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PREFACE

This volume contains most of the invited lecture series presented
at the Nordic Summer School in Mathematics held at the University of
Joensuu, June 1 -12, 1981. The Summer School was devoted to the value
distribution theory, the main emphasis being in several variables. The
invited speakers were, in alphabetical order, W. K. Hayman, O. Lehto,
S. Rickman, B. Shiffman and W. Stoll. The lecture series given by O.
Lehto has been published elsewhere; therefore it is replaced here by

an introduction to Nevanlinna theory by S. Toppila.

The volume is dedicated to the memory of Rolf Nevanlinna, by the
consent with all authors. Let it be remarked here that Joensuu is the

city of birth of Rolf Nevanlinna.

We wish to thank the Nordiska Forskarkurser whose financial support
has been decisive to continue the tradition of Nordic Summer School in
Mathematics. We also wish to thank the staff of the Department of
Mathematics and Physics in the University of Joensuu for their co-oper-
ation in organizing this meeting and preparing this volume. Finally,
our gratitude is directed to Springer-Verlag for their willingness to
publish the main lectures of the Summer School.

Joensuu and Helsinki, November 1982,

Ilpo Laine Seppo Rickman
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AN INTRODUCTION TO NEVANLINNA THEORY

Sakari Toppila

1. Introduction

Let f be meromorphic in |z| < R, 0 < R < », For any complex value
and any r, 0 < r < R, we denote by n(r,a) = n(r,a,f) the number of
the a-points of £ 1lying in |z| < r when the multiple roots of the
equation f£f(z) = a are counted according to their multiplicity. We

write

&

N(r,a) = N(r,a,f) = J n(t.a) - n(0:2) gt + n(o,a)logr
0

o 005 < R We -set log+x = max(0,logx) for x > O,

-1

2m A
mer a) = mie, 8 5= é% J log' |£(re™®) - a| 'do

0
&E . a ', and

27 ¥
mix,£) = mixr,=) = mlx,=;£) = é% J log+]f(relw)|dw
0

for 0 < r < R. The ¢hardcteristic function T ‘of « £ jis definedsbw
)= Llx, ) =nmiaey o £)1 AN, o)

gor 0 <-r. < R.

The Laurent expansion

e P p+1
£(2) a = cla)z- # cp+1z +

where c(a) # 0, defines c(a) for any finite complex value a, if £

is nonconstant.

2. The first main theorem

Let f be a nonconstant meromorphic function in [z| < R, 0 < R < =,
Let bq be the poles and ap the zeros 'of f. Let ;0 < r < R, be"

chosen such that f has no poles or zeros on |z| = r. We write
r{z = b.) r2 - az
B(z) = f(z)( ﬂ —H-) m L .
b ler vt =B z/ba |<r r(z - a)
q P p
Then log |F(z)| is harmonic in |z| < r, and we deduce from the Gauss

mean value theorem that



2

2m :
log |F(0)]| = 51? J log |F(re™®) |do. (21}
0
Since
log |F(0)| = 1log |c(0)| + (n(0,0) - n(0,»))logr
+ ) log |r/a_| - ) log |r/b_|
0<|a_|<r p 0<|b_|<r a
p q
="log |e(0)| + N(r,0) - N(r,=)
ena £ (z)| = |F(2)| on |z| = r, we get from (2.1)

log |c(0)| + N(r,0) - N(r,>)
1 50 + i + i, -1
e (169 | fi(xe’ *) | = log |£(re=y| ")de = m(r,») = m(x,0) (2.2)
i
From the continuity of the terms in (2.2) we deduce that (2.2) holds

also in the case that f has a finite number of zeros or poles on |z]| =

s
Let a be a finite complex value. Applying (2.2) to the function
f(z) - a we get

log |c(a)| + N(r,a,f) - N(r,»,f) = m(r,», £ - a) - m(r,a,f). (2.3)
Since

log'|f - a| < log™|£]| + log'|al + log 2
and

log|£f]| < log*|f - a|] + log'|a] + log 2,
we deduce after integration that

lm(x,=,£) - m(r,=,f - a)| < log' |a| + log 2.
This combined with (2.3) yields

N(r,a) + m(r,a) = N(r,») + m(r,») + @(r,a) (2.4)
where

lo(r,a)| < log'|a] + log2 + |log|c(a)]|].

