nCHAPMAN & HALL/CRC Research Notes in Mathematics 432

Veli-Matti Hokkanen & Gheorghe Morosanu

Functional methods in
differential equations

- @l CHAPMAN & HALLICRC




Veli-Matti Hokkanen =~ Gheorghe Morosanu

University of Jyvdskyld University of Stuttgart

Functional methods in
differential equations

A1 ﬁ@%iﬁ

L

CHAPMAN & HALL/CRC

A CRC Press Company
Boca Raton London New York Washington, D.C.




Library of Congress Cataloging-in-Publication Data

Hokkanen, Veli-Matti.
Functional methods in differential equations / Veli-Matti Hokkanen, Gheorghe Morosanu.
p- em. — (Research notes in mathematics ; 432)
Includes bibliographical references and index.
ISBN 1-58488-283-2
1. Boundary value problems. 2. Functional analysis. I. Morosanu, Gheorghe II. Title.
III. Series.

QA379 .H65 2002
515’.35—dc21 2002018853

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying. ’

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2002 by Chapman & Hall/CRC

No claim to original U.S. Government works
International Standard Book Number 1-58488-283-2
Library of Congress Card Number 2002018853
Printed in the United States of America 1 2 3 4 56 7 8 9 0
Printed on acid-free paper
J




Dedicated to Professor Wolfgang L. Wendland on the occasion of his 65th
birthday



Introduction

In recent years, functional methods have become central to the study of
theoretical and applied mathematical problems. An advantage of such an
approach is its generality and its potential unifying effect of particular re-
sults and techniques.

Functional analysis emerged as an independent discipline in the first half
of the 20th century, primarily as a result of contributions of S. Banach,
D. Hilbert, and F. Riesz. Significant advances have been made in different
fields, such as spectral theory, linear semigroup theory (developed by E.
Hille, R.S. Phillips, and K. Yosida), the variational theory of linear bound-
ary value problems, etc. At the same time, the study of nonlinear physical
models led to the development of nonlinear functional analysis. Today, this
includes various independent subfields, such as convex analysis (where H.
Brézis, J.J. Moreau, and R.T. Rockafellar have been major contributors),
the Leray-Schauder topological degree theory, the theory of accretive and
monotone operators (founded by G. Minty, F. Browder, and H. Brézis),
and the nonlinear semigroup theory (developed by Y. Komura, T. Kato, H.
Brézis, M.G. Grandall, A. Pazy, etc.).

As a consequence, there has been significant progress in the study of
nonlinear evolution equations associated with monotone or accretive op-
erators (see, e.g., the monographs by H. Brézis [Brézisl], and V. Barbu
[Barbul]). The most important applications of this theory are concerned
with boundary value problems for partial differential systems and func-
tional differential equations, including Volterra integral equations. The use
of functional methods leads, in some concrete cases, to better results as
compared to the ones obtained by classical techniques. In this context, it
is essential to choose an appropriate functional framework. As a byproduct
of this approach, we will sometimes arrive at mathematical models that are
more general than the classical ones, and better describe concrete phys-
ical phenomena; in particular, we shall reach a concordance between the
physical sense and the mathematical sense for the solution of a concrete
problem.

T



x Functional Methods in Differential Equations

The purpose of this monograph is to emphasize the importance of func-
tional methods in the study of a broad range of boundary value problems,
as well as that of various classes of abstract differential equations.

Chapter 1 is dedicated to a review of basic concepts and results that are
used throughout the book. Most of the results are listed without proofs.
In some instances, however, the proofs are included, particularly when we
could not identify an appropriate reference in literature.

Chapters 2 through 6 are concerned with concrete elliptic, parabolic, or
hyperbolic boundary value problems that can be treated by appropriate
functional methods.

In Chapter 2, we investigate various classes of, mainly one-dimensional,
elliptic boundary value problems. The first section deals with nonlin-
ear nondegenerate boundary value problems, both in variational and non-
variational cases. The approach relies on convex analysis and the monotone
operator theory. In the second section, we start with a two-dimensional
capillarity problem. In the special case of a circular tube, we obtain a
degenerate one-dimensional problem. A more general, doubly nonlinear
multivalued variant of this problem is thoroughly analyzed under minimal
restrictions on the data.

