Introduction to

Computer Science
A Structured Approach / Neil




8062039

P

Neflll Gralhan

Introduction
to Computer
Science

A Structured Approach

E8052030

WEST PUBLISHING CO.

St. Paul New York
Los Angeles San Francisco




Copyright © 1979 by West Publishing Co.
50 West Kellogg Boulevard
P.O. Box 3526
St. Paul, Minnesota 55165
All rights reserved

Printed in the United States of America

Library of Congress Cataloging in Publication Data

Graham, Neill, 1941-
Introduction to computer science.

Bibliography: p.

Includes index.

1. Structured programming. 2. FORTRAN (Computer
program language) 1. Title.
QA76.6.G68 001.6'42 78-11196
ISBN 0-8299-0187-6

3rd Reprint— 1980



This book is a text for an introductory computer science course for first-
or second-year college students. It can be used for either a one-semester
or a two-semester course. There is more than enough material for the
one-semester course, giving the instructor the freedom to choose those
topics most suitable for a particular class. If supplemented by additional
material on FORTRAN or some other programming language, the book
contains sufficient material for a two-semester course as well.

Most of this book requires no mathematical preparation beyond the
usual elementary and hlgh school courses. No previous acquaintance
with variables or expressions is assumed, so the student who has forgot-
ten, or never had, high school algebra should not be at a disadvantage.

The last two chapters of the book are on numerical methods. They
necessarily assume somewhat more mathematical preparation, about
equivalent to the introductory college courses in algebra and trigo-
nometry. Although some ideas from calculus are introduced, no previous
knowledge of the subject is assumed.

Many current computer science texts use flowcharts as the principal
means of presenting algorithms. This book, following the recommenda-
tions of the advocates of structured programming, uses an informal al-
gorithmic language or pseudocode instead. In the chapters on algorithm
construction, however, flowcharts are also used, both to introduce the
student to them and to help illustrate the basic control structures. Later,
the flowcharts are dropped, and the student is led to rely on the al-
gorithmic language alone.



vi

PREFACE

The algorithmic language is intended as an informal notation rather
than a rigidly specified programming language. Although beginners will
do well to use the language as it is described in the text, the instructor
and the advanced student should not hesitate to modify features or add
new ones as might be required by a particular problem.

Data-type declarations are optional in the algorithmic language and
are usually omitted. Data-type information can be easily presented in in-
formal comments, either in the algorithm or in the surrounding text.
There seems little need to burden the student with additional formal ma-
chinery for this purpose.

Algorithms are printed using uppercase letters only. Students who
have previously encountered a programming language such as BASIC or
FORTRAN will find this format more familiar (and perhaps less threaten-
ing) than the Algol-like boldface-italics format. There is certainly no need
for students to print their own algorithms in uppercase, however; ordi-
nary handwriting may be used as suggested in Fig. 4-1. Key words may
be underlined if desired.

Supplements are available showing how to translate from the al-
gorithmic language into common programming languages. The FOR-
TRAN supplement is included in the book as an appendix; the other sup-
plements are available separately.

The book begins with an introductory chapter which presents an
overview of computers, information processing, algorithms, programs,
and flowcharts. o

Part 1 surveys computer hardware and software. The software chap-
ter goes somewhat more deeply into the subject than is usual in an intro-
ductory course. The unifying idea is that of an abstract machine, which
can be implemented in hardware (a physical machine) or software (a vir-
tual machine).

Part 1 may be omitted or delayed by instructors who prefer to get
their students writing programs as soon as possible.

Part 2 on algorithm construction is the heart of the book. Variables,
values, and expressions are introduced, as are the basic control structures
of sequence, selection, and repetition. A chapter on subroutines and func-
tions is included, as well as one on algorithm design and testing.

Part 3 shifts the emphasis from control structures to data structures.
Arrays were introduced in Part 2 to demonstrate additional applications
of repetition. Now strings, stacks, records, linked lists, trees, and graphs
are taken up. The chapter on trees further develops the ideas of recursive
programming introduced in Part 2.

Part 4, on files, is an introduction to the ideas of data processing and
information retrieval. For sequential files, the classical file update prob-
lem is discussed, as are several methods of external sorting. For random
files, the emphasis is on retrieving designated records. Methods discussed
include hashing and indexed sequential access methods for primary key
retrieval as well as multilists and inverted files for secondary key re-
trieval.