We have proved the following result.
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First main theorem. Let f be a nonconstant meromorphic function in

[z < Riwhere '0°¢ R-% &, Then for any  t, 0 < r <R, and:for: anyfi=

nite complex value a,
m(rya) + N(r,a) = T(r,f) + @(r,a)
where

lo(r,a)| < log'|a| + |log|c(a)]|]| + log 2.

3. Some applications of the lemma on the logarithmic derivative

For the logarithmic derivative of a function meromorphic in the plane

Nevanlinna [3] has proved the following

Lemma A. Let f be a nonconstant meromorphic function in the plane.
Then

mir, £'/T) = 0(log(eT(xr,£))) (3:1)

as r » © outside an exceptional set E of finite linear measure. If
f has finite order then (3.1) holds as, r > « through all positive

real values.

Let f be a transcendental meromorphic function in the plane and
let a1,a2,...,aq be g > 2 different finite complex values. We choose
g4, 0 - d < 1/2, such that ]ak - ap| S 2d - 1fN T x k. <pc g GWeEet

q
L5 (- Tl T (S G A . TR ak).
k=1
Then
¥ - (1/£' (2)) (' (2) /F (2))
S v oiio— * 4 5z z
R LY
and we deduce that
m(r, cf =) < m(r,0,£') + m(xr,F'/F) (3.2}
k=1 %

for all x>0,

We have
% log+ ']ﬁ = % lOg+ f(z()i/- 3 * . log (q/d) . (353
k=1 % 1 k=1 k
For any fixed 2z, there exists at most one a such that
[£(z) - ak| < id/a, (3.4)

anc: 1f (3.4) holds for Kk -then



|£(z) - ap] = ]ak - apl =id/g.>id

for p + k, and

+ a/
log T“""%?‘“—T
521 £iz) ag

A

4 1
2oy £lz) = ay

+ 1 1
log l % T2y —a Z "——_—?__‘l
s=1 £(z) ag s*k £(z) ag

A

log”| ? fTETl:——*

~ | + log2 + log® < By
s=1 S

d

A

Combining this estimate with (3.3), we deduce that

+ 1 + 1
log < log' | e 4 g % 2VIOgiaial,. . BB
kg1 2ie) il ™ k§1 ciRk. = Ay

Integrating the estimate (3.5), we get

%m(r,ak,f) < m(r, ? ﬁ) + (g + 2)log(g/d)
k=1 k=1 k

for all r > 0, and we deduce from (3.2) that

k§1m(r,ak,f) < m(r,0,£') + m(x,F'/F) + (q + 2)log(q/d) (3.6)
For=all pogitive  r.

We write

N, (r,f) = 2N(r,=,f) - N(xr,o,fl) + N(x,0,£'), (3:7)
Since

m(r,f') ;m(rrf) . m(r,f'/f),
we get from the first main theorem

m(r,O,f') # N(r,oo,f') iF m(rlf') Bt N(rlolf') * 0(1)

A

Nipm, £ by f)=a N, 0, £ = 2N (r,=; f})

+ 2Nt rree f)en (e £ RN 4 D (),

A

20 (r £y = mlr, £) - N1(r,f) +imr TN 0 (3.8)
We denote by S(r,f) any function which satisfies
S(r,£) = 0llog(xTir,£)))

as r » » without restriction if the order of £ is finite, and as

r » ® outside an exceptional set of finite linear measure if the order

g




of i f ds infinite. Since

PATE) o= O (TR ) 7 as  irir o,

we deduce from Lemma A that

file Bl /B) + mile, £ /f) = S(r,f). (3.9)
This implies that if we write Aoy = B we get from (3.6) and (3.8)

g+

} m(r,a,,f) < 2T(x,f) - N,(r,f) + S(r,f). (3.0

k=1 -

Here N1(r,f) > e for r >.1. The formula (3710} is the second main
theorem for functions meromorphic in the plane.
For any complex value a, the Nevanlinna deficiency is defined by

s 3 y e 2 mir,a) =94 N(r,a)
(a) §(a,f) l;m+12f T, £) 1 im+sgp T, )’
and the Valiron deficiency is defined by
A Y Ey A m(r,a) _ Sy : N(r,a).
(a) g sy e R e T
It follows from (3.10) that
g+1 q+1 m(r,ak,f) s (r', £)
R M s g gl
k=1 k=1
and since
i E S{r,t)
lim inf 74— = 0 (3019
R £ £ TE 5
we deduce that
g1
) é(ak) = 2. (3.12)
k=1

