of Chap. 6 is new for a traditional course. It is based on the
recent works of Kh. Kordonsky and considers the choice of the best time scale
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for age replacement. It would not be an exaggeration to say that the correct
choice of the time scale is a central issue in any sphere of reliability applications.

Chapter 7 shows an example of learning in the process of servicing a system.
Several strong assumptions were made to make the mathematics as simple as
possible. It is important to demonstrate to students that the combination of
prior knowledge with new data received in the process of decision making is, in
fact, a universal phenomenon, which may have various useful applications.

It takes me, on the average, two weeks in the classroom (3 hours weekly) to
deliver the material of one chapter. In addition, I spend some time explaining
the most useful procedures of Mathematica needed for the numerical analysis
of the theoretical models and for solving the exercises. Getting to the “real”
numbers and graphs always gives students a good feeling and develops better
intuition and understanding, especially if the material is saturated with sta-
tistical notions. The course concludes with detailed solutions of the exercises,
including a numerical investigation by means of Mathematica.

Ilya Gertsbakh
Beersheva, January 2000
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Chapter 1

System Reliability as a
Function of Component
Reliability

The whole is simpler than the sum of its parts
Willard Gibbs

1.1 The System and Its Components

In reliability theory, as in any theory, we think and operate in terms of models.
In this chapter we investigate a model of a system, which consists of elements
or components. Our purpose is to develop a formal instrument to enable us
to receive information about a system’s reliability from information about the
reliability of its components. The exposition in this section does not involve
probabilistic notions.

A system is a set of components (elements). Only binary components will be
considered, i.e. components having only two states: operational (up) and failed
(down). The state of component ¢, ¢ = 1,...,n, will be described by a binary
variable z;: z; = 1 if the component is up; z; = 0 if the component is down.

It will be assumed that the whole system can only be in one of two states:
up or down. The dependence of a system’s state on the state of its components
will be determined by means of the so-called structure function ¢(x), where
X = (21,%,...,%n): $(x) = 1 if the system is up; ¢(x) = 0 if the system is
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down.

We also use the notation x < y. This means that the components of x are
less then or equal to the components of y, i.e. ; < y;, but for at least one
component j, ; < ¥;.

Ezample 1.1.1: Series system (Fig. 1.1a)
This system is up if and only if all its components are up. Formally,

1<i<n

$(x) = [[2: = min . (1.1.1)
=1

Ezample 1.1.2: Parallel system (Fig. 1.1b)
The system is up if and only if at least one of its components is up. Formally,

n

$(x) =1- i];[l(l o) = max 2. # (1.1.2)

M@

Figure 1.1. Representation of series (a) and parallel system (b)

Ezample 1.1.3: k-out-of-n system
This system is up if and only if at least k out of its n components are operating.
Formally,

k
px) =1, if I =z >k, (1.1.3)
i=1

and ¢(x) = 0 otherwise
Ezample 1.1.4: Cable TV transmitter (Fig. 1.2)
The system is designed to transmit from the central station S to three local
stations S;, S, Sa. The stations are connected by cables numbered 1,2, 3,4, 5,
which are the system components. The system is operational (up) if all sub-
stations are connected directly or through another substation to the central
station.

One can check that

p(x) = 1-—(1-zaz3x5)(l — 222475)
x (1 — 1‘22:324)(1 — 2:1.7:3134)(1 - 112331'5)(1 - 11?1582.’135)(1 - CE1I2$4).
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We explain later how to derive this formula.

5
5
1
3 5
2
/]
52

Figure 1.2. Cable TV transmission system

Ezample 1.5: Series connection of parallel systems (Fig. 1.3)
For this system, ¢(x) = [1 — (1 = £)(1 = z][1 = (1 = z3)(1 — 4)].

ol oL

C2 04

Fig. 1.3. Series connection of parallel systems

Ezample 1.1.6: Parallel connection of series systems (Fig. 1.4)
Check that for this system ¢(x) =1 — (1 — z122)(1 — z32425).

1 2
—O0—0—

3 4 5
O)— ) OH)—
J J W/

Figure 1.4. Parallel connection of series systems

It is important to have a systematic way of constructing a formula for the
structure function ¢(-}. This will be done by using the notions of ménimal paths
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and minimal cuts. Before doing this let us impose some natural demands on

¢(x)-

Definition 1.1.1: Monotone system
A gystem with structure function ¢(-) is called monotone if it has the following
properties:

(i) ¢(0,0,...,0) =0, ¢(1,1,...,1)=1;

(i) x <y = ¢(x) < (y) -
In words: the system is down if all its elements are down; it is up if all its
elements are up; and the state of the system cannot become worse if any of its
elements changes its state from down to up.

Definition 1.1.2: Cut vector, cut set, path vector, path set

A state vector x is called a cut vector if ¢(x) = 0. The set C(x) = {i : z; = 0}
is then called a cut set. If, in addition, for any y > x, ¢(y) = 1, then the
corresponding cut set is called minimal cut set or simply minimal cut.