Part 5, on numerical methods, takes up the half-interval method for



PREFACE vii

solving nonlinear equations as well as the Gauss-Jordan and Gauss-
Seidel methods for systems of linear equations. Graphs are used to illus-
trate the convergence problems of the Gauss-Seidel method.

The final chapter of the book is devoted to numerical integration. To
make this material accessible to the student who has not studied cal-
culus, the notation and terminology of calculus are avoided. Instead, we
concentrate on the physically intuitive idea of a moving object whose
velocity is specified as a function of position and time, or whose accelera-
tion is specified as a function of position, velocity, and time. While cal-
culus would allow some results to be stated with greater precision, it
would also deny the noncalculus student insight into an important com-
puter application.

I would like to thank the following persons, who read various drafts
of the manuscript, for their valuable comments, criticisms, and sugges-
tions: Edward Bowdon, Randy Byers, Nell Dale, Robert Dourson,
Paul Emerick, Olin Johnson, William Moldrup, Rex Page, and Michael
Stimson.

*



86£2030

1 Introduction: Computers, Information, and Algorithms, 1

1.1 The Information Processing Machine, 1
1.2 The Instruction-Following Machine, 5
1.3 Flowcharts, 13

Part
Ome Computer Hardware and Software

2 Computer Hardware, 19

2.1 The PDP-11, 19

2.2 Information Representation, 26
2.3 Operations on Binary Values, 32
2.4 The CPU, 38

2.5 A Program for the PDP-11, 45

3 Computer Software and Firmware, 50

3.1 Machines: Abstract, Physical, and Virtual, 51
3.2 Implementing Virtual Machines, 55



Part

CONTENTS

3:3
34
3:3
3.6

The Operating System, 58

Programming Languages, 60

Processes and Interrupts, 64

Multiprocessing, Multiprogramming, Time Sharing, and Virtual Memory, 67

Algorithms and Programs

Values and Expressions, 75

4.1
4.2
4.3
4.4
4.5
4.6

Data Types and Values, 76

The Output Statement, 79

Simple Arithmetic Expressions, 80

More Complex Arithmetic Expressions, 81
Functions, 83

Writing Algorithms, 84

Variables, Assignment, and Input, 89

|
5.2
5.3
54
5:5

Names, Locations, and Variables, 89
Assignment, 91

Expressions, 94

Input and Output, 96

Three Examples, 98

Selection, 106

6.1
6.2
6.3
6.4

Conditions, 106

One- and Two-Way Selection, 108
Multiway Selection, 114

Logical Operators and Expressions, 119

Repetition, 127

7.1 The WHILE Construction, 127

7.2 The UNTIL Construction, 131

7.3 TIteration, 133

7.4 Five Algorithms, 138

_Arrays, 145

8.1 One-Dimensional Arrays, 145

8.2 Elements of Array Processing, 148
8.3 Searching, 154

8.4 Internal Sorting, 161

8.5 Two-Dimensional Arrays, 165



10

Part
Three

13

14

CONTENTS xi

Functions and Subroutines, 174

9.1 Functions, 175

9.2 Subroutines, 179

9.3 Access to Arguments, 182

9.4 Local and Global Variables, 187
9.5 Recursion, 190

Algorithm Design and Testing, 194

10.1 Algorithm Design, 194
10.2 Program Testing, 205

.Data Structures

Character Strings, 219

11.1 Representation in Memory, 219
11.2 Character String Operations and Functions, 224
11.3 Examples of String Processing, 230

Stacks, 237

12.1 Representation of Stacks in Memory, 238
12.2 Evaluating Arithmetic Expressions, 241
12.3 Translating Arithmetic Expressions, 246
12.4 Stacks and Subalgorithms, 252

Records, 260

13.1 Record Structures, 261

13.2 Declarations, 264

13.3 More Complicated Records, 265
13.4 Arrays of Records, 270

13.5 Input, Output, and Assignment, 275

Linked Lists, 280

14.1 Singly Linked Lists, 281
14.2 Rings, 292
14.3 Doubly Linked Lists, 296

Trees, 305

15.1 Definitions and Terminology, 305



xii CONTENTS

15.2 Traversal and Linear Representations, 313
15.3 Linked Representations, 319

15.4 Traversal Subroutines, 323

15.5 Expression Trees, 326

15.6 Game Trees, 331

16 Graphs and Plexes, 339

16.1 Terminology, 339 - ’

16.2 Tabular Representations, 343
16.3 Plex Representations, 349
16.4 Applications, 357

[Part
[Four File Organization and Processing

17 Sequential Files, 367

17.1 Auxiliary Memory, 367

17.2 Input and Output Statements for Sequential File Processing, 368
17.3 The File Update Problem, 369

17.4 External Sorting, 377

18 Random Files, 386

18.1 The Logical Structure of Random Access Devices, 387
18.2 Primary Key Retrieval, 391
18.3 Secondary Key Retrieval, 399