This holds for any choice of g + 1 different values ayr and we deduce
that the set of values a for which &6(a) > 0 is a countable set and
that

Syt 2 (3.13)
§(a)>0

It follows from Lemma A that
M) < milx, £) k- miley £ AE)Y <omlr,£) + S{x; £}, (3.14)
1, we deduce that

and since N(r,«,f') eNtnyorT) S for T

A
Ihv

e E ) Dmle, B e Sy F),

This implies together with (3.6) and (3.9) that for any q different



finite values a, we have
Wil G0 ) F BGORE TOomiE 0,8') ) SinE)
k=1 T(r,f) - T(r,f) 3 T(rlf)T(rlf') T(rrf)
St cmibr, 0,£") Silrinb)
s a8 e, T, 0" £owict
If the order of £ 1is finite then
S, ) 3
T A) 0 “iag dEpiior e,
and we get from (3.15)
% m(r,ak,f)
§{a Jf) < 1im inf R
k=it v e kpt o e
e m(r,0,f') _ '
< 24imdnf b v i 20(0-E%)0 (3416)
r > ©
and
’ 05 EN) !
A(a1,f) =12 l;m»sip T(c, ') 2005 ) (301

iLE the order-6f £ is finite or infinite, we get-from i(3.15) and (3.11)

; m(x,0,f" '
k§16(ak,f) < 2 1im sup —W = 2A0(0,£"). (3.18)
= i 4 > 0o

Since N(r,f) < N(r,£") for r > 1, we deduce from (3.14) that

e, £ ) 2 mlr, ) 7 m{x,;£") mir,£) & S{xyE)
e, EY) = N(z,£') tm(r,£") = N(r, £} +m(r,£%) T(X, 8y t8iv; B)

(3519

ds implies that if the order of  f 'is finite then

HenEl)

A

S (=, £) (3.20)

and

&, £7) A=, £) 5 (2= 205)

A

and if the order of f is finite or infinite then we still have

§(=,£') < A(,£). : (3.22)

Il A

Combining the estimates (3.16) - (3.22), we get the following result
for the connection between the deficiences of f and f'.

Theorem 1. Let f be a transcendental meromorphic function in the
plane. If the order of £ is finite, then

gi(eyie ) <0 (9, E) (3.23)



Alo,£') < Alw,£), (3.24)
J 8(a,f) < 26(0,£') (3.25)
ato

and! for any finite a
Ala,f) = 2A(0,E£%) . (3.26)

If f has infinite or finite order, then

S, £') < Al=,£f) (3:.27)
and
Z piliayt) £ 2 A(0; £2) C (3::28)
afw®

4. Some examples

We set r = s = d Beoone 2 ;. weichoose ¥ and s s bein
o o 8, and fo = n Rt g

an integer, such that

T = Enp(s. .1 ) (4.1)
and
She
log(sn/rn) 2 BEy > log((sn - 1)/rn). (4.2)
We set
flz) = } (z/rn)
n=1
and
% & =] n
Ez) = J ELEYAE =iz (] 4 s ARE ey
0 n=1
We have

o s
£i(z) = (1/2) ] s (z/r ) ",

o f
For large values of n, we choose tn < tﬁ S Rn < Rﬁ such that
S s
Wb Ve ) "os s e ) o
Biten/z ) D = goome ter/r. ) P,
oo o i o ey | Ve B o 1o
n Sn-1

S
(100/4¢1 + 8 J) (R /x ) A R PR T



and,
% Sn-1
1A s B VR /v ) = 0 S e, ) (RA/E 0D T

We denote by dk(z), ki=1,24.+., functions which satisfy ]dk(z)| <
3/50 for all finite 2. If R! < fz| < R ,qr We have

S
F(z) = (1 + d,(2))(2/(1 + s)) (z/x)) ™. (4.3)

Similarly, we have

S
£(2) ¢+ (1 d, (20 (z/x,) ° : : (4.4)
for oz tzh < t$+1, and
S
£ (g} + (1 agte)) (a/z) (Bin) (4.5)

1
for t' < [z [i< Sih
In Lemma 1 we give a function which does not satisfy (3.26).