Chapter 3 is concerned with nonlinear parabolic problems. We consider
a so-called algebraic boundary condition that includes, as special cases,
conditions of Dirichlet, Neumann, and Robin-Steklov type, as well as space
periodic boundary conditions. The term “algebraic” indicates that the
boundary condition is an algebraic relation involving the values of the un-
known and its space derivative on the boundary. The theory covers various
physical models, such as heat propagation in a linear conductor and diffu-
sion phenomena. We treat the cases of homogeneous and nonhomogeneous
boundary conditions separately, since in the second case we have a time-
dependent problem. The basic idea of our approach is to represent our
boundary value problem as a Cauchy problem for an ordinary differential
equation in the L2-space. As a special topic, we investigate in the last
section of this chapter, the problem of the higher regularity of solutions.

In Chapter 4 we consider the same nonlinear parabolic equation as in
Chapter 3, but with algebraic-differential boundary conditions. This means
that we have an algebraic boundary condition as in the previous chapter, as
well as a differential boundary condition that involves the time derivative of
the unknown. This problem is essentially different from the one in Chapter
3, and a new framework is needed in order to solve it. Specifically, we arrive
at a Cauchy problem in the space L?(0,1)xIR (see (4.1.6)-(4.1.7)). Actually,
this Cauchy problem is a more general model, since it describes physical
situations that are not covered by the classical theory. More precisely, if
the Cauchy problem has a strong solution (u,§), then necessarily £(t) =
u(1,t); in other words, the second component of the solution is the trace
of the first one on the boundary. Otherwise, £(t) # u(1,t), but it still
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describes an evolution on the boundary. This is important in concrete
cases, such as dispersion or diffusion in chemical substances. As in the
preceding chapter, we study the case of a homogeneous algebraic boundary
condition separately from the nonhomogeneous one. The higher regularity
of solutions is also discussed.

Chapter 5 is dedicated to a class of semilinear hyperbolic partial differ-
ential systems with a general nonlinear algebraic boundary condition. We
first study the existence, uniqueness, and asymptotic behavior of solutions
as t — 00, by using the product space L?(0,1)? as a basic functional setup.
The theory has applications in physics and engineering (e.g., unsteady fluid
flow with nonlinear pipe friction, electrical transmission phenomena, etc.).
Unlike the parabolic case, we do not separate the homogeneous and nonho-
mogeneous cases, since we can always homogenize the problem. Although
this leads to a time-dependent system, we can easily handle it by appealing
to classical results on nonlinear nonautonomous evolution equations. In the
second section of this chapter, we discuss the higher regularity of solutions.
This is important, for instance, for the singular perturbation analysis of
such problems. The natural functional framework for this theory seems to
be the C*-space. It is also worth noting that the method we use to ob-
tain regularity results is different from the one in Chapters 3 and 4, and
involves some classical tools such as D’Alembert type formulae, and fixed
point arguments.

In Chapter 6, we consider the same hyperbolic partial differential sys-
tems as in the preceding chapter, but with algebraic-differential boundary
conditions. Such conditions are suggested by some applications arising in
electrical engineering. As before, we restrict our attention to the homoge-
neous case only. This problem has distinct features, as compared to the one
involving just algebraic boundary conditions. We now consider a Cauchy
problem in the product space L?(0,1)? x IR. In the case of strong solutions,
we recover the original problem, but in general, this incorporates a wider
range of applications. Moreover, the weak solution of this Cauchy problem
can be viewed as a generalized solution of the original model.

The remainder of the book is dedicated to abstract differential and inte-
gro-differential equations to which functional methods can be applied.

In Chapter 7, the classical Fourier method is used in the study of first
and second order linear differential equations in a Hilbert space H. The op-
erator appearing in the equations is assumed to be linear, symmetric, and
coercive. In order to use a more general concept of solution, we replace the
abstract operator in the equation by its “energetic” extension. A basic as-
sumption is that the corresponding energetic space is compactly embedded
into H. This guarantees the existence of orthonormal bases of eigenvectors,
and enables us to employ Fourier type methods. Existence and regularity
results for the solution are established. In the case of partial differential
equations, our solutions reduce to generalized (Sobolev) solutions. Finally,
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nonlinear functional perturbations are handled by a fixed-point approach.
As applications various parabolic and hyperbolic partial differential equa-
tions are considered. Since the perturbations are functional, a large class
of integro-differential equations is also covered.

In Chapter 8, we discuss the existence and regularity of solutions for
first order linear differential equations in Banach spaces with nonlinear
functional perturbations. The main methods are the variation of constants
formula for linear semigroups and the Banach fixed-point theorem. The
theory is applied to the study of a class of hyperbolic partial differential
equations with nonlinear boundary conditions.

