

Exploring Life

THE PRINCIPLES OF BIOLOGY

John Blamire

City University of New York, Brooklyn College

Book Team

Editor Kevin Kane
Development Editor Margaret J. Kemp
Production Editor Jane Matthews
Designer Jeff Storm
Art Editor Joseph P. O'Connell
Photo Editor Lori Gockel
Permissions Coordinator Gail I. Wheatley

Wm. C. Brown Publishers

A Division of Wm. C. Brown Communications, Inc.

Vice President and General Manager Beverly Kolz
Vice President, Director of Sales and Marketing Ginny Moffat
Marketing Manager Carol J. Mills
Advertising Manger Janelle Keefer
Director of Production Colleen A. Yonda
Publishing Services Manager Karen J. Slaght

Wm. C. Brown Communications, Inc.

President and Chief Executive Officer *G. Franklin Lewis* Corporate Vice President, President of WCB Manufacturing *Roger Meyer* Vice President and Chief Financial Officer *Robert Chesterman*

Unless otherwise credited, all photographs © John Blamire.

Copyedited by Kathy Massimini

Cover photos:

(Background) © Greg Vaughn/Tom Stack and Associates (Inset) © Toni Angermayer/Photo Researchers, Inc.

The credits section for this book begins on page 490 and is considered an extension of the copyright page.

Copyright @ 1994 by Wm. C. Brown Communications, Inc. All rights reserved

A Times Mirror Company

Library of Congress Catalog Card Number: 92-75102

ISBN 0-697-14537-9

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America by Wm. C. Brown Communications, Inc., 2460 Kerper Boulevard, Dubuque, IA 52001

10 9 8 7 6 5 4 3 2 1

Preface

This book is intended for use in introductory level courses, in short general biology courses (one quarter or one semester), and possibly in those courses that require an overview of biology before specializing in other majors.

Biology is the science of life, but for many students, the principles of science are so mysterious and threatening, they never get past their fears and on to the fascinating realm of living creatures that inhabit every good biology course. Between the pages of this book, therefore, the two themes of science and of life are brought together in a way that makes the biology accessible and the science much less intimidating. Any student who is interested in biology, but who has little experience with the process of science, will find it possible to learn the principles of biology by following this text. Science is presented as a living process carried out by living scientists in a true context. We see how their work reveals a little more each day about how life works.

The Student and the Author

As you will learn in Chapter 1, I am a scientist who carries out research and teaches introductory biology. The dual nature of my work has given me an insight into how people approach the study of biology. Almost without exception, I have found that students come to their first college biology class wanting to know more about this phenomenon we call life. They ask questions like: "How does it work?" and "How do we know?" But they are quickly turned off by vague answers or by answers filled with jargon and assumptions. From my experience introducing these students to the world of biological science, and from my many attempts to answer their questions (without having their eyes glaze over), I have written this book.

More than any other factor, I have tried to keep the vision of my very first biology class in mind as I prepared each chapter. As a freshly minted Ph.D. with several published research papers to my credit, I stood before my first class and plunged right into the latest findings and awesome significance of DNA replication. My very polite audience waited half an hour before one student had the courage to raise her hand and ask me the first question. To my surprise, the question concerned a point I thought I had made abundantly clear in the second sentence. I spent the rest of that class going backward through my presentation trying to make each point clear *in reverse order*. With this in mind, whenever I sat before my word processor and began a new chapter, I always pictured that class and was careful to think of their needs as I laid down my sequence of ideas.

I hope you find that I have succeeded. Although there are many ways to use a textbook like this one, remember the advice the Queen of Hearts gave to Alice in Wonderland. Alice asked, "How shall I tell my story?" and she was told, "Begin at the beginning, go on to the end, and then stop." If you read this book in the order it is written, you will find that the ideas and themes of biology flow easily and that the concepts are explained and illustrated in a logical sequence that makes them easier to understand. For example, in Chapter 3 the property of atoms is explained. With this knowledge, you can follow the structure and function of DNA in Chapter 4. . . . Knowing about the role of DNA makes the understanding of genetics much simpler in Chapters 9 and 10. A grounding in genetic principles makes it a snap to follow the mechanisms of evolution found in Chapters 20 and 21 and the arrival of humans in Chapter 22. You can even learn how a small change in a DNA molecule was instrumental in bringing about the Russian Revolution!