A state vector x is then called a path vector if ¢(x) = 1. The set A(x) = {i :
x; = 1} is then called a path set. If, in addition, for any y, y < x, ¢(y) =0,
then the corresponding path set is called minimal path set, or minimal path.

A minimal cut set is a minimal set of components whose failure causes the
failure of the whole system.

If all elements of the path set are “up” then the system is up. A minimal path
is a minimal set of elements whose functioning (i.e. being up) ensures that the
system is up. The minimal path set cannot be reduced, as it has no redundant
elements.

Ezamples 1.1.5, 1.1.6 continued
For Example 1.1.5, x; = (1,1,1,0) is a path vector. The corresponding path
set is {1,2,3}. It is not, however, a minimal path set because if element 2 is
turned down the system will still be up. {1, 3} is the minimal path set. There
are three other minimal path sets. Find them!

For Example 1.1.6, there are two minimal path sets, {1,2} and {3,4,5}.

The system in Fig. 1.3 has two minimal cuts: {1,2} and {3,4}.

The set {1,2,3} is also a cut set but not a minimal one. The system in Fig.
1.4 has six minimal cuts of the form {i,j}, where i = 1,2 and 7 = 3,4,5.

Theorem 1.1.1: Structure function representation
Let P, Ps,..., P; be the minimal path sets of the system. Then

8

¢(x) =1-T][ (1= [ =) - (1.1.4)

j=1 iEP;
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Let C1,C,. .., ) be the minimal cut sets of the system. Then

k

o) =[0-JTa-2). (1.1.5)

j=1 i€C;

Proof

Assume that there is at least one minimal path set, all elements of which are
up, say Pi. Then [];cp #; = 1 and this leads to ¢(x) = 1. Suppose now that
the system is up. Then there must be one minimal path set having all of its
elements in the up state. Thus the right-hand side of (1.1.4) is 1. Therefore,
¢(x) =1 if and only if there is one minimal path set having all its elements in
the up state. This proves (1.1.4).

We omit the proof of (1.1.5), which is similar.

It follows from Theorem 1.1.1 that any monotone system can be represented
in two equivalent ways: as a series connection of parallel subsystems each being
a minimal cut set, or as a parallel connection of series subsystems each being a
minimal path set. Therefore, there are two ways to represent structure functions.
After corresponding simplifications, these become identical, as the following
example shows.

Ezample 1.1.5 continued

The structure function given above for the system in Fig. 1.3 is based on minimal
cuts {1,2} and {3,4}. The system also has four minimal paths: {1, 3}, {1,4},
{2,3},1{2,4}. Thus, ¢(x) =1 — (1 — z123)(1 — z124) (1 — 2273) (1 — T224).

The structure function based on minimal cuts was presented in Example
1.1.5. Both formulas produce identical results. To verify this, it is necessary
to simplify both expressions. Note that for binary variables, :zﬁc = z; for any
integer k.

More information on monotone systems and their structure function can
be found in the literature, e.g. in Barlow and Proschan (1975), Chap. 1, and
Gertsbakh (1989), Chap. 1.

1.2 Independent Components: System
Reliability and Stationary Availability

Contrary to Sect. 1.1, let us now assume that the state of component i is de-
scribed by a binary random variable X;, defined by

P(X;=1)=p;, P(X;=0)=1-p;, (1.2.1)

where 1 and 0 correspond to the operational (up) and failure (down) state,
respectively.
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It will be assumed that all components are mutually independent. This
implies a considerable formal simplification: for independent components, the
joint distribution of X3, Xs,...,X, is completely determined by component
reliabilities p1,p2, ..., Pn-

Denote by X = (X3,Xs,...,X,) the system state vector. This is now
a random vector. Correspondingly, the system structure function ¢(X) =
#(X1,...,X,) becomes a binary random variable: ¢(X) = 1 corresponds to
the system up state and ¢(X)} = 0 corresponds to the system down state.

Definition 1.2.1: System relsabslity
System reliability rg is the probability that the system structure function equals
1:

ro = P(¢(X) =1) . (1.2.2)
Since ¢(-) is a binary random variable, the last formula can be written as
ro = E[p(X)] . (1.2.3)

Expression (1.2.3) is very useful since the operation of taking expectation EJ]
is a very powerful tool for reliability calculations. The following examples show
how to compute system reliability via its structure function.

Ezample 1.2.1: Reliability of a series system
$(X) =[], X, and therefore

ro = Blp(X)] = [ ps (1.2.4)

Ezample 1.2.2: Parallel system
Here ¢(X) =1 - [, (1 — X;). Thus

ro = Bl¢(X)) =1~ [J1-p) . (1.2.5)

i=1

Fzample 1.2.3: Series connection of parallel systems (Ezample 1.1.5 )
From the expression for ¢(X) it follows immediately that

ro = B[p(X)] = 1 - (1 —p1)(1 - p2)]{1 = (1 = ps)(1 — pa)] - (1.2.6)

Ezample 1.2.4: 2-out-of-4 system with identical elements
For this system,

4

4
o= Ep(X)] = P(Y Xi22) = 3 (T’;)pm(l _ptt. 2

=2



