WO 1‘;
Py ﬂ‘i‘l.

e

GAME PHYSICS

SECOND EDITION

DAVID H. EBERLY

Wy b ey 1y ;
N T

2 o
;}ﬁu~ -’{’:y B

®
AMSTERDAM & BOSTON e HEIDELBERG » LONDON M '4
NEW YORK & OXFORD e PARIS ® SAN DIEGO A
SAN FRANCISCO & SINGAPORE ¢ SYDNEY & TOKYO MORGAMN

Morgan Kaufmann Publishers is an imprint of Elsevier KAUFMANN

Morgan Kaufmann is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

Copyright © 2010, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without permission
in writing from the publisher. Details on how to seek permission, further information about the Publisher’s
permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the
Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors assume any liability for
any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from
any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Eberly, David H.

Game physics / David H. Eberly. — 2nd ed.

p.cm.

Includes bibliographical references and index.

ISBN 978-0-12-374903-1 (hardcover : alk. paper)
1. Computer games—Programming. 2. Physics—-Computer simulation. 3. Computer graphics.
4. Three-dimensional display systems. 1. Title.

QA76.76.C672E24 2010

794.8’1526—~dc22

2009049828

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-374903-1

For information on all Morgan Kaufmann publications
visit our Web site at www.elsevierdirect.com

Typeset by: diacriTech, India

Printed in the United States of America
10 11 12 13 10987 6 54 32 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID o0 Foundation

International

CONTENTS OF THE CD-ROM

The CD-ROM contains the full distribution of Wild Magic 5.0, including source code
files and data files. The directory hierarchy of library source files is described here.

CORE LIBRARY

>
AssEeRT. Support for handling assegions in the code.
DATATYPES. Template classes for tuples of objects and minimum heaps.

INPUTOUTPUT. Buffer and file input and output, including handling native byte
ordering. Environment variable and path support.

MEMORY. A memory manager for tracking memory usage and memory leaks. A
smart pointer implementation for singleton objects and for arrays of objects.

OBJECTSYSTEMS. Pre-main initialization and post-main termination seman-
tics. Base object class that supports run-time type information, object naming, and
streaming (serialization and deserialization) of objects.

THREADING. Basic support for mutual exclusion (mutexes) and multithreading.

TIME. Support for querying the current time.

MATHEMATICS LIBRARY

ALGEBRA. Vector, matrix, quaternion, and polynomial classes.

APPROXIMATION. Fitting of point sets with Gaussian distributions, lines, planes,
quadratic curves, quadric surfaces, and polynomials.

BASE. Basic mathematics support. Convenient floating-point tuple classes.

COMPUTATIONALGEOMETRY. Convex hulls (2D and 3D), Delaunay triangula-
tion (2D and 3D), polygon triangulation.

CONTAINMENT. Containment of point sets by various geometric objects. Point-
in-polygon and point-in-polyhedron tests, separation of points. Containment by
minimum-area rectangles and circles, and by minimum-volume boxes and spheres.

CURVESSURFACESVOLUMES. Curve classes (2D and 3D), surface classes.
B-spline curves, surfaces, and volume. B-spline fitting algorithms for curves and
surfaces. Geodesic paths on surfaces.

DISTANCE. Distance between pairs of geometric objects (2D and 3D algorithms).

INTERPOLATION. Various algorithms for interpolating data (2D and 3D).

INTERSECTION. Intersection testing and finding for pairs of geometric objects (2D
and 3D algorithms).

MESHES. Various implementations of vertex-edge-triangle graphs.

MISCELLANEOUS. Algorithms for compression of normal vectors, perspec-
tive projection of ellipsoids to ellipses, mappings between convex quadrilaterals
(quadratic and perspective), generation of random points on hyperspheres, comput-
ing tangents to pairs of circles.

NUMERICALANALYSIS. Root finding, eigensolvers for symmetric matrices, inte-
gration, linear system solving, minimization without derivative calculations, differen-
tial equation solvers, singular value decomposition.