In Chapter 9, we consider first order nonlinear, nonautonomous differen-
tial equations in Hilbert spaces. The equations involve a time-dependent
unbounded subdifferential with time-dependent domain, perturbed by time-
dependent maximal monotone operators and functionals that can be typi-
cally integrals of the unknown function. The treatment of the problem with-
out functional perturbation relies on the methods of H. Brézis [Brézisl]; the
problem with functional perturbation is handled by a fixed-point reasoning.
As an application, a nonlinear parabolic partial differential equation with
nonlinear boundary conditions is studied.

Chapter 10 is concerned with implicit differential equations in Hilbert
spaces. Results on the existence, uniqueness, and continuous dependence
of solutions for related initial value problems are presented. The study of
implicit differential equations is motivated by the two phase Stefan problem,
which has recently attracted attention because of its importance for the
optimal control of continuous casting of steel.

We continue with some general remarks regarding the structure of the
book. The material is divided into chapters, which, in turn, are divided into
sections. The main definitions, theorems, propositions, etc. are denoted by
three digits: the first indicates the chapter, the second the corresponding
section, and the third the position of the respective item in the section.
For example, Proposition 1.2.3 denotes the third proposition of Section 2
in Chapter 1. Each chapter has its own bibliography but the labels are
unique throughout the book.

We also note that many results are only sketched, in order to keep the
book length within reasonable limits. On the other hand, this requires an
active participation of the reader.

With the exception of Chapter 1, the book contains material mainly
due to the authors, as considerably revised or expanded versions of earlier
works. An earlier book by one of the authors must be here quoted [Moro6].

We would like to mention that the contribution of the former author was
partly accomplished at Ohio University in Athens, Ohio, USA, in the winter
of 2001. The work of the latter author was completed during his visits at
Ohio University in Athens, Ohio, USA (fall 2000) and the University of
Stuttgart, Germany (2001).
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Chapter 1

Preliminaries

This chapter has an introductory character. Its aim is to remind the reader
of some basic concepts, notations, and results that will be used in the
next chapters. In general, we shall not insist very much on the notations
and concepts because they are well known. Also, the proofs of most of
the theorems will be omitted, the appropriate references being indicated.
However, there are a few exceptions, namely Propositions 1.2.1, 1.2.2, and
1.2.3, which might be known, but we could not identify them in literature.
The material of this chapter is divided into several sections and subsections.

1.1 Function and distribution spaces
The LP-spaces

We denote R = (—o00,00), N = {0,1,2,...}, and IN* = {1,2,...}. Let
X be a real Banach space with norm || - ||x. If @ ¢ RY, N € N*, is a
Lebesgue measurable set, we denote, as usual, by LP(©; X), 1 < p < oo,
the space of all equivalence classes (with respect to the equality a.e. in )
of (strongly) measurable functions f:€) — X such that = — ||f(z)|% is
Lebesgue integrable over Q. In general, every class of LP(Q; X) is identified
with one of its representatives. LP(2; X) is a real Banach space with the
norm

lullLr;x) = (/Q [lu(z)|% da:)p.

We shall denote by L (£2; X) the space of all equivalence classes of measur-
able functions f:Q — X such that = — ||f(z)||x are essentially bounded
in . Again, every class of L>°(€; X) is identified with one of its represen-
tatives. L>°(€; X) is a real Banach space with the norm

llull o= (0;x) = esssup [Ju(z)]|x-
z€EN
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In the case X = IR we shall simply write LP({2) instead of LP(2;IR), for
every 1 < p < oo. On the other hand, if Q is an interval of real numbers,
say Q = (a,b) where —oco < a < b < oo, then we shall write LP(a,b; X)
instead of LP((a,b); X). We shall also denote by L} (IR;X), 1 < p < o0,
the space of all (equivalence classes of) measurable functions u: R — X
such that the restriction of u to every bounded interval (a,b) C R is in
LP(a,b; X). If X = IR, then this space will be denoted by L] .(IR).

The theory of LP-spaces is well known. So, classical results, such as
Fatou’s lemma, the Lebesgue Dominated Convergence Theorem, etc., will

be used in the text without recalling them here.

Scalar distributions. Sobolev spaces

In the following we assume that {2 is a nonempty open subset of B
Denote, as usual, by C*(Q2), k € IN, the space of all functions f:Q — IR
that are continuous on €2, and their partial derivatives up to the order k
exist and are all continuous on Q. Of course, C°(£2) will simply be denoted
by C(£2). In addition, we shall need the following spaces

C*(Q) = {4 € C(Q) | ¢ has continuous partial derivatives of any order},
Ce () = {p € C™(Q) | supp ¢ is a compact set included in 0},

where supp ¢ is the support of ¢, i.e., the closure of the set {z € Q | ¢(z) #
0}. When C§°(12) is endowed with the usual inductive limit topology, then
it is denoted by D(Q).