Part
[five Introduction to Numerical Methods

19 Solving Equations, 409

- 19.1 Nonlinear Equations, 409
19.2 Systems of Linear Equations, 416

20 Numerical Integration, 432

20.1 Formulation of the Problem, 433
20.2 Problems Involving Only Position and Velocity, 435
20.3 Problems Involving Position, Velocity, and Acceleration, 445



CONTENTS

For Further Reading, 452

FORTRAN Supplement, 455

Index, 563

xiii



8062030

Exactly what is a computer? What can it do? Are computers really just
superfast adding machines, or can they do other things besides arithme-
tic? What is a program, and what do computer programmers do? What
kinds of data can a computer process?

Although computers differ vastly in their size, cost, internal con-
struction, and external appearance, they all have two characteristics in
common:

® A computer is an information-processing machine. It manipulates
information just as some other machines manipulate wood or plastic or
steel.

® In carrying out an information-processing task, the computer is
controlled by a set of detailed, step-by-step instructions called a program.

In this chapter we will examine each of these two characteristics of
computers in detail.

1.1 THE INFORMATION PROCESSING MACHINE

Information. Let us begin with the nature of information itself. We can
best think of information as ‘“knowledge in motion.” That is, information
is knowledge in the process of being carried from one person to another.
If one person gives information to another, then the receiver’s knowledge
is increased by the information received. Happily, the reverse is not true:
The sender does not lose any knowledge by giving information to some-
one else.



1 INTRODUCTION: COMPUTERS, INFORMATION, AND ALGORITHMS

Not all information originates with people. A scientist, for instance,
extracts information directly from nature through observations and mea-
surements. But this is the exception rather than the rule. Most informa-
tion passes ultimately from person to person.

But a variety of inanimate objects can intervene between sender and
receiver. Books, motion pictures, radio, television, telephones, and com-
puters are familiar examples of this. Most of these devices merely at-
tempt to transmit or to store the original information as faithfully as
possible. Computers are unique because they often modify the informa-
tion as well as store or transmit it.

When we say that receiving information increases a person’s knowl-
edge, we are forgetting about misinformation. Receiving untrue informa-
tion will decrease your knowledge. That is, it will worsen the correspon-
dence between what is inside your head and the facts of the outside
world. We can only say that receiving information changes a person’s
knowledge. Whether the change is an increase or a decrease depends on
the particular information received.

A good-for-examinations definition of information, then, is anything
which produces a change in a person’s knowledge.

Symbeols. So far, our discussion has been terribly abstract. We have yet
to come up with anything we could actually point to and say, ‘“Over on
your left, ladies and gentlemen, in the glass case, is one of the finest
specimens of knowledge it has ever been my privilege to see. And if you
will move this way, please, I will point out our most recently acquired
piece of information.”

And yet we do not use abstractions to communicate with one
another! We use facial expressions, bodily movements, inarticulate
grunts, groans, cries, and laughter, spoken English (and other languages),
notes, memos, letters, telegrams, telephone calls, pictures, and many
other concrete, physical things.

In short, before information can be passed from one person to
another, it must be represented in concrete, physical form. The physical
things we use to represent information are called symbols. The letters of
the alphabet, the sounds we make in speaking, the electrical currents that
travel over telephone wires, and the electromagnetic waves our TV sets
pick up are all examples of symbols. Figure 1-1 gives some further exam-
ples. o
Anything that we do with information must actually be done with
the concrete symbols that represent the information. To write a love let-
ter, for instance, you must make a large number of marks on a piece of
paper with pen or pencil. Whatever the emotional content of the letter,
that content can only be expressed by arranging marks on paper in the
appropriate order.