OBJECTS2D. Definitions of standard 2D objects that occur in the Wild Magic
library.

OBJECTS3D. Definitions of standard 3D objects that occur in the Wild Magic
library.

QUERY. Standard queries to support computational geometry, implemented for
floating-point arithmetic, for exact rational arithmetic, and for filtered predicates.

RATIONAL. An implementation of exact rational arithmetic.

GRAPHICS LIBRARY

CONTROLLERS. A controller system for keyframe animation, vertex-based mor-
phing, skinning, inverse kinematics, and point and particle systems.

CURVESSURFACES. Classes for curves and surfaces that support tessellation
at run time. Special surface classes include B-spline surfaces, rectangle surfaces,
revolution surfaces, box surfaces, and tube surfaces.

DATATYPES. Classes for bounding volumes, transformations, specialized buffer
and file input-output for Wild Magic classes, color conversions, and 16-bit floating-
point representations. . w

%
DETAIL. Level of detail including billboards, switch nodes, discrete level of detail,
and continuous level of detail.

GLOBALEFFECTS. Base class for effects that apply globally to a scene (more
required than just shader programs). Examples include planar shadows and planar
reflections.

IMAGEPROCESSING. Support for postprocessing effects that require drawing to
render targets. Includes support for 2D effects and for 3D effects (such as fluid
dynamics).

GAME PHYSICS

SECOND EDITION

DEDICATION

After surgery for Stage 4 gallbladder cancer, aggressive chemotherapy, and radiation
treatments, it was not clear I would ever have a chance to write the second edition of
this book. My survival is a testament to the advances that modern medicine has made.
The unselfish caregiving by my loving wife, Shelly, her support through difficult times,
and her encouragement for me to recover and continue writing are things for which
I am extremely grateful. I have finished this book and look forward to writing many
more with her at my side.

TRADEMARKS

The following trademarks, mentioned in this book and the accompanying CD-ROM,
are the property of the following organizations.

DirectX, Direct3D, Visual C++, DOS, Windows, and Xbox 360 are trademarks
of Microsoft Corporation.

Playstation 3 is a trademark of Sony Corporation.
OpenGL is a trademark of Silicon Graphics, Inc.
Radeon is a trademark of ATI Technologies, Inc.

NVIDIA, GeForce, PhysX, and the Cg Language are trademarks of NVIDIA
Corporation.

NetImmerse and R-Plus are trademarks of Numerical Design, Ltd.
MathEngine is a trademark of Criterion Studios.

The Havok physics engine is a trademark of Havok.com Inc.
SoftImage is a trademark of Avid Technology, Inc.

Prince of Persia 3D is a trademark of Brederbund Software, Inc.
XS-G and Canyon Runner are trademarks of Greystone Technology.
Mathematica is a trademark of Wolfram Research, Inc.

Turbo Pascal is a trademark of Borland Software Corporation.
The 8086 and Pentium are trademarks of Intel Corporation.
Macintosh and Xcode are trademarks of Apple Corporation.

Gigi and VAX are trademarks of Digital Equipment Corporation.
MASPAR is a trademark of MasPar Computer Corporation.

PREFACE TO THE
SECOND EDITION

The first edition of Game Physics appeared in December 2003. At that time physics
was quite a popular topic in games — it still is. I had mentioned in the introductory
chapter of the first edition that we should expect physics hardware soon. In fact, Ageia
Technologies produced their physics processing unit (PPU), but since then, NVIDIA
Corporation acquired the company and provides PhysX® to access the physics hard-
ware. However, some physics computations can even be performed on the graphics
processing unit (GPU). And with all the power of multiple processors and cores
on current generation desktop computers and game consoles, highly performing
complex physical simulations are becoming a reality at minimal cost to the consumer.

