Includes Interviews with
World-Class C Programmers

.
i /

Herbert Schildt /2

Born to Code in C

Herbert Schildt

Osborne McGraw-Hill

Berkeley New York St. Louis San Francisco
Auckland Bogotd Hamburg London Madrid
Mexico City Milan Montreal New Delhi Panama City
Paris Sdo Paulo Singapore Sydney
Tokyo Toronto

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the
U.S.A., please write to Osborne McGraw-Hill at the above address.

A complete list of trademarks appears on page 519.

Born to Code in C

Copyright © 1989 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of
1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher, with the exception that the
program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

234567890 DOC 89

ISBN 0-07-881468-5

Information has been obtained by Osborne McGraw-Hill from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources, Osborne McGraw-Hill, or others,
Osborne McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results obtained from use of such information.

This book is dedicated to Dennis Ritchie, the creator of the C language,
and to programmers everywhere who were born to code in C.

PREFACE

This book is about C and C programmers. In its nine chapters you will
find examples of C applied to a wide variety of applications. You will also
find profiles of 14 of the world’s finest C programmers. They describe how
they discovered C, what their own personal design philosophies are, and
how they approach programming.

These programmers were chosen because they were either instrumen-
tal to the advancement of the C language or because they have used C to
create successful programs. I have attempted to present a representative
cross-section of programmers. (Of course, it was not possible to include
every worthy C programmer.)

In the process of writing the programmers’ profiles, I noticed two traits
common to all: drive and enthusiasm. Without fail, these are people who
like their work. In fact, most would probably not refer to programming as
work, but as a way of life. The creation of the programmer profiles was
one of the most enjoyable writing tasks I have performed and I thank all
who participated for their time and effort.

About This Book

The topic of each chapter was chosen because it met at least one of the
following conditions: useful, interesting, unique, or fun. Chapter 1, the
Little C Interpreter, is probably my favorite for one reason: it’s just plain
fun! Although language interpretation has several practical uses, I devel-
oped the Little C interpreter simply for the joy of doing it.

Chapter 2 explores icon-based interfaces. It includes a complete icon
editor as well as an icon-based DOS interface as an example.

If you work (or play) in a DOS environment, you will find Chapters 3
and 4 particularly interesting and useful. Chapter 3 is about supercharg-
ing TSRs. You'll learn how to construct a memory-resident program that

xi

xii Born to Code in C

can perform sophisticated screen and disk I/O—and develop a full-
featured TSR program in the process. Chapter 4 was very exciting to work
on. It is a complete multitasking subsystem for DOS. It intercepts the
computer’s real-time clock interrupt and uses it to multitask individual
parts of a C program. This is no toy —it really works!

Chapters 5 and 6 develop two useful subsystems: a screen editor and a
database manager. These subsystems can be integrated into application
programs as user-amenities.

Chapter 7 examines the creation of custom character fonts. It includes
a complete font editor for creating characters and a custom character
display subsystem. Custom character fonts can give your programs a
unique appearance.

Chapter 8 looks at animation. It develops an animation editor with
which you can define objects and their motion. It also develops an
animation subsystem that can be included in your application programs.
Mouse interfacing is also discussed.

Chapter 9 concludes the book with a look at controlling Epson (and
compatible) printers. The Epson printers have many capabilities that are
often overlooked. The chapter develops both text and graphics functions
that take advantage of many of the Epson’s more advanced features.

Who is this book for?

This book is for any C programmer. If you are just beginning, then you
can use the programs “as is” until you become proficient. If you are an
experienced programmer, you can use the functions and routines pre-
sented as starting points for your own applications.

Preface xiii

Diskette Offer

There are many useful and interesting programs contained in this book. If
you're like me, you probably would like to use them, but hate typing
them into the computer. When I key in routines from a book it always
seems that I type something wrong and spend hours trying to get the
program to work. For this reason, I am offering the source code on
diskette with all the functions and programs contained in this book for
$24.95. Just fill in the order blank on the next page and mail it, along with
your payment, to the address shown. Or, if you are in a hurry, just call
(217) 586-4021 (the number of my consulting office) and place your order
by telephone. (Visa and Mastercard accepted.)