However, because there is no one way of learning biology, you are certainly at liberty to turn to page 366, find out about the evolution of the human species, and then work your way back to the atoms on page 31; but just remember my first biology class.

A Picture Is Worth a Thousand Words

Publishers like words. As any prospective author quickly learns, editors who are responsible for producing expensive textbooks like to see a "manuscript." These written words are sent out for review. and after all the necessary changes are made, the errors eliminated, and the final revisions completed, then a publisher begins to discuss the art program for a textbook. As a result, the two most important parts of the work, the words and the pictures, are created separately and, very often, independently of one another. No matter how dedicated and clever the artist or the art director, the final book often looks like the work of two different sets of people, and the student may be left wondering if the author and the artist ever talked with one another. As a teacher, I found this very frustrating because the image that accompanies an idea in life science is often better at explaining a concept than 1,000 words.

Wm. C. Brown Publishers are probably unique in that they have allowed me to develop the art program that accompanies this textbook as the manuscript was produced. Not only that, all the drawings in this book were produced by the same artist. Art and words are woven together in a way that is additive, not independent. As you read about plant structure on page 223, you meet the "up and down" nature of basic plant shapes. Then, as you turn the page to find out about plant cells and tissues, exactly the same drawing is seen again, but with some extra added features. On the next page, you learn about roots, and once again the drawing is consistent and the new information is added seamlessly to the old. You will not have to reinterpret each drawing every time you meet a new fact or face a new concept.

Such an art program is expensive and labor intensive. It requires close collaboration between the author and the artist. With considerable patience, the artist on this project revised and revised a figure until it was just what was needed. Sometimes a figure was simplified because the original tried to do too much. Other times, when something more dramatic was needed, a simple drawing grew until the message it carried was unavoidable. In just one or two places, a touch of humor escapes, like Redi's flies on page 10, all to enhance the ability of the book to transfer knowledge and understanding to its reader.

The Hook

Any good story, and the story of life is certainly one of the best stories, needs a hook. This is a literary device in which authors "hook" your interest in what they have to say. Very often, they do this using a dramatic, unusual, or especially intriguing opening

sentence, paragraph, or page. Once you are hooked, you want to read on.

Throughout this book, you will find a similar concept at work. Complex ideas, such as the evidence for the beginning of life or the time scale for evolution, are presented within a context familiar from everyday life. This makes the science readily accessible and much more comprehensible. A famous detective helps us unravel the mystery of how life got started on this planet in Chapter 3, and in Chapter 22 a very boring movie helps us understand the amount of time it took for the various forms of life to evolve on earth. Each of these themes gently moves the reader from an easily recognizable concept (such as a detective story) to the scientific principle (such as atomic structure).

Long after you have closed this book, finished the biology course, and moved on to other phases of your education, you will remember the peccaries and their gene pool on page 350. This is important because science is *not* just a collection of facts that you have to learn to pass exams, it is also a way of understanding.

Science is a process of discovery and understanding of the world around us. In learning about biology, therefore, it is just as critical to understand why living cells use ribosomes as it is to memorize the component parts of a ribosome itself. Consequently, much effort has gone into showing you how biological facts fit together. Carried along by the themes, the art work, and the "hooks," the facts of life become less intimidating and easier to learn as you begin to understand the important overarching principles at work.

For me, as a scientist, a teacher, and an author, this is the ultimate reward. I enjoy biology very much and I want to pass some of that pleasure on to you. From the understanding of biology that you take away from this course, you will find that the many important decisions you make every day become easier, more reasoned, and, hopefully, more correct. You will be able to read the list of ingredients on a food packet with more comprehension. In the voting booth, you will be able to cast your ballot on environmental issues from an informed position rather than from a hunch or "gut feeling." Your conversations with your doctor about what medicines to take will have more depth, and you will certainly know why you should avoid certain types of pollution. This is real empowerment in your life-and all from one biology course!

John Blamire Brooklyn, N.Y. 1993

xviii

Ancillaries

A Student Study Guide is available in which the key elements in each chapter are laid out in an easy to follow sequence. "Along-the-way" tests help students to see how far their comprehension of each topic has progressed, and key concepts are highlighted.

An *Instructor's Manual* puts together some ideas from one teacher to another as well as provides outlines, chapter to chapter interleaving, concepts, pivot points, and suggested use of the visuals within this book. The manual also includes a Test Item File, which the instructor can receive in Apple, IBM, and Macintosh disk format.

Instructors and adopters may also request a pack of "clean" images selected from the unique art work within this book that they may customize and use for overhead transparencies.

Acknowledgments

The list of people to thank on a project like this one is long, but the space available is short, so I hope that anyone who feels that I have left out their names will forgive me. I have listed a few of the absolutely key people who at one time or another played vital roles in either the moral, physical, or intellectual production of this book, but special thanks should also go to my parents, who gave me my first spark of interest in science (that is another story for another time), and to my first science teachers who fanned that spark into a flame.

No doubt one or two errors will have persisted and made it into the final version of this manuscript, but that will not be the fault of the following excellent reviewers who helped me in more ways than they will never know.

My thanks and deepest appreciation to:

Dean A. Adkins Marshall University

Frank T. Awbrey San Diego State University

Rosemarie L. Becker

Springfield Technical Community College

Robert Elgart

State University of New York-Farmingdale

Glenn A. Gorelick Citrus College

G. A. Griffith

South Suburban College

Chris Kellner

Arkansas Tech University

Robert Klose University of Maine Samuel J. Levine

Borough of Manhattan Community College

Satish Mahajan

Lane College

Terry Martin

Kishwaukee College

Jack D. McConnell

Seward County Community College

Donald J. McGraw

University of San Diego

Mary Lou McReynolds

University of Kentucky—Hopkinsville Community College

Dwight Meyer

City University of New York—Queensborough

Community College

Glendon R. Miller

Wichita State University

Neil A. Miller

Memphis State University

Pamela Moehring

Mount Mary College

Carol E. Morris

Tompkins Cortland Community College

Haig H. Najarian

University of Southern Maine

Lloyd Ohl

University of Wisconsin-Eau Claire

William J. Radke

University of Central Oklahoma

Ralph E. Reiner

College of the Redwoods

Martin Roedor

The Florida State University

Michael D. Rourke

Bakersfield College

Dr. M. Shopper

Johnson County Community College

Bruce N. Smith

Brigham Young University

Margaret W. Smith

Butler University

F. Lee St. John

The Ohio State University at Newark

Kathleen M. Steinert

Bellevue Community College

William F. Towne

Kutztown University of Pennsylvania

Terry N. Trobec

Oakton Community College

Sandra B. Wilson

Manatee Community College

N. Yarlett

Pace University

Dorothy D. Zinsmeister

Kennesaw State College

Author's Personal Word of Thanks

A textbook such as this one is influenced by many people. I would like to thank a few of them personally.

Peter Prescot—who got me started
Ann Vinecomb—who kept me going
Ray Carlucci—who persuaded me to continue
Ed Jaffe—who convinced me it was possible
Jane Matthews—who put it all together
Marge Kemp—who says "no" better than anyone
Kathy Massimini—who banned the word "very"
Kevin Kane—who listened
Carol Mills—to whom I could listen forever

Brief Contents

Part One

From Molecules to Cells

Chapter 1 The Science of Life 2

Chapter 2 The Signs of Life 14

Chapter 3 The Beginning of Life 26

Chapter 4 The Components of Cells:

The Macromolecules 42

Chapter 5 The World of Cells 56

Chapter 6 Eukaryotic Cell Structure 72

Chapter 7 Biological Energy 84

Chapter 8 Energy Storage and Utilization 96

Part Two

From Cells to Humans

Chapter 9 Biological Information 112

Chapter 10 Mendel and Diploid Genetics 130

Chapter 11 Animal Reproduction and Development 152

Chapter 12 Human Reproduction and Development 166

Part Three

The Diversity of Life

Chapter 13 Protistans and the Animal Form 188

Chapter 14 Fungi and the Plant Form: Decomposers and Producers 212

Chapter 15 Plant Reproduction and Growth 236

Part Four

Integration of the Parts

Chapter 16 System I: Digestion and Respiration 254
Chapter 17 System II: Circulation and Exchange 274

Chapter 18 System III: Hormones and Nerves 292

Chapter 19 System IV: Support and Movement 312

Part Five

Life on the Biosphere

Chapter 20 Darwinism and Natural Selection 328

Chapter 21 Evolution in Action 348

Chapter 22 The Evolution of Humans 366

Chapter 23 Animal Behavior 400

Chapter 24 Ecosystems 426

Chapter 25 Ecosystems and the Passage of Time 448

Contents

Another View xv Preface xvi

Part One: From Molecules to Cells

Chapter 1

The Science of Life 2

The Gay Yeast 2 Science and the Scientific Method 2

Theories Can Change 4

Quantitative Observations and Scientific Experiments 5

Experiments 5

Another View: Setting a Standard 6

Taking Control 8

Science and Biology 8

Appearances Can Be Deceptive 9

Spontaneous Generation: A Theory That Died Twice 10

Author's Afterword 12

Summary 13 Quick Quiz 13 Questions 13

Chapter 2

The Signs of Life 14

What Are We Looking For? 14 The Signs of Life 15

Response to Stimuli 15 Growth and Reproduction 16 Heredity 17 Homeostasis 17 Adaptation 18

Levels of Organization 19

Another View: A Burp from Eating Dust 19 Atoms 20 Molecules and Compounds 20 Monomers 20 Polymers or Macromolecules 21 The Cell 21

Energy, Entropy, and the Laws of Thermodynamics 22

The First Law of Thermodynamics 22 The Second Law of Thermodynamics 23 Life and Energy 23

Summary 24 Quick Quiz 25 Questions 25

The Beginning of Life 26

A Detective Story 26

Solving the Mystery of Life 27

Deducing Conditions on the Primitive Earth 27

Clue number one 27

Clue number two 28

Clue number three 28

A Reconstruction 29

Stanley Miller 29

Another View: In the Beginning 30

Atomic Structure 31

Electron Energy 32

Physical Properties of Atoms 32

Chemical Properties of Atoms 33

Bonding 34

Ionic Bonds 34

Covalent Bonds 35

Spontaneous and Nonspontaneous Reactions 36

Activation Energy 36

Properties of Water 37

Water Is a Liquid 37

Water Is a Solvent 38

Water Can Ionize 39

Summary 40

Quick Quiz 41

Questions 41

Chapter 4

The Components of Cells: The Macromolecules 42

From Monomers to Polymers 42 Waxes, Fatty Acids, and Lipids 44

Waxes 44

Neutral Lipids 45

Phospholipids 46

Another View: The Importance of Carbon 46

Steroids 47

Monosaccharides and Polysaccharides 47

Starch 48

Glycogen 48

Cellulose 48

Amino Acids, Polypeptides, and Proteins 49

Amino Acids 49

Polypeptides 49

Structure of Proteins 50

Function of Proteins 51

Nucleic Acids: DNA and RNA 51

Another View: Types of Polymers 53

The Components of the System 53

Summary 54

Quick Quiz 55

Questions 55

Chapter 5

The World of Cells 56

The Cell Theory 56

Another View: The Size of Things 57

The First Cells 59

Prokaryotic Cells 60

Eukaryotic Cells 61

Another View: Microscopes 62

The Problem of Size 64

Getting Substances into and out of Cells 65

Diffusion 65

Osmosis 65

Transport 66

Passive Transport 66

Active Transport 67

Another View: The Missing Link? 67

Endocytosis and Exocytosis 68

Another View: Viruses: The Boundary of Life 69

Now and Then 70

Summary 70

Quick Quiz 71

Questions 71

Chapter 6

Eukaryotic Cell Structure 72

Methods of Study 72

The Component Parts: The Organelles 74

Cilia and Flagella 74

The Plasma Membrane 75

The Cytoskeleton: Microtubules and Microfilaments 76

Microtubules 76

Centrioles 77

The Cytoplasm 77

The Endoplasmic Reticulum and Golgi Apparatus 77

The Mitochondria: Energy Conversion 79

The Lysosome 79

The Nucleus 80

Chromosomes 80

Nucleolus 81

Transcription 81

Organelles in Plant Cells 81

Cell Walls 81

Plastids 82

Summary 82

Quick Quiz 83

Questions 83

Biological Energy 84

Saccharum officinarum 84
The Study of Energy 85
Spontaneous and Nonspontaneous Reactions 86

Energy and Electrons 88 Catalysts and Enzymes 89

Synthesis: Linking Reactions Together 91

A Problem and a Solution 92

Adenosine Triphosphate—Short Term Energy Currency 93

Obeying All the Laws 94

Summary 94 Quick Quiz 95 Questions 95

Chapter 8

Energy Storage and Utilization 96

Liquid Sunshine 96

Photosynthesis: Light and Energy 97

Chlorophyll and the Light-dependent Reactions of

Photosynthesis 98

Splitting Water for Electrons 99

Electron Transport and ATP Synthesis 99

Chemiosmosis 100

Photosystem I and NADP 100

The Light-independent Reactions of Photosynthesis 101

Step 1: Fixing Carbon Dioxide 102

Step 2: Moving Electrons 102

Step 3: Bookkeeping and the Calvin Cycle 102

Aerobic Respiration: Mobilizing Reserves 103

Glycolysis 104

The Krebs Cycle 105

Regenerating NAD 106

Chemiosmotic Phosphorylation 106

Alcoholic and Lactic Acid Fermentations 107

Other Foods 108

Two Organelles at Work 108

Summary 109

Quick Quiz 110

Questions 110

Part Two: From Cells to Humans

Chapter 9

Biological Information 112

The Language of Heredity 112

A Genetic Trait 113

The Flow of Information 114

Mutations 116

Mechanisms of Inheritance 117

DNA Replication 118

Organization of DNA within Cells 118

Asexual Reproduction: Mitosis 119

Interphase 119

Gap One: G1 119

Synthesis: S Phase 119

Gap Two: G2 119

Nuclear Division 119

Cytoplasmic Division 120

Sexual Reproduction and Meiosis 121

Alternation between Haploid and Diploid 121

Stages in Meiosis 121

Meiosis I 122

Meiosis II 122

The Two Roles of DNA 123

Genetic Engineering 123

Cutting up DNA 124

Separating by Size 124

Putting the Pieces back Together 125

Cloning the Genes 125

Future Promises 126

Protein Production 127

Plant and Animal Husbandry 127

Summary 128

Quick Quiz 129

Questions 129

Chapter 10

Mendel and Diploid Genetics 130

A Monastery Garden 130

What Mendel Did and What He Saw 131

Phenotype and Genotype 133

A Typical Cross 134

How Mendel Explained His Results 135

The First Round: F1 Generation 135

The Second Round: F2 Generation 136

Two-factor Crosses and Independent Assortment 138

Exceptions to the Rule 139

Linked Genes 139

Incomplete Dominance 140

Another View: Trophim, Triticale, and Genetics 140

Polygenic Traits 141

Sex Determination and Sex-linked Traits 141

Lover of Dew 141 Sex-linked Traits 143

Inherited Characteristics in Humans 145

Mendelian Traits 145 Blood Groups 145 Sex-linked Traits 146

Queen Victoria and Hemophilia 146

Nondisjunction: Down's syndrome 147

Another View: Looking at Chromosomes: Karyotype 148

Nondisjunctions of Sex Chromosomes 149

Back in the Garden 149

Summary 149 Quick Quiz 150 Genetic Problems 151 Questions 151

Chapter 11

Animal Reproduction and Development 152

From Egg to Adult 152

Production of Gametes 153
Spermatogenesis in Animals 153
Oogenesis in Animals 154
Reproductive Strategy 154
Mating Behavior 155
Fertilization 156
Survival of the Zygote 158

Development of the Zygote 159

Cleavage 160 Gastrulation 160 Organogenesis 160 From Egg to Frog 161

Another View: Control of Development 162

Summary 164 Quick Quiz 165 Questions 165

Chapter 12

Human Reproduction and Development 166

Six o'clock One Morning 166 Human Reproduction 167

Male Reproductive Organs 167 Female Reproductive Organs 168

Estrus and the Human Menstrual Cycle 168

Sexual Intercourse: Phases in the Male Response 170 Sexual Intercourse: Phases in the Female Response 171

Human Development 172

The First Three Months 172
The Second Three Months 174
The Third Three Months 174
Birth 175

Human Reproductive Strategy 176

Choosing a Mate 176 Planning a Family 178

Increasing the Number of Pregnancies 179

Artificial Insemination 180 In Vitro Fertilization 180 In Vivo Fertilization 180

Adoption 181

Decreasing the Number of Pregnancies 181

Abstinence 181 Rhythm Methods 181 Coitus Interruptus 182

Physical Barriers to Contraception 182

Barriers to Zygote Formation and Implantation 183 Termination of Pregnancy 184

Summary 185 Quick Quiz 186

Questions 186

Part Three: The Diversity of Life

Chapter 13

Protistans and the Animal Form 188

The Ladder of Life 188

Another View: Taxonomy and the Chaos of Diversity 190 **Protistans 192**

Protozoa: Mainly Heterotrophic "Animal" Protists 192 Slime Molds: Decomposer "Fungal" Protists 193 Protophyta: Mainly Autotrophic "Plant" Protists 193

Animals 194

Sponges: The Simplest Form 195 Hydra: The Radial Form 196 Flatworms: The Bilateral Form 197 Roundworms: A Cavity and a Gut 198 True Worms: The Segmented Form 199

Arthropods: The Specialized Segment Form 200

Mollusks: The Soft Body Form 202 Sea Urchins: The Internal Skeleton 203

A Stiff Rod up the Back 204

Fish: The First Vertebrate Form 205

Amphibians: The First Land Vertebrates 206

Reptiles: The Dry Land Form 206

Birds: Warm Blood and Hard-shelled Eggs 207

Mammals: The Milk Givers 207

The Tree of Life 208

Another View: Soft Fossils and Hard Classification 209

Summary 210 Quick Quiz 211 Questions 211

Fungi and the Plant Form: Decomposers and Producers 212

The Flow of Energy and Building Materials 212 Fungi 213

The Fungal Body Form 213 Fungal Life-Styles 214 Fungal Reproduction 215 The Fungal Family 215

Plants 216

Algae: Aquatic Body Form 217
Bryophytes: The First Land Plants 218
Tracheophytes: Diploids are Dominant 219
Lower Vascular Plants 220
The Seed Bearers 220
Naked Seeds and Vessel Seeds 221

Plant Structure 223

Up and Down 223
Angiosperm Plant Types 223
Cell and Tissue Types 224
Root Structure 225
The Dermal System 225
The Ground System 225

The Vascular System 226
Stem Structure 226

The Dermal System 227 The Ground System 227 The Vascular System 227

Leaf Structure 228
The Dermal System 228
The Ground System 229
The Vascular System 229
Transpiration 229

Another View: Getting and Storing 230 Translocation 232

Summary 234 Quick Quiz 235 Questions 235

Chapter 15

Plant Reproduction and Growth 236

Sex and the Saguaro 236

Pollen and Ovaries 237
Pollen Production 238
Megagametophyte Production 238
Pollination 239
Wind Pollination 239
Beetle Pollination 239
Bee Pollination 240
Moths, Birds, Mice, and Bats 240

Fertilization and Zygote Formation 240
Seeds 240
Seed Dispersal 241
Air and Wind Dispersal 241
Water Dispersal 242
Animal Dispersal 242
Seed Germination 242

Plant Growth 243

Becoming a Seedling 244
Auxin and the Response to Light 245
Cytokinins and Cell Division 246
Gibberellin and Stem Elongation 246
Ethylene, Buds, Roots, Flowers, Fruits, and Leaves 247
Flowering and Photoperiodism 248
How Plants Measure the Critical Period of Darkness 249
Is There a Flowering Hormone? 250

Summary 251 Quick Quiz 252 Questions 252

Part Four: Integration of the Parts

Chapter 16

System I: Digestion and Respiration 254

The Body City 254
Animal Nutrition and Digestion 256

Food Requirements 257
Energy 257
Building Materials 257
Helpers 258
Getting the Meal Inside 258
Single-Celled Creatures 258
Flatworms 259
Earthworms 260

The Human Gastrointestinal System 260 Enjoying the Meal: The Mouth 260 I'm Hungry: The Stomach 261 Getting the Most from a Meal: The Small Intestine 263 The End of the Journey: The Large Intestine and Rectum The Air We Breathe: Respiration 265 Properties of Gases 265 Surface Area 266 Exchange Surfaces 267 Across the Cell Membrane Directly 267 Across the Body Surface Directly 267 Across Extensions of the Body Surface 267 Across the Walls of Tubes 267 Across Invaginations Using a Distribution System 268 The Human Respiratory Network 268 Air Flow within the System 269 The Mechanics of Breathing 269 Pigments and Transport 270 Another View: Alveoli and the Law of Laplace 270 The Hemoglobin Pigment 279 Carbon Dioxide 279 Summary 272 Quick Quiz 273 Questions 273 Chapter 17 System II: Circulation and Exchange 274 The Internal Sea 274 Interstitial Fluid 275 Balancing the Internal Sea 276 Fluids in Motion 277 Circulation in Animals 277 Composition of the Blood 277 Erythrocytes 277 Leukocytes 278 Fluid Systems 278 The Lymphatic System 278 The Cardiovascular System 279 Heartbeat and Blood Pressure 280 Visiting the Organs 281 The Liquid Balance 281 Marine, Freshwater, and Terrestrial Fluid Balance 282 Ions and Nitrogen 282 The Human Kidney 283 The Renal Process 283 The Case of Glucose 284 The Case of Urea 284 The Case of Potassium 284 The Special Case of Sodium and Water 285

Homeostasis: Staying the Same 285 Temperature Regulation 286

Regulation of Blood Flow 289

Poikilotherms: Cold-blooded Animals 287 Homeotherms: Warm-blooded Animals 288

Loss of Blood 289 Summary 290 Quick Quiz 291 Questions 291

Chapter 18

System III: Hormones and Nerves 292

Two Crimes 292 Burglary 292 Assault 293

The Nervous System 294

Neurons: The Wires 294

The Nerve Impulse: Propagation of the Message 295 The Synapse: Getting the Message Across 297 The Senses and Receptors: Primary Stimulation 299 Subdivisions of the Nervous System:

The Wiring Diagram 300 Central Nervous System 301 Peripheral Nervous System 302

Another View: Nerve Net to Brain: Evolution of the

Nervous System 302 Afferent or Sensory Nerves 302 Efferent or Motor Nerves 303 The Reflex Arc: Direct Action 305

Hormones and the Endocrine System 306

Production and Response 307

Master Control: The Hypothalamus and Pituitary 308

Anterior Lobe 308 Posterior Lobe 309 Working Together 309 Other Endocrine Glands 310

Summary 310 Quick Quiz 311 Questions 311

System IV: Support and Movement, 312

Old Bones and Muscles in Action 312

Locomotion 313

Bones, Joints, and Cartilage 315

Bone Structure 315 Cartilage 316

Joints 316
Making the Connection: Ligaments and Tendons 317

Muscles 317

Types of Muscle 317 Muscle Structure 318

Ultrastructure of the Myofibril 319

Excitation and Contraction 319

Another View: Water Beds and Armored Knights:

Other Kinds of Support 321

Response and Control 322 Levers and Antagonists 323

Another View: The Human Skeleton 324

Summary 324 Quick Quiz 326 Questions 326

Part Five: Life on the Biosphere

Chapter 20

Darwinism and Natural Selection 328

The Three Dimensions of Biology 328 The Dimension of Time 330

The Goldfish and the Eagle 330

Adaptations 333

Animal Defensive Adaptations 333

Stings and Poisons 333

Warning Signals 334

Mimics 334

Blending into the Background 334

Variation and Natural Selection 335

Darwin's Observations 335

The Raw Material: Sources of Variation 336

Another View: The History of an Idea 337

Sources of Increased Variation 338

Mutation 338

Rates of Mutation 338

Recombination 339

Gene Flow 340

Sources of Decreased Variation 340

Selection 340

Genetic Drift: The Element of Chance 340

Experiments in Natural Selection: Bacteria, Budworms,

and Butterflies 341

Resistance to Antibiotics 342

Tobacco Budworm 343

Another View: Molecular Evolution 344

Biston betularia in Birmingham 345

Summary 346 Quick Quiz 347 Questions 347

Chapter 21

Evolution in Action 348

Peccaries 348

Measuring Evolution: The Hardy-Weinberg Law and

Genetic Equilibrium 349

Evolution in Action: Agents of Change 353

Large Populations 353

Directional Selection 353

Stabilizing Selection 355

Disruptive Selection 355

Small Populations 356

Population Size 356

Genetic Drift 357

The Founder Effect 357

Speciation 358

Isolation 359

What Is a Species 359

What Are the Origins of New Species? 359

xiv

A Natural Diversity 360 Adaptive Radiation and Character Displacement 361 There Is No Going Back 362

Summary 364 Quick Quiz 365 Questions 365

Chapter 22

The Evolution of Humans 366

A Very Boring Movie 366

Hominid Evolution: From the Takeover to the Moon 369

Into the Darkness 371

Southern Ape of Africa 373

Another View: Continents Adrift 374

Handyman 378

Homo sapiens 381

Three Branches 384

Lessons from the Garbage Dump 387

Sumer and Surplus 390

Sumer 392

To the Moon 393

Summary 396

Quick Quiz 398

Questions 398

Chapter 23

Animal Behavior 400

A Simple Smile 400 What Is Behavior? 401

Taxes 402

The Potential for Learning 402

Innate Behaviors 404

Reflexes 404

Fixed-Action Patterns 405

Appetitive and Consummatory Behavior 406

Learned Behaviors 407

Classical Conditioning or Associative Learning 408

Habituation 410

Operant Conditioning or Trial-and-Error Learning 410

Interactive Behavior 411

Communication 412

Visual Communication 412

Communication through Sound 413

Smell 413

Touch 414

Integrated Communication 414

Rituals 415

Courtship 415

Territorial Defense 415

Social Behavior 416

Invertebrate Societies 416

Vertebrate Societies 418

Advantages and Disadvantages 419

Sociobiology 421

That Not So Simple Smile 422

Summary 424

Quick Quiz 425

Questions 425

Chapter 24

Ecosystems 426

The Fragile Film 426 Ecosystem 428

The Flow of Energy in an Ecosystem 429

Transfers and Trophic Levels 430

Producers, Consumers, and Decomposers 431

Another View: The Web and the Computer 432

Material Resource Cycles 434

Communities and Niches 435

Ranges of Tolerance 436

Roles 437

The Niche 437

Interspecies Interactions 438

Competition 440

Predation 441

Mutualism 444

Summary 446

Quick Quiz 447

Questions 447

Ecosystems and the Passage of Time 448

Trouvelot and Two Types of Change 448

Populations and the Passage of Time: Quantitative Changes 449

Growth 450

Case Number 1: Bacteria and Exponential Growth 450

Case Number 2: Bacteria in a Bottle, and Limits to Growth 451

Death 453

Aging 453

Carrying Capacity 454

Reproductive Strategies 455

Ecosystems and the Passage of Time: Qualitative Changes 456

Ecological Succession 457

The Biosphere 458

The Biomes 461

Deserts 461

Tundra 462

Rain Forests 463

Summary 464

Quick Quiz 465

Questions 465

Appendix A 467

Glossary 468

Credits 490

Index 492

Another View

- 1.1 Setting A Standard 6
- **2.1** A Burp from Eating Dust 19
- **3.1** In the Beginning 30
- **4.1** The Importance of Carbon 46
- **4.2** Types of Polymers 53
- **5.1** The Size of Things 57
- **5.2** Microscopes 62
- **5.3** The Missing Link? 67
- **5.4** Viruses: The Boundary of Life 69
- 10.1 Trophim, Triticale and Genetics 140
- 10.2 Looking at Chromosomes: Karyotype 148
- **11.1** Control of Development 162

- **13.1** Taxonomy and the Chaos of Diversity 190
- 13.2 Soft Fossils and Hard Classification 209
- **14.1** Getting and Storing 230
- **16.1** Alveoli and the Law of Laplace 270
- **18.1** Nerve Net to Brain: Evolution of the Nervous System 302
- **19.1** Water Beds and Armored Knights: Other Kinds of Support 321
- 19.2 The Human Skeleton 324
- 20.1 The History of an Idea 337
- 20.2 Molecular Evolution 344
- 22.1 Continents Adrift 374
- **24.1** The Web and the Computer 432