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Preface

The Second International Conference on Trends in Semigroup Theory and Evolution
Equations was held September 25 to 29, 1989, at the Department of Technical Mathe-
matics and Informatics of the Delft University of Technology, Delft, The Netherlands.
The topics treated in this conference included recent developments in semigroup theory
(e.g., positive, dual, integrated), and nonlinear evolution equations (e.g., maximal regu-
larity, Navier-Stokes equations, Thomas-Fermi equations), control theory, and boundary
value problems. In comparison with the previous conference in Trieste (1987), more em-
phasis was given to nonlinear aspects of the subjects.

On behalf of the Organizing Committee (C. J. van Duijn, C. A. Timmermans, and
the editors), we express our thanks to the Scientific Committee (H. Amann, M. G. Cran-
dall, G. Da Prato, O. Diekmann, and W, von Wahl) for their advice.

The organization of this conference was made possible by the financial support of:

— Faculty of Technical Mathematics and Informatics, TU Delft
— Vertrouwenscommissie

— Koninklijke Nederlandse Akademie van Wetenschappen

— The Netherlands Organization for Scientific Research

— Delft Geotechnics

— Institut de Calcul Mathématique

— IBM Nederland N.V.

— Océ Nederlandse Verkoopmaatschappij B.V.

— Rabobank

— Rank Xerox

In addition, the Organizing Committee gratefully acknowledges the support of the dean,

Professor D. Wolbers, and the Manager, Ir. H. van Iperen, of the Faculty of Technical
Mathematics and Informatics, TU Delft.

i



iv Preface
Special thanks are due to Tini Nienhuis. Her assistance was essential in the organiza-
tion of the conference and the preparation of the Proceedings.
Finally, we thank the contributors, the referees, Marcel Dekker, Inc., especially
Ms. Maria Allegra, for their cooperation during the preparation of this volume.

Philippe Clément
Enzo Mitidieri
Ben de Pagter
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On a Family of Generators of Analytic Semigroups

PAOLO ACQUISTAPACE Department of Methods of Mathematical Modeling in

Applied Science, University of Rome *‘La Sapienza,”” Rome, Italy

0. INTRODUCTION

Let {A(t), te[0,T]} be a family of generators of analytic semigroups

in a complex Hilbert space H, and suppose that both {A(t)} and
{A(t).) fulfil the assumptions of (Acquistapace and Terreni, 1987) in

a somewhat strengthened form, i.e. assume that:

for each tel0,T], A(t):DA(L)SH—»H is a closed linear

operator; in addition there exist #eln/2,n[ and M>0 such

that p(A(t))QS(ﬂ). where S(9):={zeC: |arg z|<9}, and

IPA-A(O] Mg, = M[1+]1A]]7" VAESTEY, vtelo,TI; J

there exist N>0 and «,p€]0,1] with a+p>1, such that

Jact) [A-Aace)] 7 [Ace) ™

vAeS(8), Vt,sel0,T];

the operators (A(t)',te[O,T]} satisfy (0.1) and (0.2)

with the same constants 9,M,N,ea,p.

~A(S) gy = NIt-s]| *[1+[2[]7°

3

(0.1)

v

3

+» (0.2)

7

} (0.3)

REMARK 0.1 By (0.1), the domains D are necessarily dense in H,

A(t)
so that A(t)" is well defined (and densely defined too).o

Denote by Z(H) the set of self-adjoint bounded linear operators.



2 Acquistapace

on H: Z(H) is a Banach space with the £(H) norm. Consider for each
te[0,T] the operator

A(t)P = A(t)P + PA(t), PeS(H), (0.4)

whose precise definition will be given in Section 1. It is known (see
Sections 6.1, 6.2 in (Da Prato, 1973)) that for each tel[O,T], A(t)
generates an analytic semigroup in £(H), and in addition A(t)
preserves positivity, i.e. if PEDA(t) and Pz0, then A(t)P=z0.

Our goal is to show that under the above assumptions the family
{A(t), te[0,T]} fulfils the assumptions of (Acquistapace and Terreni,
1987), or, more precisely, satisfies (0.1) and (0.2), with p replaced
by any smaller number, in the Banach space Z(H).

As an application of this result, we are able to show existence
of classical solutions for an abstract non-autonomous Riccati
equation'arising in the study of the Linear Quadratic Regulator
Problem for parabolic systems with boundary control’. Due to lack of

space, this application will appear in a forthcoming paper

(Acquistapace and Terreni, in preparation).