HS

Mahomet, Illinois
March, 1989

Preface xv

Please send me

copies, at $24.95 each, of the programs

in Born to Code in C. Foreign orders, please add $5 for shipping and

handling.

Name

Address

City

State Zip

Telephone

Diskette size (check one): 5 1/4”
Method of payment: check

Credit card number:

312"

Visa MC

Expiration date:

Signature:

Send to:

Herbert Schildt
RR 1, Box 130
Mahomet, Il 61853

or phone: (217) 586-4021

Osborne/McGraw-Hill assumes NO responsibility for this offer. This is solely an offer of Herbert Schildt

and not of Osborne/McGraw-Hill.

The manuscript for this book was prepared and submitted to
Osborne/McGraw-Hill in electronic form.
The acquisitions editor for this project was Jeffrey Pepper,
the technical reviewer was Tom Green,
and the project editor was Nancy Beckus.

Text design by Judy Wohlfrom, using Zaph for text body and for display.

Cover art by Stephen Black Design, Inc.
Color separation by Colour Image;
cover supplier, Phoenix Color Corporation.
Screens produced with InSet, from InSet Systems, Inc.
Book printed and bound by R.R. Donnelley & Sons Company,
Crawfordsville, Indiana.

Chapter 1

Chapter 2

Chapter 3

CONTENTS

A C Interpreter

The Practical Importance of Interpreters
The Little C Specifications

Interpreting a Structure Language

An Informal Theory of C

The Expression Parser

The Little C Interpreter

The Little C Library Functions
Compiling and Linking the Little C Interpreter
Demonstrating Little C

Improving Little C

Expanding Little C

Icon-Based Interfaces

PC Graphics

Creating Icons

Creating an Icon Menu Function
Dynamically Moving Icons

An Icon-Based DOS Shell

Supercharging TSR’s

Why TSRs Are So Troublesome

TSRs and Interrupts

The interrupt Type Modifier

A Quick Look at the PSP

The Basic Design of an Interactive TSR
When is DOS Safe to Interrupt?

The Timer Interrupt

TSRs and Graphics Modes

Accessing the Video RAM

Some Special Turbo C Functions
Creating A TSR Application

A Quick Tour of the Windowing System

110
113
115

139
142
143
144
144
145
147
149
149
149
151
153
163

Chapter 4

Chapter 5

Chapter 6

The SCTSR Pop-Up Applications
The Entire SCTSR Program Listing
Some Other Considerations

A Multitasking Kernel for DOS

Two Views of Multitasking

How Multitasking is Accomplished

The Reentrancy Requirement

The interrupt Type Modifier

A Simple Two-Task Model

Creating a Full-Featured Multitasking Kernel
The Entire Multitasking Kernel

A Demonstration Program

Some Things to Try

A Screen-Editor Subsystem
Some Screen-Editor Theory

The Editor Main Loop

Moving the Cursor Left and Right
Moving Up and Down One Line
Deleting Characters and Lines
Finding a String

Global Search and Replace
Scrolling the Screen Using BIOS
The Entire Screen-Editor Subsystem
Some Things to Try

A Database Subsystem

The Database Specification

Two Definitions

Defining the Database

Entering Data

The dis __store() Function
Searching the Database

Browsing in the Database
Modifying a Record

Deleting A Record

Printing the List

Saving and Loading the Database
Using the Subsystem to Create a Personal Database
Some Things to Try

165
179
200

203
205
206
209
209
211
219
237
249
252

255
258
259
266
267
270
272
274
277
278
296

299
301
302
302
308
311
313
315
317
318
320
323
326
350

Chapter 7

Chapter 8

Chapter 9

Creating Custom Character Fonts
The Font Editor

A Custom-Font-Display Subsystem

Object Animation and Mouse Interfacing
Some Mouse Basics

The Virtual Versus Actual Screen

The Mouse Library Functions

The High-Level Mouse Functions

How Animation is Accomplished

The Animation Editor and Training Program
The Animation-Display Subsystem

Some Things to Try

Fancy Printer Control

Sending Commands to the Printer
Sending Output to a Printer

The Text Commands

Using the Graphics Modes

Creating a Custom Print-Screen Utility
Constructing Graphics Images in RAM

C’s Memory Models

Index

351
352

369

381
383
384
384
387
391
392
434
449

451
453
453
454
470
475
500

509

521

CHAPTER ONE g

A C Interpreter

Language interpreters are fun! And what could be more fun for a C
programmer than a C interpreter?

To begin this book I wanted a topic that would be of interest to
virtually all C programmers. I also wanted the topic to be fresh, exciting,
and useful. After rejecting many ideas, I finally decided upon the creation
of the Little C interpreter. Here’s why.

As valuable and important as compilers are, the creation of a compiler
can be a difficult and lengthy process. In fact, just the creation of a
compiler’s run-time library is a large task in itself. By contrast, the creation
of a language interpreter is an easier and more manageable task. Also, if
correctly designed, the operation of an interpreter can be easier to under-
stand than that of a comparable compiler. Beyond ease of development,
language interpreters offer an interesting feature not found in compilers,
an engine that actually executes the program. Remember, a compiler only
translates your program’s source code into a form that the computer can
execute. However, an interpreter actually executes the program. It is this
distinction that makes interpreters interesting.

PROFILE

Ralph Ryan
Project Manager of Microsoft C Version 3.0

Ralph Ryan has been very active in the C programming community. He was
project manager for Microsoft’s C, version 3.0, and then manager of Com-
piler Technology at Microsoft when version 4.0 was prepared. He coau-
thored (with Tom Plum) a C compiler test suite—Plum Hall Validation
Suite—that became the indusiry standard. He has served on the ANSI
standardization committee and is the author of a book about Microsoft's
LAN Manager. These accomplishments are all the more impressive given
that Ralph was first introduced to C only ten years ago, in 1979, when he
was building general-purpose process-control systems. As Ralph puts it, “My
prior professional experience had all been in FORTRAN or Assembler. But
after learning C, I knew that there could be no going back.”

As project manager of one of the most popular C compilers, Ralph is
particularly proud of one innovation added by the Microsoft team to the
8086 (family) based C compilers: “The most important extensions we (Micro-
soft) added to C compilers for the 8086 family of processors were the near
and far modifiers. These extensions let programmers take advantage of the
Intel architecture to create high performance programs. No longer did a
program have to be compiled for just one memory model. Instead, the
programmer could control on a function-by-function and variable-
by-variable basis how each element in the program would be treated.”

Ralph has this to say about his personal design philosophy: “I resist the
urge to plunge into coding until I have all of the details sketched out,
usually into fairly low level pseudo-code. I gradually refine this into real
code and add several debugging assertions as I go. In this way, I hope to
minimize debugging and gain a more coherent design in the process.”

Ralph gives this advice to C programmers: “C is a powerful tool. But, it
is just a tool. Clarity and organization are the keys to creating great pro-
grams. Become a great programmer and you will get the most out of C.”

Ralph left Microsoft after working there for over six years—a long time
in the programming business. He is currently writing books about program-
ming. He lives in Bellevue, Washington and when he isn’t writing or
programming, he enjoys playing in a local rock and roll band.

A C Interpreter 3

If you are like most C programmers, you use C not only for its power
and flexibility but also because the language itself represents an almost
intangible, formal beauty that can be appreciated for its own sake. In fact,
C is often referred to as “elegant” because of its consistency and purity.
Much has been written about the C language from the “outside looking
in,” but seldom has it been explored from the “inside.” Therefore, what
better way to begin this book than to create a C program that interprets a
subset of the C language?

In the course of this chapter an interpreter is developed that can
execute a subset of the ANSI C language. Not only is the interpreter
functional, but it is also well-designed —you can easily enhance it, extend
it, and even add features not found in ANSI C. If you haven’t thought
about how C really works, you will be pleasantly surprised to see how
straightforward it is. The C language is one of the most theoretically
consistent computer languages ever developed. By the time you finish this
chapter, you will not only have a C interpreter that you can use and
enlarge but you will also have gained considerable insight into the struc-
ture of the C language itself. If you're like me, you'll find the C interpreter
presented here just plain fun to play with!

