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PREFACE TO THE SECOND EDITION

In preparing the Second Edition of this book I have been guided by
suggestions kindly made to me by users of the First Edition. There
appeared to be no compelling reasons for making major changes in the
introductory chapter concerned with linear transformations and matrices,
or in the second chapter, devoted to algebra and calculus of tensors.

In Chapter 3 some sections concerned with the uses of calculus of
variations in geometry have been expanded, some new illustrative material
introduced, and two new sections, on parallel surfaces and the Gauss-
Bonnet theorem, have been added. Chapters 2 and 3 in the present
edition contain adequate material for an introductory course on metric
differential geometry at the beginning graduate level or, for that matter,
at the upper-division undergraduate level.

Chapter 4, dealing with analytical mechanics, has been expanded. It
contains a distillation of the essentials of classical analytical mechanics
and potential theory, which, together with Chapter 5 on relativistic me-
chanics, should be, but often is not, a part of the equipment of every
student of mathematics. A number of illustrative examples that further
illuminate the theory have been introduced, and the discussion of non-
holonomic dynamical systems, of Hamilton’s canonical equations, and
of potential theory has been made more detailed.

The concluding chapter, devoted to mechanics of continua, was entirely
rewritten. It presents from a unified point of view and, it is hoped, with
sufficient clarity, the essentials of the nonlinear theory of mechanics of
deformable media. This chapter provides a common basis for a careful
development of the mathematical theories of elasticity, plasticity, hydro-
dynamics, and gas dynamics.

I. S. SOKOLNIKOFF

Pacific Palisades, California
January 1964 -



PREFACE TO THE FIRST EDITION

This book is an outgrowth of a course of lectures I gave over a period of
years at the University of Wisconsin, Brown University, and the Univer-
sity of California. My audience consisted, for the most part, of graduate
students interested in applications of mathematics, and this fact shaped
both the content and the character of exposition.

Because of the importance of linear transformations in motivating the
development of tensor theory, the first chapter in this book is given to a
discussion of linear transformations and matrices, in which stress is placed
on the geometry and physics of the situation. Although a large part of
the subject matter treated in this chapter is normally covered in courses
on matrix algebra, only a few of my listeners have had the sort of appre-
ciation of matrix transformations that an applied mathematician should
have.

The second chapter is concerned with algebra and calculus of tensors.
The treatment in it is self-contained and is not made to depend on some
special field of mathematics as a vehicle for the development of tensor
analysis. This is a departure from the customary practice of making
geometry or relativity a medium for the unfolding of tensor analysis.
Although this latter practice has a great deal to commend it because it
provides a simple means for motivating the study of tensors, it often
leaves an erroneous impression that the formulation of tensor analysis
depends somehow on geometry or relativity.

The remaining four chapters in this volume deal with the applica-
tions of tensor calculus to geometry, analytical mechanics, relativistic
mechanics, and mechanics of deformable media. Thus, Chapter 3 con-
tains a selection of those geometrical topics that are important in the
study of analytical dynamics and in such portions of elasticity and plas-
ticity as deal with the deformation of plates and shells. This chapter
provides a substantial introduction to the subject of metric differential
geometry. In Chapter 4, the essential concepts of analytical mechanics
are presented adequately and concisely. An introduction to relativistic
mechanics is contained in Chapter 5. The treatment there was inten-
tionally made very brief because some excellent books on relativity have
appeared recently and there seems little point in duplicating their contents.

: vii



viii PREFACE TO THE FIRST EDITION

The final chapter of the book is concerned with a formulation of the

essential ideas of nonlinear mechanics of eontinuous media in the most -

general tensor form. The classical linearized equations of elasticity and
fluid mechanics appear as special cases of the general treatment.

Perhaps the best evidence of the remarkable effectiveness of the tensor
apparatus in the study of Nature is in the fact that it was possible to
include, between the covers of one small volume, a large amount of
material that is of interest to mathematicians, physicists, and engineers.