DEFINITION 1.1.1 A linear continuous functional u:D(2) — R is
said to be a distribution on 2. The linear space of distributions on ) is
denoted by D'().

Actually, D'(2) is nothing else but the dual of D(£2). Notice that if
u € L, () (ie., u is Lebesgue integrable on every compact subset of ),
then the functional defined by

D(Q) > ¢ — /Qu(z)qﬁ(z) dx

is a distribution on Q. Such a distribution will always be identified with
the corresponding function v and so it will be denoted by wu.

Now, recall that the partial derivative of a distribution u € D'(Q2) with
respect to x; is defined by

ou i o¢
aTj(qs) = _“(6_%) for all ¢ € D(9),
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and the higher order partial derivatives of u are defined iteratively, i.e.,
Du(¢) = (=1)!%lu(D¥¢) for all ¢ € D(),
where a := (a1, as,...,ay) € NV is a so-called multiindex and |a| =
ay+as+...+an. If a=(0,0,...,0), then, by convention, Du = u.
DEFINITION 1.1.2 Let1 < p < oo and let k € IN* be fized. Then,
the set
WkP(Q) = {u: 2 — R | D%u € LP(Q) for all a € NN with |a| < k}

(where D®u are the derivatives of u in the sense of distributions) is said to
be a Sobolev space of order k.

Recall that, for each 1 < p < oo and k € IN*, Wk?(Q) is a real Banach
space with the norm

lullwer@y = ( 30 1Dl q)) "

|| <k

=

Wk->2(Q) is also a real Banach space with the norm

u : = max{|D%u .
el =@ = max D%l =(a

The completion of D(Q) with respect to the norm of W*?(Q) is denoted
by W(f’p (©2). In general, Wok’p (Q) is strictly included in W#*?(Q). In the
case p = 2 we have the notation

H*Q) := Wh2(Q), HEQ) := WH2(Q).
These are both Hilbert spaces with respect to the scalar product
(v )e = / DSule ) D v(s) dic:
|| <k

The dual of H¥ (1) is denoted by H*(Q). If 2 is an open bounded subset
of RV, with a sufficiently smooth boundary 99, then

Hy(Q) = {ue H'(Q)| the trace of u on 99 vanishes }.
If, in particular, Q is an interval of real numbers, say ! = (a, b) with a < b,
then we shall write C°(a,b), W*?(a,b), H*(a,b), and Wy " (a,b) instead

of C§°((a,b)), Wk*((a,b)), H*((a,b)), and WP ((a,b)), respectively. If a,
b are finite numbers, then every element of W*?(a,b), k € N*, 1 < p < 00,
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can be identified with an absolutely continuous function f:[a,b] — IR such
that & f/dt?, 1 < j < k—1, exist and are all absolutely continuous on [a, b],
and d* f /dt* (that obviously exists a.e. in (a, b)) belongs to L?(a,b) (more
precisely, the equivalence class of d* f /dt*, with respect to the equality a.e.
on (a,b) belongs to L?(a,b)). Moreover, every element of Wéc "P(a,b) can be
identified with such a function f, which also satisfies the conditions

df & f :

oz =—(b) = <j3<k-1.

@ =20 =0, 0<5 <k
Recall that if —0o < @ < b < 0o and k € IN*, then W*!(a,b) is contin-
uously embedded into C*~'[a, ] (in particular, W'!(a,b) is continuously
embedded in C[a, b]). Finally, we set for k € IN* and 1 < p < o0,

WrP(R) = {u:IR - R | D* € LP, (R) for all & € IN with a < k}.

loc loc

Vectorial distributions. The spaces W*?(a, b; X)

Let © be an open interval (a,b) with —co < a < b < oo and denote
by D'(a, b; X) the space of all continuous linear operators from D(a, b) :=
D((a,b)) to X. The elements of D'(a, b; X) are called vectorial distributions
on (a,b) with values in X. If u:(a,b) — X is integrable (in the sense of
Bochner) over every bounded interval I C (a,b) (i.e., equivalently, ¢t
|lu(t)||x belongs to L'(I), for every bounded subinterval I), then u defines
a vectorial distribution, again denoted by u, as follows,

et / " $(tyu(t) dt for all § € Dia,b).