Data. In computing, we refer to a series of symbols as data. Data is nor-
mally used to represent information, and the terms data and information
are often used rather interchangeably. But notice that the data



1.1 THE INFORMATION PROCESSING MACHINE 3

ax? + bx + ¢ =0

Traffic Light |"—‘>

2H, + 0, — 2H,0 4 | T ]l’

[J

Fig. 1-1 Some commonly used symbols.

I LOVE YOU

represents information, while the data
XQW RTYU XDHFDI

does not, at least if we assume that valid information is to be expressed
in English. Such meaningless data is affectionately known as garbage,
and no one can work around computers very long without encountering
it in substantial quantities.

By the way, the word data, by derivation, should be plural, the word
datum being the singular form. But computer people use data as a mass
noun, like grass or sand. We say “the data has been processed’ just as we
say ‘“‘the grass has been cut” or “‘the sand has been shoveled.”

Symbol Manipulation. We said that a computer was an information-
processing machine. But the computer cannot process information in the
abstract; it can only manipulate the concrete symbols which represent
that information. We might better describe a computer, then, as a
symbol-manipulating machine. Information processing is the abstract idea
we have in mind. Symbol manipulation is the means by which that idea
can be realized in practice.



~ 1 INTRODUCTION: COMPUTERS, INFORMATION, AND ALGORITHMS

A computer can process any kinds of symbols that can be translated
into electrical signals. That includes most kinds, these days. In addition
to the letters, digits, and punctuation marks of the alphabet, computers
can process pictures, drawings, speech, music, and electrical sensing and
control signals from other machines.

A computer will manipulate meaningless symbols just as cheerfully
as meaningful ones. “Garbage in; garbage out” is an old saying among
computer people, and one that we have frequent occasion to use.

Examples of Information Processing. The kinds of information pro-
cessing tasks a computer can carry out are so varied that it is almost im-
possible to summarize them in words. But the following examples will
give you some idea of the computer’s versatility.

® Arithmetical calculations. The digits 0 through 9 are symbols, and
the familiar operations of arithmetic are manipulations that can be car-
ried out on those symbols. Until recently, arithmetic was the only form of
symbol manipulation that was to any degree mechanized.

Computers can indeed do arithmetic very fast and very accurately.
This has consequences of which most people are unaware. For instance,
one reason you can now purchase relatively inexpensive cameras with
excellent-quality lenses is that those lenses were designed with the aid of
a computer. For each trial design, the computer calculated the paths of
thousands of light rays through the lens. If the calculated paths were
unsatisfactory, then the computer made changes in the trial design and
calculated a new set of paths. The process continued until a satisfactory
design was found, or until the computer gave up because a predeter-
mined number of trials had yielded no satisfactory solution.

Perhaps because ‘‘compute” originally meant “to do arithmetic,”
people seem to think first of arithmetic when they think of computers.
Computers were invented to solve mathematical problems, and this re-
mains one of their important applications. But they can do other jobs,
too. Many computer applications involve little or no arithmetic.

® Word Processing. You type the first draft of a letter, a term paper,
an article, or a book into the computer. You then revise by directing the
computer to insert, delete, and rearrange specific pieces of material.
When the result meets your expectations, you can order the computer to
type out a perfect copy.

® Game Playing. A computer, particularly one equipped with a
television-like display terminal, makes a fantastic “gameboard.” Com-
puters are widely used for game playing by computer hobbyists—people
who own their own personal computers. One of the most common com-
puter games is a space war game based on the television series Star Trek.

Besides just serving as a gameboard, the computer can take an active
part in the game, playing against one or more human opponents. One
computer program, for instance, plays checkers at the championship
level. Another that plays chess has been improved over the years from the
class C to the class B level, and now sometimes defeats expert players.

® Controlling Machines. Computers can be used to operate other
machines. For example, some late-model cars use a computer to “tune”’



1.2 THE INSTRUCTION-FOLLOWING MACHINE 5

the engine continually while the car is running. The computer monitors
such things as engine speed, power demand, and power output. It adjusts
fuel-feed rate, fuel-air mixture, and spark timing for best performance.
Not only does this constant tuning improve performance, it reduces pol-
lution to the point where such antipollution devices as catalytic convert-
ers can, in many cases, be eliminated.