Note: The source code to the C interpreter presented in this chapter is
fairly long, but don’t be intimidated by it. If you read through the
discussion, you will have no trouble understanding it and following its
execution.

THE PRACTICAL IMPORTANCE
OF INTERPRETERS

Although the Little C interpreter is interesting in and of itself, language
interpreters do have some practical importance in computing.

As you probably know, C is generally a compiled language. The main
reason for this is that C is a language used to produce commercially
salable programs. Compiled code is desirable for commercial software
products because it protects the privacy of the source, prevents the user
from changing the source code, and allows the programs to make the
most efficient use of the host computer, to name a few reasons. Frankly,
compilers will always dominate commercial software development, as
they should; however, any computer language can be compiled or inter-
preted. In fact, in recent years a few C interpreters have appeared on the
market.

4 Born to Code in C

There are two traditional reasons for using a C interpreter. First,
beginners to C sometimes find the (potentially) highly interactive environ-
ment of an interpreter preferable to a compiler (although this is changing
since the introduction of C-integrated programming environments, such
as Borland’s Turbo C and Microsoft’s QuickC).

The second reason is debugging. The advantage that an interpreter
has over a compiler in debugging is that the contents of all variables can
be known and changed at any time. Also, a C interpreter can provide
trace facilities that are difficult to equal in a compiled environment.

Another practical use you might have for an interpreter is as the basis
for a database query language. Virtually all database query languages are
interpreted because of the nature of the task. Although using C as a query
language would not be appropriate in most circumstances, many of the
principles you learn here will be.

There is another reason that language interpreters are interesting: they
are easy to modify, alter, or enhance. This means that if you want to
create, experiment, and control your own language, it is easier to do so
with an interpreter than a compiler. Interpreters make great language
prototyping environments because you can change the way the language
works and see the effects very quickly.

Interpreters are (relatively) easy to create, easy to modify, easy to
understand, and, perhaps most important, fun to play with. For example,
you can rework the interpreter presented in this chapter to execute your
program backward —that is, executing from the closing brace of main()
and terminating when the opening brace is encountered. (I don’t know
why anyone would want to do this, but try getting a compiler to execute
your code backward!) Or, you can add a special feature to C that you (and
perhaps only you) have always wanted. The point is that while compilers
absolutely make more sense when doing commercial software develop-
ment, interpreters let you really have fun with the C language. It is in this
spirit that this chapter was developed. I hope you will enjoy reading it as
much as I enjoyed writing it!

THE LITTLE C SPECIFICATIONS

Despite the fact that ANSI C has only 32 keywords (built-in commands), C
is a very rich and powerful language. It would take far more than a single
chapter to fully describe and implement an interpreter for the entire C

A C Interpreter 5

language. Instead, the Little C interpreter understands a fairly narrow
subset of the language. However, this particular subset includes many of
C’s most important aspects. What to include in the subset was decided
mostly by whether it fit one (or both) of these two criteria:

1. Is the feature fundamentally inseparable from the C language?

2. Is the feature necessary to demonstrate an important aspect of the
language?

For example, features such as recursive functions and global and local
variables meet both criteria. The Little C interpreter supports all three
loop constructs (not because of the first criterion, but because of the
second criterion). However, the switch statement is not implemented
because it is neither necessary (nice, but not necessary) nor does it dem-
onstrate anything that the if statement (which is implemented) does not.
(Implementation of switch is left to you for entertainment!)

For these reasons, I implemented the following features in the Little C
interpreter:

* Parameterized functions with local variables
® Recursion
* The if statement

® The do-while, while, and for loops

® Integer and character variables

Global variables

¢ Integer and character constants

® String constants (limited implementation)

* The return statement, both with and without a value
* A limited number of standard library functions

® These operators: +, —, %, /, %, <, >, <=, >=, ==, =, unary —,
and unary +

* Functions returning integers

¢ Comments