A lot of research has been done over the years, so much so that it is difficult to keep
up with and determine which are the important results and which are not. In this, the
second edition, I have added some new material to address some of the criticisms
about the first edition. The main criticism was that the impulse-based approach I dis-
cussed in the physics engine chapter is not what most commercial or Open Source
engines use. The Wild Magic physics engine did (and does) contain a global LCP
solver, and there was (and is) a sample application that illustrates its use. However,
the number of interacting objects is small. The global solver is not suitable for a large
number of objects. I had not discussed iterative dynamics in the first edition, but have
remedied that in the second edition with a new section that describes the more com-
mon velocity-based dynamics. I had planned on adding a section on position-based
dynamics, but the papers of interest to me are very dense in content. [prefer spending
a lot of time dissecting the methods and researching the references of those papers
before 1 am comfortable writing about them. Position-based dynamics will have to
wait until a third edition.

The second edition also contains a lengthy chapter about fluid dynamics, both in
2D and 3D. The vector calculus background is extensive, and the goal is to derive the
partial differential equations of motion from conservation of mass (density equation)
and conservation of momentum (Navier—Stokes equation for velocity). Solving these
equations on moderate-sized grids still takes a large number of CPU cycles, so much
so that it would not be correct to say they are real-time algorithms. However, with
multiple cores and processors these days, it is possible to obtain real-time rates. In
fact, the source code on the CD-ROM contains a GPU-based implementation for a
2D Navier—Stokes solver that runs in real time. [have provided the framework in the
Wild Magic libraries to solve the 3D problem on a GPU. A sample application that
uses the library involves Gaussian blurring of a 3D image. I leave it as a project to
implement the 3D fluid solver on top of this framework, although I am certain I will
post my own implementation at some time after this book is released. The framework

XXXV

XXXVi

Preface to the Second Edition

is where most of the work is done anyway. The application work involves writing the
shaders and setting up all the render targets necessary to run the application with a
minimum amount of video memory and a minimum of transfer of data from system
memory to video memory. This work is at a high level and relatively easy to do.

The broad-phase collision culling using axis-aligned boxes and space-time
coherency was a topic in the first edition, and there was an implementation for the
CPU on the CD-ROM. I greatly expanded this section to discuss how to move the
broad-phase culling onto its own CPU core and use multithreading to support it.
This is useful when programming on a Microsoft Xbox 360. I also added a discussion
on how to move the broad-phase culling onto a specialized processor such as an SPU
of the Sony Playstation 3. I have implemented this on the aforementioned consoles,
and it was absolutely essential for good performance in a physics-heavy racing game
with lots of interacting objects.

Of course, books have bugs just as source code does. The second edition contains
as many corrections to typographical errors and content errors as I could possibly
find.

The CD-ROM for the book contains a new version of Wild Magic, version 5.0.
This is a significant rewrite of Wild Magic 4, except for the mathematics library (some
ancient topics never change). I have greatly modified the graphics engine to have
its own general FX system. Adding specialized shaders in Wild Magic 4 was a bit
tedious and not general. The same thing in Wild Magic 5 is straightforward — the
engine design for managing renderer resources does not get in your way. For exam-
ple, the rewrite made it easy to implement the fluid solvers that are part of the sample
applications. Perhaps superficial yet wanted by many users, I have eliminated the ver-
bose Hungarian-style variable naming conventions (and there was great rejoicing ...).
Finally, the Wild Magic 5 engine uses the Boost License, which is as liberal as you can
get. I hope you enjoy playing with the new version.

As always, my thanks go to the Elsevier and Focal Press folks for their diligence
and hard work to make this book possible: Laura Lewin (Senior Acquisitions Editor),
Chris Simpson (Associate Acquisitions Editor), Anais Wheeler (Assistant Editor),
Julie Ochs (Project Manager), and the entire production team at Elsevier.