A survey of applied mathematics as broad as that in this' book must
inevitably reflect contributions of so many scholars that it is futile to
attempt to assign proper credit for original ideas or methods of attack.
However, in the treatment of geometry, the influence of T. Levi-Civita
and A. J. McConnell, whose books (especially McConpell’s Applications
of the Absolute Differential Calculus) 1 used in My classes for many
years as required reading, is clearly discernible. Specific acknowledg-
ments to these and other authors are made in the appropriate places in
the text. However, my greatest debt is to my listeners, who have made
the job of writing this book seem both enjoyable and worth while.

It is a particular pleasure to single out among my listeners Mr. William
R. Seugling, Research Assistant at the University of California at Los
Angeles, who gave unstintingly of his time in following this book through
press.

1. S. SOKOLNIKOFF

Los Angeles, California
November 1951
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1

LINEAR VECTOR SPACES. MATRICES

1. Coordinate Systems

In order to locate a geometrical configuration a reference frame is
needed. Among the simplest reference frames used in mathematics are
the cartesian coordinate systems. Although the construction of such
coordinate systems is familiar to the reader from courses in analytic
geometry, we review it here in order to set in relief certain basic notions
that underlie the concept of coordinates covering the space of our physical
intuition. This review will pave the ground for some far-reaching generali-
zations of the concept of physical space, which we formulate in Sec. 4.

The cardinal idea responsible for the invention of coordinate systems
by Descartes is the identification of the set of points composing a straight
line with the totality of real numbers. It consists of the assumption that
to each real number there corresponds a unique point on a straight line,
and conversely.! :

We choose a straight line X and a point O on it (Fig. 1). This point
0, which we call the origin, divides the line into two half-rays. We

Q A P X

Fig. 1.

1 Although the idea of one-to-one reciprocal correspondence between the set of
points composing a line and the totality of real numbers had it roots in the Eudoxus
theory of incommensurables, dating back to the fourth century B.c., the invention of
coordinate systems did not come until the first part of the seventeenth century. It should
be also rioted that a rigorous analysis of the relation between linear sets of points and
real numbers was made only during the closing years of the last century, chiefly through
the efforts of Dedekind and Cantor. The concept of rigor depends entirely on conven-
tions dictated by prevailing tastes indicative of the degree of mathematical sophistication
in a given chronological period. Fruitful intuitive concepts are usually made rigorous
by (a) making explicit agreements as to which ideas fall into a category of definable
concepts and which do not, and (b) introducing into mathematical theories new modes
of reasoning which (one hopes) are free of contradiction.

1




2 LINEAR VECTOR SPACES. MATRICES [CHaAP. 1

X,

Fig. 2.

designate one of these as the positive and the other as the negative half-ray.
On the positive half-ray we choose a point 4 and call the length of the
line segment OA the unit length. We next coordinate points on X with a
set of real numbers in the following way: If P is any point on the positive
half-ray, we define a number  associated with P by the formula

r=—,

04

where OP and OA are lengths of the line segments OP and QA. The
number z is the coordinate of P. The coordinate z of the point Q on
the negative half-ray is defined by the ratio’

r= —=.
OA
We also assume that each real number = corresponds to one and only
one point on X. This association of the set of points on X with the set
of real numbers constitutes a coordinate system of the one-dimensional
space consisting of points on X.

The coordination of the set of points lying in the plane with sets of
real numbers is accomplished by taking two straight lines X; and X,
intersecting at a single point O (Fig. 2). On each line a coordinate system
is constructed as above, but the units on each line need not be equal.
A pair of such lines with unit points 4 and B marked on them form the
coordinate axes Xy, X, With each point P in the plane of coordinate
axes we associate an ordered pair of real numbers (z,, %) determined as
follows. The line through P drawn parallel to the X,-axis intersects the
X,-axis in a point M, with coordinate z,, and the line through P parallel
to the X;-axis cuts X, in a point M, with coordinate z,. The ordered
pair of numbers (2, %) are the coordinates of P in the plane, and the




Sec. 2] THE GEOMETRIC CONCEPT OF A VECTOR 3

one-to-one correspondence of ordered pairs of numbers with the set of
points in the plane X, X, is the coordinate system of the two-dimensional
space consisting of points in the plane.

The extension of this representation to points in a three-dimensional
space is obvious. We take three noncoplanar lines X, X, X intersecting
at the common point O. On each of these lines we establish coordinate
systems, and we associate with each point P an ordered triplet of numbers
(2, 25, ;) determined by the intersection with the axes of three planes
drawn through P parallel to the coordinate planes X, Xy, XX, and X, X,

The coordinate systems just described are called oblique cartesian
systems. Their construction makes use of the notions of length and
parallelism of ordinary Euclidean geometry, and the essential feature of
it is the concept of one-to-one correspondence of points with ordered
sets of numbers. In the event the coordinate axes X, X, X intersect
at right angles, the coordinate system is said to be orthogonal cartesian,
or rectangular cartesian. In applications, orthogonal coordinate systems
are generally used because the expression for the length d of the line

segment AB joining a pair of points with coordinates A(ay, a5, az) and
B(b,, b,, by) has the simple form

(1.1) d= \/(bl — @) + (by — a))* + (b3 — ag)®.

This is the familiar formula of Pythagoras. If the coordinate system is
oblique, the formula for the distance d is somewhat more complicated.
We will learn in Sec. 9 that one can pass from an orthogonal system of
coordinates to an oblique system by making a linear transformation of
coordinates. From this fact and from the structure of formula 1.1, it
would follow that the length of the line segment joining the points with
oblique coordinates (z;, ¥, z3) and (¥y, Y3, Ya) IS

(1.2) d =A/i',Zilgu(y.- — z)(y; — ;)

where the g;;’s are constants that depend on the coefficients in the above-
mentioned linear transformation of coordinates. We will be concerned
in the sequel with a detailed study of quadratic forms appearing under
the radical in formula 1.2 and with their bearing on metric properties of
space.

2. The Geometric Concept of a Vector

In the preceding section we recalled the construction of coordinate
systems in the familiar three-dimensional space where the formula of
Pythagoras is used to measure distances between pairs of points. Spaces
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(o]

Fig. 3.

where it is possible to construct a coordinate system such that the length
of a line segment is given by the formula of Pythagoras are called Euclidean
spaces. In these spaces the notion of displacement is fundamental. Thus,
if a point 4 is moved to a new position B, the displacement from 4 to B

can be visualized as directed line segment AB (Fig. 3). If B is displaced
to a new position C, the resultant displacement can be achieved by moving
the point 4 to the position C. These operations can be denoted sym-
bolically by the equation

—_ = —>
AB + BC = AC.

In the elementary treatment of vector analysis, directed line segments
are termed vectors, and they are usually denoted by a single letter printed
in boldface type. Thus the foregoing formula can be written

2:1) a4+ b=c,

—> —> —
where AB = a, BC = b, AC = c.

The rule for the composition of vectors indicated in Fig. 3 was first
formulated by Stevinus in 1586 in connection with the experimental
study of laws governing the composition of forces. It is known as the
parallelogram law of addition. The fact that many entities occurring in
physics can be represented by directed line segments, whose law of
composition is symbolized by formula 2.1, is responsible for the usefulness
of vector analysis in applications. We have here an instance of geometriza-
tion of physics which had no less important influence on the evolution
of this subject than the arithmetization of geometry had on the growth
of mathematical analysis. ;

From the idea of a vector as displacement determined by a pair of
points, we are led to conclude that two vectors are equal if the line seg-
ments representing them are equal in length and their directions parallel.
We shall denote the length of the vector a by the symbol [a]. We will
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assume that the concept of length is independent of the chosen reference
frame, so that the length |a| can be calculated (by Pythagorean formula)
from the coordinates of the initial and terminal points of a.

The negative of the vector a (written —a) is the vector whose length
is the same as that of a but whose direction is opposite. We define the
vector zero (written 0) corresponding to a zero displacement by the
formula

a4 (—a)=0.
From the geometrical properties of directed line segments we deduce that
@ a+b=>b+4 a.
(In (@a+b)+c=a+ (b+ o).
(III) If a and b are vectors, there exists a unique vector x such that
a=b+4 x.

We next define the operation of multiplication of vectors by real numbers.
If « is a real number the symbol «a = ax is a vector whose length is
|| |a] and whose direction is the same as that of a if « > 0, opposite to
aif a < 0. If « = 0, then xa = 0.