The distributional derivative of order j € IN of u € D'(a, b; X) is the distri-
bution defined by

w9 (¢) 1= (—l)ju(fl]—;)’ for all ¢ € D(a,b),

where d’¢/dt7 is the j-th ordinary derivative of ¢. By convention, u(®) = u.
Now, for k € IN* and 1 < p < 00, we set

W*P(a,b; X) = {u € LP(a,b; X) | u') € LP(a,b;X), j =1,2,...,k},

where u(9) is the j-th distributional derivative of u. For each k € IN* and
1 <p< oo, WkP(a,b; X) is a Banach space with the norm

k 4
lallweo sy = (3 W1, )
=0
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Also, for each k € IN*, Wk (q, b; X) is a Banach space with the norm
HUHW'cm(a,b;X) = o??gxk ”u(j)”L""(a,b;X)~

As in the scalar case, for p = 2, we may use the notation H*(a,b; X) instead
of W*2(a,b; X). Recall that, if X is a real Hilbert space with its scalar
product denoted by (-,-)x, then for each k € IN*, H*(a,b; X) is also a
Hilbert space with respect to the scalar product

k b
(U, U)Hk(a,b;X) = Z/ (U(])(t), U(") (t))X dt.
e

As usual, for k € IN* and 1 < p < 00, we set

Wit (a,b; X) = {u € D'(a,b;X) | u € Wh(ty, 5 X),
for every t1,t2 € (a,b) with t; < t,}.

In what follows, we shall assume that —co < a < b < 0o. For k € IN* and
1 < p < o0, denote by A¥*([a,b]; X) the space of all absolutely continuous
functions f:[a,b] - X for which d/f/dt’, 1 < j < k — 1, exist, are all
absolutely continuous, and (the class of) d* f/dt* € L?(a,b; X).

If X is a reflexive Banach space and v: [a, b] — X is absolutely continuous,
then v is differentiable a.e. on (a,b), dv/dt € L'(a,b; X), and

t dv

St b
ds(s)ds, a<tsbh

v(t) = v(a) + /

a
Therefore, if X is reflexive, then A!(a,b; X) coincides with the space of
all absolutely continuous functions v:[a,b] = X i.e.,

Alyl([av b; X) = AC([a, b); X).

We also recall the following result.

THEOREM 1.1.1

Let 1 < p < oo and k € IN* be fized and let u € LP(a,b; X) with —oo <
a<b<oo. Thenu € W*P(a,b; X) if and only if u has a representative in
ARP([a,b]; X).

So, W*?(a,b; X) will be identified with A*?([a,b]; X). If X is reflexive,
then W' !(a,b; X) can be identified with AC([a, b]; X), while W 1> (a, b; X)
can be identified with Lip([a,b]; X) (the space of all Lipschitz continuous
functions v: [a, b] — X).
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THEOREM 1.1.2

Let X be a real reflezive Banach space and let uw € LP(a,b; X) with —oco <
a<b<ooandl < p < oo. Then, the following two conditions are
equivalent:

(i) u € WhP(a,b; X);

(ii) There exists a constant C' > 0 such that

b—4
/ llu(t + 6) — u(t)|[% dt < C for all § € (0,b — a].

Moreover, if p = 1 then (i) implies (i) (actually, (i) is true for p = 1 if
one representative of u € L'(a,b, X) is of bounded variation on [a,b], where
X is a general Banach space, not necessarily reflexive).

Now, let V and H be two real Hilbert spaces such that V is densely and
continuously embedded in H. If H is identified with its own dual, then
we have V. C H C V*, algebraically and topologically, where V* denotes
the dual of V. Denote by (-,-) the dual pairing between V and V*, i.e.,
(v,v*) = v*(v), v € V, v* € V*. For v* € H* = H, (v,v*) reduces to the
scalar product in H of v and v*.

Now, for some —oo0 < a < b < oo, we set

W(a,b) := {u € L*(a,b;V) | v’ € L*(0,T;V*)},

where u' is the distributional derivative of u. Obviously, every u € W (a, b)
has a representative u; € AY2([a,b];V*) and so u is identified with u;.
Moreover, we have:

THEOREM 1.1.3

Every u € W(a,b) has a representative uy € C([a,b]; H) and so u can be
identified with such a function. Furthermore, if u, u« € W{(a,b), then the
function t — (u(t),a(t))u is absolutely continuous on [a,b] and

%(u(t),ﬂ(t))H = (u(t), @' (t)) + (a(t),u'(t)) for a.a. t € (a,b).

Hence, in particular,

d 2 }
a”u(t)”H = 2(u(t),u'(t)) for a.a. t € (a,b).