PREFACE TO THE
FIRST EDITION

The evolution of the games industry has been motivated clearly by the gamers’
demands for more realistic environments. 3D graphics on a 2D graphics card requires
necessarily a classical software renderer. Historically, rasterization of triangles was the
bottleneck on 2D cards because of the low fill rate, the rate at which you can draw
pixels during rasterization. To overcome fill rate limitations on consumer cards the
graphics hardware accelerator was born in order to off-load the rasterization from the
2D card and the central processing unit (CPU) to the accelerator. Later generations
of graphics cards, called 3D graphics cards, took on the role of handling the standard
work of a 2D graphics card (drawing windows, bitmaps, icons, etc.) as well as support-
ing rasterization that the 3D graphics requires. In this sense the adjective accelerator
for a combined 2D/3D card is perhaps a misnomer, but the term remains in use.

As fill rates increased, the complexity of models increased, further driving the evo-
lution of graphics cards. Frame buffer and texture memory sizes increased in order to
satisfy the gamers’ endless desires for visual realism. With enough power to render a
large number of triangles at real-time rates, the bottleneck of the cards was no longer
the fill rate. Rather it was the front end of the graphics pipeline that provides the ras-
terizers with data. The process of transforming the 3D triangle meshes from world
coordinates to camera coordinates, lighting vertices, clipping, and finally projecting
and scaling to screen coordinates for the purposes of rasterization became a perfor-
mance issue. The next generation of graphics cards arrived, called hardware transform
and lighting (HW T&L) cards, the name referring to the fact that now the work of the
graphics pipeline has been off-loaded from the CPU to the graphics processing unit
(GPU). Although the intent of HW T&L cards was to support the standard graphics
pipeline, most of these cards also supported some animation, namely skin-and-bones
or skinning where the vertices of a triangle mesh (the skin) are associated with a matrix
hierarchy (the bones), and a set of offsets and a set of weights relative to the bones.
As the matrices vary during run time, the vertices are computed from the matrices,
offsets, and weights, and the triangle mesh deforms in a natural way. Thus, we have
some hardware support for deformable bodies.

The standard graphics pipeline is quite low-level when it comes to lighting of ver-
tices. Dynamic lights in a scene and normal vectors at vertices of a triangle mesh are
combined to produce vertex colors that are interpolated across the triangles by the
rasterizer. Textured objects are rendered by assigning texture coordinates to the ver-
tices of a mesh, the coordinates used as a lookup into a texture image. The rasterizer
interpolates these coordinates during rasterization, then performs a lookup on a per-
pixel basis for each triangle it rasterizes in the mesh. With a lot of creativity on the
artists’” end, the vertex coloring and texturing functions can be used to produce high

XXXvil

xxxviii

Preface to the First Edition

quality, realistic renderings. Fortunately, artists and programmers can create more
interesting effects than a standard graphics pipeline can handle, producing yet more
impetus for graphics cards to evolve. The latest generation of graphics cards now are
programmable and support vertex shading, the ability to incorporate per-vertex infor-
mation in your models and tell the rasterizer how to interpolate them. Clever use
of vertex shading allows you to control more than color. For example, displacement
mapping of vertices transfers some control of positional data to the rasterizer. And
the cards support pixel shading, the ability to incorporate per-pixel information via
images that no longer are required to represent texture data. Dot3 bumpmapping is
the classic example of an effect obtained by a pixel shader function. You may view
vertex shading as a generalization of the vertex coloring function and pixel shading as
a generalization of the basic texturing function.

The power of current generation graphics cards to produce high quality visual
effects is enormous. Much of the low-level programming you would do for software
rendering is now absorbed in the graphics card drivers and the graphics APIs built on
top of them, such as OpenGL and DirectX, allowing the programmers to concentrate
at a higher level in a graphics engine. From a visual perspective, game designers and
programmers have most of what they need to create realistic looking worlds for their
gamer customers. But since you are reading this preface, you already know that visual
realism is only half the battle. Physical realism is the other half. A well-crafted, good-
looking character will attract your attention for the wrong reasons if it walks through
awall of aroom. And if the characters cannot realistically interact with objects in their
physical environment, the game will not be as interesting as it could be.