From this definition and from properties of real numbers we conclude
that

(Iv) (o + xz)a = ;2 + ®,a
Q%) o(a + b) =aa + ab
(VD ay(x8) = (x0)a, l.-a=a,

for any real numbers «; and «,.

We introduce next the definition of scalar product of two vectors, which
will provide us with a new notation for the length of a vector.

DEFRINITION. The scalar product of two vectors a and b, written a - b,
is a real number |a| |b| cos (a, b), where cos (a, b) is the cosine of the angle
between a and b.

Stated in the language of geometry, a - b is equal to the product of the
projection of a on b multiplied by the length of b. Thus the length of
the vector a is given by the positive square root of a-a. We also note
that a and b are orthogonal if, and only if, a-b = 0.

From this definition and the properties of real numbers we can easily
deduce the following theorems.

(VID) a-a=|[a2>0, unlessa=0.
(VIII) a-b=D>b-a.
(IX) a(b+c)=a-b+a-c
X) «(a+b) = (xa-b), where « is a real number.
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3. Linear Vector Spaces. Dimensionality of Space

We formulate next the definition of /inear dependence of a set of vectors
a;, ay, . . ., 4, Which will have an important connection with the concept
of dimensionality of space.

Linear Dependence. A set of n vectors ay, ay, . .., a, is called linearly
dependent if there exist numbers o, &, . . . , a,, not all of which are zero,
such that

8, + %8 + ¢ + o2, = 0.

If no such numbers exist, the vectors are said to be linearly independent.
Consider two vectors a and b which are like, or oppositely, directed
(Fig. 4). Then there exists a number k 7 0 such that

@3.1) b = ka.
If we set k = —a/f, we can write this equation as
xa + fb =0,

and hence two collinear (or parallel) vectors are linearly dependent since
neither « nor f is zero. We will say that the totality of vectors ka for
an arbitrary real k and a 5 0 forms a one-dimensional real linear vector
space. The reason for this terminology is clear since every point on the
line can be represented by some position vector ka.

If a and b are two noncollinear vectors, represented by directed line
segments with common origin O (Fig. 5), any vector ¢ lying in the plane
of a and b can be represented in the form

3.2 ¢ = ma + nb.

Formula 3.2 follows at once from the rule for addition of vectors and
from the definition of multiplication of vectors by scalars. Equation 3.2
can be rewritten in symmetric form to read

aa + fb + yc = 0,

which is the condition for linear dependence of the set of three vectors,
since not all constants in this formula vanish. The formula ma + nb,
where a and b are two linearly independent vectors and m and n are
arbitrary real numbers, defines a two-dimensional real linear vector space.
We see that in a two-dimensional linear vector space a set of three vectors
is always linearly dependent.

0 a b”

Fig. 4.
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Fig. 5. Fig. 6.

If we start with three noncoplanar vectors a, b, ¢ issuing from the
common origin O (Fig. 6), we can clearly represent every vector d in
the form

(3.3) d = ma + nb + pc,

from which it follows that among four vectors a, b, c, d there always
exists a nontrivial relation of the form

aa + fb + yc + od = 0.

Formula 3.3, for an arbitrary choice of real numbers m, n, p, defines a
three-dimensional real linear vector space. The terminal points of position
vectors d sweep out a three-dimensional space of points if m, n, and p are
allowed to range over the entire set of real numbers. Ina three-dimensional
linear vector space every set of four vectors is linearly dependent. We
will make use of the connection of the number of linearly independent
vectors with the dimensionality of space to formulate the concept of
dimensionality of a linear vector space of n dimensions.

The vectors a, b, and ¢ in (3.3) are called base or coordinate vectors,
and the numbers m, n, and p are the measure numbers or components of
the vector d. Once a set of base vectors is specified, every vector is
determined uniquely by a triplet of measure numbers.

A set of three mutually orthogonal vectors in a three-dimensional
space is obviously linearly independent, and if we choose as our coordinate
vectors three mutually orthogonal vectors a;, as, a;, each of length 1,
the resulting set of base vectors is said to be orthonormal.

We can visualize a set of orthonormal vectors directed along the axes
of a suitable rectangular cartesian reference frame; in this case every
vector x has the representation

X = 7;8; + %,8; + 32,