REMARK 0.2 We may replace (0.2) by the slightly weaker condition

Kk « -p
lac) A=A A T-A® Mg, s N L [t-s] [1+]a]]
i=1

vaeS(s), vt,sel0,T],

where al,plelo,ll and al+p1>1 for i=1,...,k; what is crucial here is
that pl>0, and this requirement makes such assumption stronger than
that of (Acquistapace and Terreni, 1987), where on the contrary the
pl's are allowed to be possibly 0.

1. THE OPERATOR A(t) FOR FIXED t.

A precise definition of the operator (0.4), for fixed te{0,T], can be
given in the following way (compare with (Da Prato, 1973)). Fix

D by:

PeZ(H) and consider the sesquilinear form defined on DA“)x N

¢ (tix,y):=(A(t)x,Py) +(Px,Alt)y), . x,yeD (1.1)

ALY’

We set
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D

A(t):={PEZ(H): 3 c(t;P)>0 such that

(1.2)

}

|2, (tsx,y)| = c(tiP) x|l fly]|, vx,yeD, 1.

If PEDA(c)' then Qp(t;°.') has a unique extension @P(t;-.°) to

HxH such that

¢ (t;x,y) = ¢P(t;x,y) vx, yeD

A(t)
~ (1.3)
|8, (tix,y)| = c(tsPYx| livll, Vvx.yeH ;
hence by Riesz’ Representation Theorem there exists an operator
Qp(t)eZ(H) such that
¢, (tix,y) = (Qp(t)x,y)H vx, yeH. (1.4)
Now we define
A(t)P:=QP(t) VPEDA(t) , (1.5)
i.e.
(ACtIPx,y), =@ (t;x,y) Vx,yeH. (1.6)
We remark that if PeD and xe€D then in particular
Ale) A(t)
[ (Px,A(L)y) | = | (tix,y)-(A(t)x,Py) | =
= [etsP) x|+ Jacox] Jivll:
this means PxeD * and
A(L)
»
A(t)Px = A(t) Px + PA(t)x VxeDA“), VPEDA(Q,' (1.7)

i.e. (0.4) holds when evaluated at any XEDA“). In particular, by
(1.4), (1.3), (1.1) and (1.7) it follows easily that

(Qp(t)x,y)H = (x,QP(t)y)H vx,yeD, . .

and therefore A(t)PEQP(t)eZ(H) for each PéDA(tf

The operator A(t) generates the semigroup {e

defined by

EMY) eanyce(z(H)),
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L]
eEA(t)P =eEA(t) PeﬁA(t)‘ Pez(H); (1.8)

indeed, we have:

PROPOSITION 1.1 Denote by 1 the identity operator on Z(H). We have:

eEA(t)_1
(1) D, ,= {PeZ(H): 3 lim[——s—Px,y] =(A(t)Px,y)  Vx,yeH};
&o H
fiy T . EA) _ - .
(11) D, = {PeZ(H): 3 lim| (e 1)P||2(H) 0};
Eo
(i11) {PeD,  :A(t)PeD, "} =
EA(t)_1
= {PeD, .: 3 lim —-——g———P-—I\(t)PI = 0}.
£o ZH)

Proof. (i) By (1.8) and (0.1)-(0.3) it follows that

“eEA(t) =< c(9,M) VE>O, Vtel0,T);

"2(2(3))

hence the argument of Chapter 9, Remark 1.5 of (Kato, 1966) shows
that if P,QeZ(H) and

EA(t)_l ,
lim[———g————Px,y] =(Qx.y)H ¥x, yeH,
£vo H
then PeDA(t) and A(t)P=Q. Suppose conversely that PEDA(t): then by

(1.7) it is easy to get for each xeDA“) and yeH:

lim

[eEA(t)_l
g0

__E__Px.y] = 11m[(e€“" -1, )PLE7 (%41 ) ]x +

H €&vo

. €-1(e§A(c) _1H)Px + P[E-l(eEA(t)_lH)]x'y] = (A(t)Px,y)H;
H

hence by (1.6) we get the result since DA“) is dense in H.