Some day we programmers will see significant hardware support for physics by
off-loading work from the CPU to a physics processing unit (PPU). Until that day
arrives we are, so to speak, at the level of software rendering. We need to imple-
ment everything ourselves, both low level and high level, and it must run on the
CPU. Moreover we need real-time rates. Even if the renderer can display the environ-
ment at 60 frames per second, if the physics system cannot handle object interactions
fast enough, the frame rate for the game will be abysmally low. We are required to
understand how to model a physical environment and implement that model in a
fast, accurate, and robust manner. Physics itself can be understood in an intuitive
manner — after all it is an attempt to quantify the world around us. Implementing a
physical simulation on a computer, though, requires more than intuition. It requires
mathematical maturity as well as the ability and patience to synthesize a large system
from a collection of sophisticated, smaller components. This book is designed to help
you build such a large system, a physics engine as it were.

I believe this book is a good companion to my book 3D Game Engine Design,
a large tome that discusses the topic of constructing a real-time graphics engine for
consumer hardware. Game Physics focuses on the topic of real-time physical simu-
lation on consumer hardware. The two, of course, will be used simultaneouly in a
game application. Game Physics has a similar philosophy to 3D Game Engine Design
in two ways. First, both books were conceived while working on commercial engines
and tools to be used for building games. The occurrence of the word “game” in the

Preface to the First Edition ~ XXXiX

titles reflects this. The material in both books applies to more than just game applica-
tions. For example, it is possible to build a virtual physics laboratory for students to
explore physical concepts. Second, both books assume that the reader’s background
includes a sufficient level of mathematics. In fact, Game Physics requires a bit more
background. To be comfortable with the material presented in this book, you will
need some exposure to linear algebra, calculus, differential equations, and numerical
methods for solving differential equations. All of these topics are covered in an under-
graduate program in mathematics or computer science. Not to worry, though. As a
refresher, the appendices contain a review of the essential concepts of linear algebra,
affine algebra, calculus, and difference equations that you will need to read this book.
Two detailed chapters are included that cover differential equations and numerical
methods for solving them.

1 did not call the book 3D Garme Physics because the material is just as appropriate
for one- or two-dimensional settings. Many of the constrained physical models are
of lower dimension. For example, a simple pendulum is constrained to move within
a plane, even though a rendering of the physical system is in three dimensions. In
fact, the material is applicable even to projects that are not game related, for example,
supporting a virtual physics laboratory for students to explore physical concepts. I
did call the book Game Physics and 1 expect that some readers might object to the
title when in fact I do not cover all possible topics one might encounter in a game
environment. Moreover, some topics I discuss are not in as much depth as some might
like to see. Spending even a few years to write a book, I believe it is impossible to
cover all the relevant topics in significant detail to support building a fully featured
physics engine that rivals what you see commercially. Some projects just require a
team of more than one. For example, [specifically avoided getting into fluid dynamics
because that is an enormous topic all on its own. I chose to focus on the mechanics
of rigid bodies and deformable bodies so that you can build a reasonable, working
system for physical simulation. Despite this restricted coverage, I believe there is a
significant amount of content in this book that will make it worth every minute of
your reading time. This content includes both the written text and a vast amount of
source code on the CD-ROM that accompanies the book, including both the Wild
Magic graphics engine and components and applications for physics support. I have
made every attempt at presentingall the content in a manner that will suit your needs.