» Computer-Assisted Instruction. The computer presents a student
with a small segment of a lesson, and one or more questions on that
segment. If the student answers correctly, the computer will move on to
the next segment. Otherwise it will present additional review material
based on the incorrect answers. Thus, a student is “led by the hand” -
through a subject, exposed only to the material that he needs to achieve
understanding. While this is not as satisfactory as a personal tutor, it
may be the next best thing.

s Data File Management and Information Retrieval. A computer can
maintain large data files and retrieve individual items from those files
upon request. A researcher, for instance, can enter into the computer a
list of key words describing his interests; the computer will return a list of
all papers in the researcher’s field which contain one of the key words in
their titles or abstracts. Or a doctor can type in a list of symptoms, and
get back the latest information on diseases having those symptoms.

1.2 THE INSTRUCTION-FOLLOWING MACHINE

An All-Purpose Machine. A computer carries out a particular
information-processing task by following a set of detailed instructions. To
change the computer’s task, all we have to do is change the instructions.

The catch to this is that the computer will not perform any task until
it is provided with the necessary instructions. This does not mean, how-
ever, that the person who uses the computer will have to supply the in-
structions. Instructions for doing many tasks may be available from the
computer manufacturer or from other sources. Some computers even
come with the instructions for doing a particular task permanently in-
stalled, so the computer will always do that task and no other.

People sometimes say, ‘‘a computer can only do what it is told to,” as
if this were some limitation on the machine. Quite the contrary! To be
sure, a dishwasher does not have to be told how to wash dishes, nor a
lawnmower how to mow lawns. But then a dishwasher can only wash
dishes and a lawnmower can only mow lawns. A single computer, on the
other hand, can compute the orbit of a spacecraft, play a game of chess,
or make out your paycheck, provided only that it is given the proper
instructions.

One of the founders of computer science, the Hungarian-American
mathematician John von Neumann, said that the computer is the “all-
purpose machine.” We might qualify this to ““all-purpose information-
processing machine” (after all, it won’t mow the lawn). That the com-
puter can “do what it is told to” is precisely what makes it ““all-purpose.”



1 INTRODUCTION: COMPUTERS, INFORMATION, AND ALGORITHMS

Algorithms. We now turn our attention to the instructions that a com-
puter needs to perform its tasks. A set of instructions for accomplishing a
particular task is called an algorithm. Synonymous terms are method,
technique, procedure, and so on. An algorithm that is intended for execu-
tion by a computer is also called a program.

Characteristics of Algorithms. All algorithms share the following three
features: ,

® An algorithm is precise. Each step of an algorithm must specify
exactly what action is to be carried out. There is no room for vagueness.
Also, every step must be stated explicitly. None can be “understood” or
“assumed.”

Since it is difficult to achieve the necessary precision in English, a
number of algorithmic languages, iricluding programming languages, have
been devised. These are analogous to the notations used in music, math-
ematics, dance, chemistry, knitting, and crocheting to express technical
ideas more concisely and precisely than is possible in English.

® An algorithm is effective. It must be possible for the person or
machine executing an algorithm to carry out its instructions effectively.
Suppose, for instance, that an algorithm demanded that we take the
square root of 2 with perfect precision. The square root of 2 is given by

V2 = 14142135623 . . .

where the dots indicate an infinite sequence of additional digits. This
unending sequence of digits could never be worked out in a finite amount
of time, could never all be written out on a blackboard or a piece of
paper, could never all be stored inside any computer. An algorithm that
demands we take the square root of 2 with perfect precision, then, is not
effective.

® An algorithm must terminate. When a person or machine executes
an algorithm, he, she, or it must eventually reach the point where the
task is complete and no more instructions remain to be executed. The
execution of an algorithm must not go on indefinitely.

You may find it hard to see how an algorithm with only a finite
number of instructions could ever fail to terminate. Surely after we have
executed each instruction, there will be nothing else left to do, and the
execution will have to terminate.

The catch is that an algorithm may demand that some instruction be
carried out repeatedly, until a given condition occurs. ‘‘Stir the sauce
gently over low heat until it comes to a boil,” for instance. If the ter-
minating condition never occurs, the repetition will continue indefinitely.
Suppose we had merely said, “stir the sauce gently until it comes to a
boil,” without saying that it should be heated. Someone who took the
algorithm literally—and computers always take algorithms literally—
would have a lot of stirring to do.

The Euclidean Algorithm. As an example, let us take one of the oldest
recorded algorithms, Euclid’s algorithm for finding the greatest common
divisor of two numbers.



