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PREFACE TO THE THIRD RUSSIAN
EDITION

IN THs cdition the book has been considerably augmented and revised.
with the assistance of L. P. Pitaevskii throughout.

New sections have been added on the magnetic properties of gases, the
thermodynamics of a degencrate plasma, liquid crystals, the fluctuation
theory of phase transitions of the second kind, and critical phenomena.
I'he chapters on solids and on the symmetry of crystals have been substan-
tially enlarged, in particular by a fuller account of the theory of irreducible
representations of space groups as applied to the physics of the crystal
state. The sections on the fluctuation- dissipation theorem have been revised
and extended.

Some sections have been removed from the book, dealing with the theory
of quantum liquids and the related theory of almost ideal degenerate gases.
The physics of quantum liquids, which was founded and largely developed
by the pioneering experiments of P. L. Kapitza and the theoretical work of
Landau himself, has now become a wide subject whose significance goes far
beyond its original concern, the liquid helium isotopes. An account of the
theory of quantum liquids must now occupy its rightful place in even a
general course of theoretical physics, and the few sections given to it in the
carlier editions of this book are insufficient.

They will appear, in a considerably expanded form, in another volume of
this course. now being prepared by Pitaevskil and myself, which will also
give a detailed treatment of the Green’s function method and the diagram
technique, which have largely determined the development of statistical
physics in the last 20 years. The transfer of these (and some other) topics
to a separate volume is dictated not only by the fact that their inclusion in
the present one would make it too large and would considerably alter its
wholc character. There is also the reason that such topics are essentially
akin to hydrodynamics and macroscopic electrodynamics; for example,
in presenting the microscopic theory of superconductivity it is convenient
to make vse of the known macroscopic theory of this phenomenon. For this
reason, ithe new volume will stand as one of the course, after Mcchanics
and Flecirodynamics of Continuous Media.

The first version of this book (which included only classical statistical
physics) appeared in 1938. The reader of today may be surprised to find

xiii



XIv Preface to the third Russian edition

that the use of the general Gibbs method in statistical physics even in the
1930s called for reasoning such as is given in the extracts (reproduced below)
from the preface to that book. Perhaps it was just in the development of the
exposition of general principles and numerous applications of statistical
physics that Landau most showed his astonishing breadth of grasp of the
whole subject, his astonishing ability to discern the most direct and effective
way of deriving every result of the theory, whether major or minor.

Lastly, on behalf of L. P. Pitacvskil and myself, may I sincerely thank
1. E. Dzyaloshinskii, I. M. Lifshitz and V. L. Pokrovskii for many discussions
of matters arising in the revision of this book.

Moscow B. M. LirsHITZ
May 1975



FROM THE PREFACES TO PREVIOUS
RUSSIAN EDITIONS

IT 15 a fairly widespread delusion among physicists that statistical physics
is the least well-founded branch of theoretical physics. Reference is generally
made to the point that some of its conclusions are not subject to rigorous
mathematical proof; and it is overlooked that every other branch of theo-
retical physics contains just as many non-rigorous proofs, although
these are not regarded as indicating an inadequate foundation for such
branches.

Yet the work of Gibbs transformed the statistical physics of Clausius,
Maxwell and Boltzmann into a logically connected and orderly system.
Gibbs provided a general method, which is applicable in principle to all
problems that can be posed in statistical physics, but which unfortunately
has not been adequately taken up. The fundamental inadequacy of the
majority of existing books on statistical physics is precisely that their authors,
instead of taking this general method as a basis, give it only incident-
ally.

Statistical physics and thermodynamics together form a unit. All the
concepts and quantities of thermodynamics follow most naturally, simply
and rigorously from the concepts of statistical physics. Although the
general statements of thermodynamics can be formulated non-statistically,
their application to specific cases always requires the use of statistical
physics.

We have tried in this book to give a systematic account of statistical
physics and thermodynamics together, based on the Gibbs method. All
specific problems are statistically analysed by general methods. In the proofs,
our aim has been not mathematical rigour, which is not readily attainable
in theoretical physics, but chiefly to emphasise the interrelation of different
physical statements.

In the discussion of the foundations of classical statistical physics, we
consider from the start the statistical distribution for small parts (sub-
systems) of systems, not for entire closed systems. This is in accordance with
the fundamental problems and aims of physical statistics, and allows a com-
plete avoidance of the problem of the ergodic and similar hypotheses, which
in fact is not important as regards these aims.

An ideal gas is regarded as a particular case from the standpoint of general

XV



xvi Fromi the prefaces 1o previous Russian editions

methods, and we have therefore not described the Boltzmann micthod as
such. This method cannot be independently justified; in particular, the use
of a priori probabilities is difficult to justify. The Boltzmann expression for
the entropy of an ideal gas is derived from the general formulae of the Gibbs
method.

L. D. Lanpau
1937-9 E. M. LiFsHITZ



NOTATION

OPERATORS are denoted by a circumflex.

Mean values of quantities are denoted by a bar over the symbol or by ancle
brackets (see the footnote after (1.5)).