As in the production of any book, the author is only part of the final result. The
reviewers for an early draft of this book have been extremely helpful in providing
guidance for the direction the book needed to take. The original scope of the book
was quite large, but the reviewers’ wisdom led me to reducing the scope to a man-
ageable size by focusing on a few topics rather than providing a large amount of
background material that would detract from the main purpose of the book — showing
you the essentials of physical simulation on a computer. [wish to personally thank the
reviewers for their contributions: lan Ashdown (byHeart Consultants), Colin Barrett
(Havok), Michael Doherty (University of the Pacific), Eric Dybsand (Glacier Edge
Technology), David Eberle (Havok), Todd Growney (Electronic Arts), Paul Hemler
(Wake Forest University), Jeff Lander (Darwin 3D), Bruce Maxim (University of

xl Preface to the First Edition

Michigan—Dearborn), Doug McNabb (Rainbow Studios), Jon Purdy (University of
Hull), and Craig Reinhart (California Lutheran University). Thanks also go to Tim
Cox, my editor, Stacie Pierce, editorial coordinator, and Rick Camp, editorial assis-
tant for the book. Tim has been patient with my seemingly endless delays in getting a
final draft to him. Well, the bottom line is that the draft arrived. Now it is your turn

to enjoy reading the book!

ABOUT THE CD-ROM

License Agreement

The accompanying CD-ROM contains source code that illustrates the ideas in the
book. Each source file has a preamble stating that the source code is subject to the
Boost License (http://www.boost.org/LICENSE_1_0.txt), which is quite simple:

Boost Software License — Version 1.0 — August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtain-
ing a copy of the software and accompanying documentation covered by this
license (the “Software”) to use, reproduce, display, distribute, execute, and trans-
mit the Software, and to prepare derivative works of the Software, and to permit
third-parties to whom the Software is furnished to do so, all subject to the
following:

The copyright notices in the Software and this entire statement, including the
above license grant, this restriction and the following disclaimer, must be included
in all copies of the Software, in whole or in part, and all derivative works of
the Software, unless such copies or derivative works are solely in the form of
machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPY-
RIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Installing and Compiling the Source Code

The Wild Magic 5 engine is portable and runs on desktop computers running the
Microsoft Windows XP/Vista/7 operating systems or Linux operating systems. Ren-
derers are provided for both OpenGL (version 2.x) and Direct3D (version 9). The
engine also runs on Apple computers, whether PowerPC- or Intel-powered, with the
Macintosh OS X operating system (version 10.5.x or higher). Project files are pro-
vided for Microsoft Visual Studio (version 2009) on Microsoft Windows. Make files
are provided for Linux. Xcode 3.x project files are provided for the Macintosh.

xlii About the CD-ROM

The CD-ROM includes a file, Wm5pOInstallationRelease.pdf, that contains the
installation directions. You must read this first as it addresses various computing envi-
ronment issues that you must be aware of, such as setting environment variables and
project path settings.

Updates and Bug Fixes
Regularly visit the Geometric Tools, LLC web site, http://www.geometrictools.com, for

updates and bug fixes. Histories of source code changes, book corrections, and known
problems are maintained at the web site.

CHAPTER

1

CHAPTER

2

CONTENTS

TRADEMARKS xvii
FIGURES Xix
TABLES xxxiii
PREFACE TO THE SECOND EDITION XXXV
PREFACE TO THE FIRST EDITION XXXVii
ABOUT THE CD-ROM xli
INTRODUCTION 1
1.1 A BRIEF HISTORY OF THE WORLD 1
1.2 A SUMMARY OF THE TOPICS 7
1.3 EXAMPLES AND EXERCISES 12
BAsIC CONCEPTS FROM PHYSICS 13
2:0 RIGID BODY CLASSIFICATION 14
2:2 RIGID BoODY KINEMATICS 15
2.2.1 Single Particle 15
2.2.2 Particle Systems and Continuous Materials 27
2.3 NEWTON’S LAWS 30
24 FORCES 31
2.4.1 Gravitational Forces 32
2.4.2 Spring Forces 33
2.4.3 Friction and Other Dissipative Forces 34
2.4.4 Torque 36
2.4.5 Equilibrium 38
2.5 MOMENTA 40
2.5.1 Linear Momentum 40
2.5.2 Angular Momentum 41
2.5.3 Center of Mass 42

v