(ii)-(iii) See Proposition 1.2(1)-(1i1) of (Sinestrari, 1985). o
EXAMPLE 1.2 DA(t) is not dense in Z(H) in general (unless, of
course, the A(t)'s are bounded. Indeed, set H:=L2(0,n), and
A(t)EA:=d2/dx2, with DA:=w2’2(O,n)nw;’2(0,n); then we have

-

[
ety =efrr= v exp(—n"‘s)fnen vE>D, VfeH,
=1

n
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where e (x):= (2/m) "“sin(nx), f :=(f,e ) . Now if D, were dense in
n n n’H

A
£(H), then we should have, choosing P:=1_:

lim "(egA- = 0,
gvo

i.e. for each >0 there should exist 6€>0 such that

12(H))1H"2(H)

2€a
s {111, Ielm} < o ve<ious,
hence by taking f:=en, new', we would get
"(ez's‘-lﬂ)en"H S 1—exp(-2n2§) < & VneN', V&e]O.Sel,

which is impossible. o
REMARK 1.3 Despite of Example 1.2, we obviously have

EA)_y

lim (e S

)Px|| = 0 VPeZ(H), VxeH, vte(0,T]. o (1.9)
go

2. MAIN RESULT

By (0.1)-(0.3) and the results of (Acquistapace and Terreni, 1986),
(Acquistapace, 1988), (Acquistapace, Flandoli and Terreni, 1990, in
press), (Acquistapace and Terreni, 1990) we can construct the
evolution operator U(t,s) associated to {A(t)}, and the following

properties hold true:
PROPOSITION 2.1 For 0=s<t=T we have:
(1) U(t,s) = U(t,r)u(r,s) vrels,tl, U(t,t) =1
(11) U(t,s)e£(H,D, ) and 3 dU(t,s)/dt = A(t)U(t,s);
(111) UCt,s)"eg(H,D, _+) and 3 dU(t,s)/ds = -A(s) U(t,s)";
(1v) 3 dU(t,s)szds = -[A(s)"UCt,s)"]";
W) Ut )+ U8 (g * (t-S)[lQUCt, S)/at]y  +
+ (t-s)fjdu(t,s)/ds|y = c(8,M,N, &, p,T).

Proof. (i)-(ii) See Theorem 2.3 of (Acquistapace, 1988).
(1i1) See (6.11) of (Acquistapace and Terreni, 1990).
(iv) See Theorem 6.4 of (Acquistapace and Terreni, 1990).
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(v) See Theorem 2.3 of (Acquistapace, 1988) and Theorem 6.4 of
(Acquistapace and Terreni, 19%90). o

Consider now the operator E(+,+):Z(H)—Z(H) defined by
E(t,s)P:=U(T-s,T-t) PU(T-s,T-t), Ossst=T, PeX(H). (2.1)

A straightforward computation shows that E(t,s) is strongly
continuous in Z(H), and in addition if O=ss<t=T

E(t,s) = E(t,r)E(r,s) vrels,t], E(t,t) = IZ(Hﬁ

%EE(t,s)P = A(T-t)E(t,s)P VPeZ(H), ! (2.2)
d - - - .

EEE(t’S)P = -E(t,s)A(T-s)P VPeDA(T_s),

hence E(t,s) is the (necessarily unique) evolution operator
associated to {A(T-t),tel[0,T]}. We will show in our main Theorem

2.3 below that the family {A(T-t)} satisfies (0.1) and (0.2) (with p
replaced by any smaller number) in the space Z(H). As a consequence
of Theorem 2.3, the results of (Acquistapace andATerreni, 1987),
(Acquistapace and Terreni, 1986) and (Acquistapace, 1988) immediately
imply several regularity properties for the evolution operator
E(t,s).

REMARK 2.2 Of course, many smoothness properties for E(t,s) and
E(t,s)’ may also be directly derived by {(2.1), using the regularity
results for U(t,s) and U(t,s)' proved in (Acquistapace, 1988),
(Acquistapace, Flandoli and Terreni, 1990, in press), (Acquistapace
and Terreni, 1990). However we believe that Theorem 2.3 has some
interest in itself, since it provides a new class of generators of
analytic semigroups having a good dependence on t (i.e. satisfying
(0.1) and (0.2)); this class is not the "usual" abstract version of
some elliptic operator with time-dependent coefficients and
homogeneous boundary conditions, acting on sone concrete function
space, although its construction in fact starts from an operator of

that kind. o

THEOREM 2.3 Under assumptions (0.1)-(0.3) the operators A(t),
defined by (1.2), (1.6), enjoy the following properties:



