Lecture Notes In

Computer Science

Edited by G. Goos and 3 Hértmanij’s?f » -

197

{ Semmar on Concurrency b
| i : Carnegie-Mellon University: e .
‘ * ' Pittsburgh, PA, July 1984,

Edited by S.D. Brookes, A.-W. Roscoe and G. Winskel

i | .
il :] ,

_Sprmger-Verlag 25
Berlin Heldelberg New York Tokyo

RPN

B b Sade B Y b e a8 T ‘”‘&w;hf i
Sy . 8662602
I R/ 2

4N Lectu re Notes in
COm.puter Science

Edited by G. Goos and J. Hartmanis

E8662402

i

Seminar on Concurrency

Carnegie-Mellon University
Pittsburgh, PA, July 9—11, 1984

197 [l

SpringerVerlag
Berlin Heidelberg New York Tokyo

 Editorial Board
D. Barstow W.Brauer P.Brinch Hansen D. Gries D. Luckham i
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth R Sk

Editors '

Stephen D. Brookes 5 P LS i 8 !

BIRTWPRSRE

Computer Science Department Camm~~ W o
Pittsburgh, PA 15213, US,

Andrew William Roscoe
Programming Research Gr(" , ;
Oxford University, Oxford, djL/ﬁﬁr ency
. gyl i -0
. ~Seminar on © 3
Glynn Winskel // ¢

Computer Science Departm¢ =~ ? &
Cambridge, CB2 3QG Engl}—.——"—r_f_ff——_“

4

‘t 2%'5 p B2

CR Subject Classification (19 P.3.3, D.2.4, F.4.1

ISBN 3-540-15670-4 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-15670-4 Springer-Verlag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

' © by Springer-Verlag Berlin Heidelberg 1985
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

Seminar on Semantics of Concurrency
Carnegie-Mellon University
Pittsburgh
Pennsylvania
July 9-11, 1984

Acknowledgements.

Sponsorship and partial financial support of this joint US-UK seminar was provided
by the National Science Foundation of the United States (NSF) and the Science and
Engineering Research Council of Great Britain (SERC). The seminar was held at Carnegie—
Mellon University on July 9-11, 1984, and was organized by S. D. Brookes (Carnegie—
Mellon University), A. W. Roscoe (Oxford University) and G. Winskel (Cambridge University).
We would like to thank Elizabeth Grgurich and Lydia Defilippo for their assistance with
the organization. :

Note. The following introductory sections have been adapted from the text of the
proposal originally submitted by the organizers to the NSF and the SERC. We include
them here to provide some idea of the aims of the seminar, and to set the papers of this
volume in context. The references cited in the papers contained in this volume provide a
fuller survey of current research.

1. Introduction.

Programming languages such as Ada, CSP and CCS, involving some form of parallel
composition of commands, are becoming prominent as computer science moves to take
advantage of the opportunities of distributed processing. It is well known that allowing
concurrent execution may lead to undesirable behaviour, for example deadlock or starva-
tion. It is of crucial importance to be able to reason effectively about programs written in
such languages; to prove, for instance, absence of deadlock. Of course, a formal method
of proof will require a formal model as a basis for justifying the proofs.

At present there is no widely accepted method for modelling concurrent processes.
There is instead a proliferation of semantics for such languages. Some use widely ap-
plicable methods and are based on, for example, Petri nets, labelled transition systems or
powerdomains, while some are more specialised and are designed with an idea of detecting
and proving rather specific properties of programs.

This seminar was intended to provide a forum in which to discuss and examine
the different approaches, their relationships to each other and how they support proofs
of properties of programs. A major aim of this project has been to attempt to link

up and unify the different methods of providing semantic descriptions and analysis of .
concurrent programming languages, and to clarify some of the issues in proving properties
of concurrent programs. We hope that the papers published in this volume contribute to
this goal. ;

2. Background.

Programming languages involving some form of parallel execution are emerging as
the languages of the 80’s, in line with the decreasing costs of computer systems and
the increased opportunities for speed and efficiency offered by distributed computing. -
Most recently, the Ada programming language has been put forward in this guise. This
language, by virtue of its concurrent features, falls into the general category of “CSP-like”
languages, in which concurrently active processes interact by some form of synchronized
communication: the so-called handshake in CSP or the Ada rendezvous,

As is well known, programs written in parallel languages may exhibit pathological
behaviour, such as deadlock. Deadlock occurs typically when each of a group of concurrent
processes is waiting for another process in the group to initiate a communication; since no
process is able to make the first move, no communication can occur and the system is stuck.
The classical example of this phenomenon is provided by the Dining Philosophers, where
the possibility of deadlock means that the philosophers may starve to death. The essence
of this example is that several more or less independent machines are competing for use
of a small number of shared resources; this type of situation arises frequently in practical
computer science, and ways of solving and understanding problems such as deadlock are
of paramount importance.

Much work has been done in specifying and reasoning about properties of concurrent
systems, and there is much interest, both theoretical and practical, in so-called safety and
liveness properties. Of course, it is of vital importance to be able to reason effectively about
the behavioural properties of programs. Moreover, if any proof system is to be useful, it
must be shown to be consistent. This requires a mathematical model of the processes with
which the proof system purports to deal, and an understanding of how the model reflects
the semantic properties of processes.

In the case of sequential programming languages, where one wants to reason about
sequential programs, the situation is much simpler: in general, programs can be taken to
denote input-output functions or state-transformations, and logical systems based on Hoare-
style proof rules can be built which are transparently related to the standard denotational
semantics of the language in question. Unfortunately, there is no widely accepted method
of assigning meanings to concurrent programs; there is not even agreement on what class of
mathematical entities are suitable for modelling processes. On the contrary, the situation

is somewhat confusing. Many different semantic models have been proposed, and in the
main each model seems to have arisen in an attempt to capture precisely a particular type
of behavioural property. Typically, in one model it is relatively easy to treat one type of
semantic property, but difficult to reason about others. This is not to say, of course, that
no successful proof systems have been constructed for parallel languages; the point we are
making is that there is a lack of agreement at the basic level of what kind of mathematical
object a process is, and this makes it difficult to justify a preference for one semantics or
proof system over another.

In view of the proliferation of semantic models for concurrency, and the central
importance of the issues introduced by parallelism, we feel that serious cffort should be
expended in relating the various approaches. This was the basic motivation of the seminar,
because it is hoped that clarifying the inter-relationships between alternative approaches
to the semantics of parallelism will improve our understanding of the problems associated
with concurrency.

Much of the research reported in this seminar considers the particular types of con-
currency inherent in systems where individual processes interact by synchronized com-
munication, such as CSP, CCS and Ada, or in other models of parallel computation where
the communication discipline follows different lines.

Much work on the semantics of concurrency has been carried out on Milner’s language
CCS (Calculus, of Communicating Systems) or Hoare’s language CSP (Communicating
Sequential Processes). Both are used widely in theoretical research and have been provided
with a variety of semantics, both operational and denotational. Some proofs of equivalence
between different semantics have been given, and there are several proof systems for the
various semantics. Lately Milner has introduced another class of languages closely related
to CCS. They are called the synchronous calculi, abbreviated to ' SCCS, and have been
equipped with a semantics which makes them suitable for modelling synchronous processes.
The work on the languages CSP, CCS, and SCCS incorporates many techniques of the
following sections, which outline some of the main approaches which have been taken in
- modelling concurrency.

Labelled transition systems and synchromization trees. These form a basic model
of processes, and have been extensively used (as by Plotkin) to give structural opera-
tional semantics to a variety of programming languages. A process can move from one
configuration to another by making a transition. The transitions (or events) are labelled
to show how they synchronize with events in the environment. Labelled transition systems
unfold quite naturally to labelled trees—called synchronization trees. Generally the tran-
sitions are indivisible, so the processes modelled are thought of as performing ‘only one
event at a time—the actions are interleaved— in which case it can be argued that they do
not handle concurrency in a natural way. Transition systems are widely applicable and

Vi

widely used and can serve as basic models on which to build more abstract semantics.
They are fundamental to much of the work on CCS and SCCS.

Term models. These arise by placing some natural equivalence relation on terms (parts
of programs), generally by specifying the operational behaviour of terms with a labelled
transition system and then putting some operationally meaningful equivalence relation on
these. A notable example is Milner’s observational equivalence on CCS programs. Often
the equivalence on terms can be generated by a set of proof rules. One is then able to prove
a property of a program by establishing its equivalence to some suitably chosen term.

Labelled Petri nets. Petri nets model processes in terms of causal relations between
local states and events. They model a process’s behaviour by simulating it dynamically
through a pattern of basic moves called the “token game”. Several people, notably Lauer
and Campbell, have given semantics to synchronizing processes as labelled Petri nets.
Again, the labels specify how events synchronize with events in the environment. Nets
handle concurrency in a natural way—concurrency exhibits itself as causal independence—
and are not committed to an interleaving approach. Although intuitive structures, they
are difficult to manage mathematically because of the dynamic nature of the token game;
in a sense they need their own semantics if we are to reason about them successfully.

Labelled event structures. Roughly, an event structure specifies the possible sets of
event occurrences of a process. Forms of event structures have appeared in a variety of
work, in foundational work on denotational semantics, in work on distributed computing,
and in the theory of Petri nets. Labelled event structures can be used to give a denota-
tional semantics to a wide range of languages like CCS and CSP based on synchronized
communication. A Petri net determines an event structure; thus, event structures can be
used to give a semantics to nets. Although event structures, like nets, are not committed
to interleaving, a semantics in terms of labelled event structures does translate neatly to
a semantics in terms of synchronization trees, as demonstrated for instance in the work of

‘Winskel.

Powerdomains. Powerdomains occur in denotational semantics as the domain analogue
of powersets; they were introduced by Plotkin, and important foundational work has been
carried out by Smyth and Plotkin. Powerdomains are the domains arising naturally when
trying to give a semantics to languages in which execution can proceed nondeterministi-
cally. Powerdomains were used quite early by Milne and Milner to give a semantics to the
language CCS, by reducing concurrency to nondeterministic interleaving. Hennessy and
Plotkin gave a powerdomain semantics to a simple parallel programming language with
shared variables. Until recently many have tended to avoid their use in giving semantics to
languages where the emphasis has been on getting the operational ideas straight. Now they
are understood better and reappear as denotational counterparts of natural operational
ideas, notably in the work of Hennessy and de Nicola.

vil

Failure—set semantics. Failure-set semantics (Hoare, Brookes, Roscoe) arose as a
generalization of the so-called trace semantics of CSP, which identified a process with
its set of possible sequences of communications (the traces). In addition, a failure set
specifies what synchronizations a process can refuse after following a particular trace, the
idea being to capture precisely the situations in which a deadlock may occur. Links have
been made between failure sets and various other approaches, notably synchronization
trees and transition systems. The failures model can also be constructed as the term
algebra generated by an axiom system, and a complete proof system exists for this algebra.
Attempts to clarify the relationship of failure-sets with other forms of semantics have
yielded some interesting results: the failures model turns up in another guise as the model
determined by a natural set of axioms on the CSP term algebra, and is closely related to
the models developed by Hennessy and de Nicola.

Logics of programs. This area is concerned with the formal expression and proof
of properties of programs and has often been brought to bear on CSP-like languages.
Generally formal reasoning is conducted in some modal logic such as temporal logic, as
in the work of Owicki and Lamport, although some Hoare-style proof systems have been
suggested, notably by Owicki and Gries for shared variable concurrency, and by Apt,
Francez and de Roever for CSP. Sometimes it is possible to decide automatically whether
or not a program satisfies a modal assertion in a particular formal language, as in work
of Clarke, Emerson and Sistla. The validity of modal assertions begs the question of what
basic models should be used. (Most models do not handle the phenomenon of divergence,
or non-termination, adequately.) This is a rich area for investigation, especially as recent
results show that many equivalences on CCS and CSP programs are induced by the modal
assertions they satisfy. This suggest a possible connection with the Dynamic Logics of
Pratt and others. The orderings on powerdomains have a similar modal characterisation
too. “Fairness” is an important property of programs which is often best expressed in terms
of modalities though at present it is not clear how to deal with it in the most satisfying
way; there is a variety of approaches in the current literature.

So far we have mentioned mainly models in which synchronous communication was
the method of interaction between concurrently active processes. We now sketch the
connections with two other models of parallel computation which exemplify alternative
communication disciplines.

The Actor model of computation. The actor model of computation has been developed
by Hewitt and associates at MIT. It is based on communication by message—passing
between objects or processes of computation called Actors. Although communication is
asynchronous the Actor model incorporates many features in common with models of
synchronized communication. Receipt of a message by an actor is called an event and
together a network of actors determines a causal structure on events—a form of event
structure; their axioms have been studied by Hewitt and Baker. Recently Clinger has

"m‘ovndéd an actor language thh i powemkomam semantxcs whwh has also arl&:

some extent the fairness problem for actors;. lmplementat&ons of. actor hmguagas have
assumed that a message sent is always received ‘eventually and ‘this fairness propcrty'
~has been difficult to capture in denotational semantics. < This work is quite new aud
'its relationship Witlr other work, for example Plotkin’s powerdoma.m for countable non-
determmlsm, do not seem to be well undcrstood i R s AT

Kahn-MacQueen networks. Thls model i is, based on the idea that processes communi-
cate by channels; processes read in from input channels and write to output channels. 1t
is one of the earliest models with potential parallelism to have been given a denotational
semantics, relatively sunple because as originally proposed, Kahn-MacQueen networks

..oomputed in a determinate manner—any nondeterminism in the network did not affect
. the final result. The model is well understood and is often used in theoretical work, when
1t is extended by theoretically awkward constructs such as a “fair merge” opeta.tor, here
-~ the work of Park i is notable. Y e e

This completes our summary of the state of the art as we saw it at the time of the
_conference. It is admittedly a rather narrowly focussed account, and we apologize to any
researchers whose work has not been explicitly mentioned in this brief section. The models
‘described here and many other current research areas are representeéd to some extent m

‘&, ihm volume.

gy

Table of Contents

- W. C. Rounds

On the Axiomatic Treatment of Concurrency . . . 1
S. D. Brookes
: Hierarchical Development of Concurrent Systems in a Temporal Logic Framework . . 35
H: Barringer and R. Kuiper
On the Composition and Decomposition of Assertions . 62
G. Winskel
Process Algebra with Asynchronous Communication Mechanisms . 76
J. A. Bergstra, J. W. Klop and J. V. Tucker
Axioms for Memory Access in Asynchronous Hardware Systems 96
J. Misra ‘ '
Executing Temporal Logic Programs 111
B. Moszkowsk:
The Static Derivation of Concurrency and its Mechanized Certification 131
C. Lengauer and C-H. Huang
Semantic Considerations in the Actor Paradigm of Concurrent Computation 151
G. Agha
The Pomset Model of Parallel Processes: Unifying the Temporal and the Spatial 180
V. Pratt
' Lectures on a Calculus for Communicating Systems . 197
R. Milner
Concurrent Behaviour: Sequences, Processes and Axioms 221
E. Best
. Categories of Models for Concurrency oL .. 246
G. Winskel ;
" Maximally Concurrent Evolution of Non-sequential Systems 268
R. Janicki, P. E. Lauer and R. Devillers
An Improved Failures Model for Communicating Processes 281
S. D. Brookes and A. W. Roscoe :
. Denotational Semantics for occamo . . 308
A. W. Roscoe :
Linguistic Support of Receptionists for Shared Resources . 330
. C. Hewitt, T. Reinhardt, G. Agha and G. Attards
i Applications of Topology to Semantics of Communicating Processes 360

Acceptance, Safety, W C. G’alsan

e ESTEREL Synchronous Programming Language ik
d its Mathematncal Semantics, G. Berry and L. Coaumt

Ph. Darondeau

ernative Semantics for McCa.rthy’s amb
. Clinger and C. Halpern

Sema.ntlcs of Networks Containing Indeterminate Operators
R. M Keller and P. Pammgaden

[ijlL Distributed Systems Programming La.nguage. A Status Report
E. Strom and S. Yemini

;—E%PDF ﬁlﬁ I:':_‘l- WWW. ertc’iﬁ'

ON THE AXIOMATIC TREATMENT OF CONCURRENCY

Stephen D. Brookes
Carnegic-Mellon University
Department of Computer Science
Schenley Park
Pittsburgh

0. Abstract.

This paper describes a semantically-based axiomatic treatment of a simple parallel

programming language. We consider an imperative language with shared variable concur-

rency and a critical region construct. After giving a structural operational semantics for
the language we use the semantic structure to suggest a class of assertions for expressing
semantic properties of commands. The structure of the assertions reflects the structure of
the semantic representation of a command. We then define syntactic operations on asser-
tions which correspond precisely to the corresponding syntactic constructs of the program-
ming language; in particular, we define sequential and parallel composition of asscrtions.
This enables us to design a truly compositional proof system for program propeities. Our
proof system is sound and relatively complete. We examine the relationship between our
proof system and the Owicki-Gries proof system for the same language, and we see how
Owicki’s parallel proof rule can be reformulated in our setting. Our assertions are more
expressive than Owicki’s, and her proof outlines correspond roughly to a special subset of
our assertion language. Owicki’s parallel rule can be thought of as being based on a slightly
different form of parallel composition of assertions; our form does not require interference-
freedom, and our proof system is relatively complete without the need for auxiliary vari-
ables. Connections with the “Generalized Hoare Logic” of Lamport and Schneider, and
with the Transition Logic of Gerth, are discussed briefly, and we indicate how to extend
our ideas to include some more programming constructs, including conditional commands,
conditional critical regions, and loops.

1. Introduction.

It is widely accepted that formal reasoning about program properties is desirable.
Hoare’s paper [12] has led to attempts to give axiomatic treatments for a wide variety of
programming languages. Hoare’s paper treated partial correctness properties of commands

in a sequential programming language, using simple assertions based on pre- and post-

conditions; the axiom system given in that paper is sound and relatively complete [8]. The

proof system was syntaz-directed, in that axioms or rules were given for each syntactic
construct. The assertions chosen by Hoare are admirably suited to the task: they are
concise in structure and have a clear correlation with a natural state transformation
semantics for the programming language; this means that fairly straightforward proofs
of the soundness and completeness of Hoare’s proof system can be given [1,8].

When we consider more complicated programming languages the picture is not so
simple. Many existing axiomatic treatments of programming languages have turned out to
be either unsound or incomplete [25]. The task of establishing soundness and completeness
of proof systems for program properties can be complicated by an excessive amount of
detail used in the semantic description of the programming language. This point seems
to be quite well known, and is made, for instance in [1]. Similar problems can be caused
by the use of an excessively intricate or poorly structured assertion language, or by overly
complicated proof rules. Certainly for sequential languages with state-transformation
semantics the usual Hoare-style assertions with pre- and post-conditions are suitable. But
for more complicated languages which require more sophisticated semantic treatment we
believe that it is inappropriate to try to force assertions to fit into the pre- and post-
condition mould; such an attempt tends to lead to pre- and post-conditions with a rather
complex structure, when it could be simpler to use a class of assertions with a different
structure which more accurately corresponds to the semantics. The potential benefits of
basing an axiomatic treatment directly on a well chosen semantics has been argued, for
instance, in [7], where an axiomatic treatment of aliasing was given. Parallel programming
languages certainly require a more sophisticated semantic model than sequential languages,
and this paper attempts to construct a more sophisticated axiomatic treatment based on
the resumption model of Hennessy and Plotkin [22].

Proof systems for reasoning about various forms of parallelism have been proposed
by several authors, notably [2,3,4,11,15,16,17,18,19,20,21]. Owicki and Gries [20,21] gave
a Hoare-style axiom system for a simple parallel programming language in which parallel
commands can interact through their effects on shared variables. Their proof rule for
parallel composition involved a notion of interference-freedom and used proof outlines
for parallel processes, rather than the usual Hoare-style assertions. In order to obtain a
complete proof system Owicki found it necessary to use auziliary variables and to add
proof rules for dealing with them. These features have been the subject of considerable
discussion in the literature, such as [5,16]. Our approach is to begin with an appropriate
semantic model, chosen to allow compositional reasoning about program properties. We
use the structure of this model more directly than is usual in the design of an assertion
language for program properties, and this leads to proof rules with a very simple structure,
although (or rather, because) our assertions are more powerful than conventional Hoare-
style assertions; Owicki’s proof outlines emerge as special cases of our assertions. The

‘soundness and completeness of our proof system are arguably less difficult to establish, as
the proof system is closely based on the semantics and the semantics has been chosen to
embody as little complication as possible while still supporting formal reasoning about the
desired properties of programs. :

The programming language discussed here is a subset of the language considered by
Owicki [20,21], and by Hennessy and Plotkin-[22]. Adopting the structural operational
semantics of [22,26] for this language, we design a class of assertions for expressing seman-
tic properties of commands. We then define syntactic operations on assertions which cor-
respond to the semantics of the various syntactic constructs in the programming language;
in particular, we define sequential and parallel composition for assertions. This leads
naturally to compositional, or syntax-directed, proof rules for the syntactic constructs. We
do not need an interference-freedom condition in our rule for parallel composition, in con-
trast to Owicki’s system. Similarly, we do not need an auxiliary variables rule in order to
obtain completeness. We show how to construct Owicki’s rule for parallel composition and
the need for her interference-freedom condition, using our methods. Essentially, Owicki’s
system uses a restricted subset of our assertions and a variant form of parallel composition
of assertions.

We compare our work briefly with that of some other authors in this field, discuss some
of its present limitations, and the paper ends with a few suggestions for further research
and some conclusions. In particular, we indicate that our ideas can be extended to cover
. features omitted from the body of the paper, such as conditional critical regions, loops and
conditionals. We also believe that with a few modifications in the assertion language we
will be able to incorporate guarded commands [9,10], and with an appropriate definition
of parallel composition for assertions we will be able to treat CSP-like parallel composition
[13], in which processes do not share variables but instead interact solely by means of
synchronized communication.

2. A Parallel Programming Language.

We begin with a simple programming language containing assignment and sequential
‘composition, together with a simple form of parallel composition, and a “critical region”
construct. Parallel commands interact solely through their effects on shared variables.
For simplicity of presentation we omit conditionals and loops, at least for the present, as
we want to focus on the problems caused by parallelism. We will return briefly to these
features later. As usual for imperative languages, we distinguish the syntactic categories of
identifiers, expressions, and commands. The abstract syntax for expressions and identifiers
will be taken for granted.

N (i ST RN (20 SRS i SRR R 2N R L e

Syntaz.

I €Ide identifiers,
E € Exp expressions,
I' ¢ Com commands,
Fu=skip | I'=E | T1;Ty | [[1||Ts) | (T).

The notation is fairly standard. The command skip is an atomic action having no
effect on program variables. An assignment, denoted I :=F, is also an atomic action; it sets
the value of I to the (execution-time) value of E. Sequential composition is represented by
['y;T2. A parallel composition [Ty || I'z] is executed by interleaving the atomic actions of
the component commands I'; and I';. A command of the form (T') is a critical region; this
construct converts a command into an atomic action, and corresponds to a special case of
an await statement in [20], where the notation await true do I' would have been used.

In describing the semantics of this language, we will focus mainly on commands. The
set S of states consists simply of the (partial) functions from identifiers to values:

S = [Ide —, V],

where V is some set of expression values (typically containing integers and truth values).
We use s to range over states, and we write s + [I + v] for the state which agrees with s
except that it gives identifier I the value v. As usual, the value denoted by an expression
may depend on the values of its free identifiers. Thus, we assume the existence of a semantic
function

¢ :Exp — [S - V]

We specify the semantics of commands in the structural operational style [26], and our
presentation follows that of [22], where identical program constructs were considered. We
define first an abstract machine which specifies the computations of a command. The
abstract machine is given by a labelled transition system

(Conf,Lab, —),

where Conf is a set of configurations, Lab is a set of labels (ranged over by a, 8 and 7),
and — is a family

{5 |a€Lab}

of transition relations — C Conf X Conf indexed by elements of Lab. An atomic action
is either an assignment, or skip, or a critical region. We use labels for atomic actions, and
assume from now on that all atomic actions of a command have labels: in other words,
we deal with labelled commands. For precision, we give the following syntax for labelled

commands, in which « ranges over Lab:
I'i= a:skip | a::'=E | Ty;;Ty | [[1||T2] | a:(T).

For convenience we introduce a term null to represent termination, and we specify (purely
for notational convenience) that
[null | T] = [[|| null] =
null, D=
We will use Com’ for the set containing all labelled commands and null. The set of
configurations is Conf = Com’ X S. A configuration of the form (T, s) will represent
a stage in a computation at which the remaining command to be executed is I', and the
current state is s. A configuration of the form (null, s) represents termination in the given
state. A transition of the form
(T, 8)—=(I", &)
represents a step in a computation in which the state and remaining command change
as indicated, and in which the atomic action labelled « occurs. We write (T, s) — (T, 8"
when there is an « for which (T', s)—(I", s’). And we use the notation —* for the reflexive
transitive closure of this relation. Thus (T, s) —* (I, s') iff there is a sequence of atomic
actions from the first configuration to the second.

The transition relations are defined by the following syntax-directed transition rules;
the transition relations are to be the smallest satisfying these laws. This means that a
transition is possible if and only if it can be deduced from the rules.

Transition Rules

(a:skip, s)——(null, s (A1)
(a:I'=E, s)—»(null, s + [— E[E]s]) (A2)
(Ply s)—3->(I‘)

(T'1; T2, 8)—(I"}; Ty, 8') (A3)
(Fli)_a_*()

(2 1), o) (% [Fal,) (A1)
(T2, 8)—(T'%, s')

([T1 || Tg], s)—=> ([1‘1 | T%], &) (A5)

(T, 8) =* (null, s’) W

(a:(T), s)—(null, s')

T

- From our definition of the transition system, we see that we have specified that a paral-
lel composition terminates only when both components have terminated. This is because of
our conventions about 'null: we have ([T'; || '], s)—(T'z, s') whenever (T'y, s)—=» —(null, '),
for instance. It is also clear from the, definitions that all computations eventually terminate
in this transition system, and that no computation gets “stuck”: the only configurations
in which no further action is possible are the terminal configurations. These properties
would not hold if we add guarded commands or loops to the language. This point will be

. mentioned again later; for now we will concentrate on the language as it stands.

Ezamples.

Ezample 1. Let s be a state and let s; = s+ [z > i for 2 > 0. Let I be the labelled
command

[@:z:=2z +1|| B:z:=z + 1].
Theh we have
(T, so)—a—»(ﬂ:z:=z +1, sl)i»(null, sa),
and a similar sequence in which the order of the two actions is reversed:
{r; so)—&(a iz:==z + 1, 51)—(null, s2).

These are the only possible computations from this initial configuration. g

Ezample 2. Let T be the command [a:2:=2 || (8:2:=1; v: 2:=2z + 1)]. Using the

s; notation of the previous example, we have:

(T, 8)—=(B:z:=1;y:z:=x + 1, 32) (v:zi=z + 1, 51)—+(null, 82),
(T, 8)}—([a:z:=2 || y:z:=2 + 1], 5 1)—“—»(7:2::::2: + 1, s5)— +(null, s3),
(T, 8)—([a:z:=2 || y:z:=2 + 1], 81)H{ar: 3:=2; s2)—(null, s5).

This command sets z to 2 or 3, depending on the order in which its atomic actions are
executed. §

A
.4

Ezample 3. Let T be the command [a:z:=1 || B:y:=1]. Then we have:

(T, 8)-(B:y:=1,5 + [z —~ 1]))-s(null, s+ [z 1,y 1)),

a

(T, s)— B (a:y:=1,s + [y > 1)—(aull, s + [z — 1,y — 1]).

This command sets both 2z and y to 1. §