Phase space

p. q generalised momenta and coordinates

dpdg = dp,dp, ... dp,dq, dg, ... dg; volume element in phase space (with s
degrees of freedom)

dI' = dp dq/(2zthy

J.' ... dI " integral over all physically different states

Thermodynamic quantitics

T temperature

Vv volume

P pressure

E energy

S cntropy

W = E+PF heat tunction

= E—TS free energy

@ - E—TS+PV thermodynamic potential
£ = — PV thermodynamic potential
C,, C, specific heats

¢p. ¢, molecular specific heats

N number of particles

chemical potentia!l
surface-tension coefficient
area of interface

v R

In all formulae the temperature is expressed in energy units; the method of con-
verting to degrees is described in footnotes to §§ 9 and 42.

References to other volumes in the Course of Theoretical Physics:

Mechanics = Vol. 1 (Mechanics, third English edition, 1976).

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition, 1975)

Quantum Mechanics = Vol. 3 (Quantum Mechanics, third English edition, 1977).

RQT = Vol. 4 (Relativistic Quantum Theory, Part 1, English edition, 1971).

Elasticity = Vol. 7 (Theory of Elasticity, second English edition, 1970).

Electrodynamics = Vol. 8 (Electrodynamics of Continuous Media, English
edition, 1960).

All are published by Pergamon Press.
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CHAPTER 1

THE FUNDAMENTAL PRINCIPLES
OF STATISTICAL PHYSICS

§ 1. Statistical distributions

Statistical physics, often called for brevity simply statistics, consists in the
study of the special laws which govern the behaviour and properties of mac-
roscopic bodies (that is, bodies formed of a very large number of individual
particles, such as atoms and molecules). To a considerable extent the general
character of these laws does not depend on the mechanics (classical or quan-
tum) which describes the motion of the individual particles in a body, but
their substantiation demands a different argument in the two cases. For con-
venience of exposition we shall begin by assuming that classical mechanics is
everywhere valid.

In principle, we can obtain complete information concerning the motion of
a mechanical system by constructing and integrating the equations of motion
of the system, which are equal in number to its degrees of freedom. But if we
are concerned with a system which, though it obeys the laws of classical me-
chanics, has a very large number of degrees of freedom, the actual application
of the methods of mechanics involves the necessity of setting up and solving
the same number of differential equations, which in general is impracticable.
It should be emphasised that, even if we could integrate these equations in a
general form, it would be completely impossible to substitute in the general
solution the initial conditions for the velocities and coordinates of all the par-
ticles.

At first sight we might conclude from this that, as the number of particles
increases, so also must the complexity and intricacy of the properties of the
mechanical system, and that no trace of regularity can be found in the behav-
iour of a macroscopic body. This is not so, however, and we shall see below
that, when the number of particles is very large, new types of regularity ap-
pear.

These statistical laws resulting from the very presence of a large number of
particles forming the body cannot in any way be reduced to purely mechani-
cal laws. One of their distinctive features is that they cease to have meaning
when applied to mechanical systems with a small number of degrees of

2 1



2 Fundamental Principles of Statistical Physics

freedom. Thus, although the motion of systems with a very large number of
degrees of freedom obeys the same laws of mechanics as that of systems con-
sisting of a small number of particles, the existence of many degrecs of free-
dom results in laws of a different kind.

The importance of statistical physics in many other branches of theoretical

- physics is due to the fact that in Nature we continuzlly encounter macroscop-
ic bodies whose behaviour can not be fully described by the methods of
mechanics alone, for the reasons mentioned above, and which obey statistical
laws.

In proceeding to formulate the fundamental problem of classical statistics,
we must first of all define the concept of phase space, which will be constantly
used hereafter.

Let a given macroscopic mechanical system have s degrees of freedom:
that is, let the position of points of the system in space be described by s co-
ordinates, which we denote by ¢;, the suffix 7 taking the values 1, 2, ..., s.
Then the state of the system at a given instant will be defined by the values at
that instant of the s coordinates g; and the s corresponding velocities g;. In
statistics it is customary to describe a system by its coordinates and momenta
pi» not velocities, since this affords a number of very important advantages.
The various states of the system can be represented mathematically by points
in phase space (which is, of course, a purely mathematical concept); the co-
ordinates in phase space are the coordinates and momenta of the system con-
sidered. Every system has its own phase space, with a number of dimensions
equal to twice the number of degrees of freedom. Any point in phase space.
corresponding to particular values of the coordinates ¢; and momenta p; of
the system, represents a particular state of the system. The state of the system
changes with time, and consequently the point in phase space representing
this state (which we shall call simply the phase point of the system) moves
along a curve called the phase trajectory.

Let us now consider a macroscopic body or system of bodies, and assume
that the system is closed, i.e. does not interact with any other bodies. A part
of the system, which is very small compared with the whole system but still
macroscopic, may be imagined to be separated from the rest; clearly, when
the number of particles in the whole system is sufficiently large, the number
in a small part of it may still be very large. Such relatively small but still
macroscopic parts will be cailed subsystems. A subsystem is again a mechani-
cal system, but not a closed one; on the contrary, it interacts in various
ways with the other parts of the system. Because of the very large number of
degrees of freedom of the other parts, these interactions will be very complex
and intricate. Thus the state of the subsystem considered will vary with
time in a very complex and intricate manner.

An exact solution for the behaviour of the subsystem can be obtained only