Lemma 1. Let g(z) = F2(z)/f(z). Then “A(0,g9) ==1i-but A(0sg )= .0
Proof. We write

Filz) £ (%)
fz(Z)
ghen gl!(z) = F(2)(2 = hi(z)).

h(z) =

From the choice of t! and (4.5) we deduce that

n+1
*n
] 1 ]
|£1(2) | 2 (49/50) ((100s)/t!, ) (£}, ./ )
oo [z = t +q+ and we get from (4.3) and (4.4)
[h(z)| > 98(49/50) (s /(1 + s )) (50/51)° > 10 (4.6)
for  |z|' = t!,,- From the choice of R and (4.3) we deduce that

S
n
|Piz)| 2 98(R /(1 + 8 })IR /X))

on- lz| = R , and we get from (4.4) and (4.5)

fh=z)yl =10 (4.7)
for |z| = R . Since h has no zeros in t; < |z| < R, it follows
from (4.6), (4.7) and the minimum principle that (4.7) holds for all
z lying on t! < lal = R.siFori Rl oz B < t .4 ‘We get from (4,3) -
(4.5)

A

Ih(z)| < (51/50)%(s_/(1 + sn))(50/49)2 11/10. (4.8)

IR BT VA O



Since g' = F(2 - h), it follows from (4.3), (4.7) and (4.8) that
mi{x;0,9') =0 (4.9)

gor “R' < r <t and -for-= &' B <R s
N _oitehi 2 gl i T

From the choices of tn and tﬁ we get
i = sn_1)log(tn/tn) = 2 log 100
which implies together with (4.1) and (4.2) that

s, 1og(tr'1/tn) <20, ] (4.10)

Similarly, we get

S, 1og(Ré/Rn) < 205 (4: 119
It follows from (4.3) - (4.5) that
TiAr ,0') = 0(8 ) A8 n + .=, (4.12)
From the first main theorem we deduce that if tn Sr. S tﬁ, then
mir,0.g") = Tr,g%) = Nixr,0,g9') +:0(1)
= Bleiagt) = ML B.9') + D1
; T(tr'lrg') B T(tnlg') » m(tnlorg') FH0CL)T
and since m(tn,O,g') =0 and T is an increasing and convex function

of logr, we get from (4.10) and (4.12)

T(4rn,g')log(tg/tn)

m(r,0,g') < O(1) + T o R £ e 0(1) (4.13)

< r < t). Similarly, we see from (4. 19)that (4.13) holds for

TR
Y n

n
Combining the estimates on m(r,0,g'), we deduce that

m(r,0,0') ¢.0(1)  as ‘¥ * », (4.14)

and we get A(0,g') = 0.
Suppose that |z| = R . From (4.3) we deduce that

logM(Rn,F) = Ee sn_1)1oan < (1 + o(1))sn_1logrn, (4.15)

and from (4.4) and the choice of Rn we get

n

S
log |[£(z)| = (1 + o(1))log(R /xr ) = > (1 + o(1))log(s /s _,). (4.16)
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These estimates imply together with (4.1) and (4.2) that

figte) ] <1 (4.17)
onl iz |5 R~ and that

T(Rn,F) = o(T(Rn,f)) agiion oy, (4.18)
Since

T(r,£) = m(r,f) = m(r,F2(£/F?))
=iz, 1/g) * 2m(r,F) £ mir,0.9) + 2T(r:F},
we get from (4.18)

m(Rn,O,g)

v

T(R,£) - 2T(R,F) > (1 + o(1))T(R_,£)

(1 0(1))T(Rn,g) a5 N Ry (4.19)

and we deduce that A(0,g) = 1. This completes the proof of Lemma 1.
The following lemma gives a function which does not satisfy (3.25).

Lemma 2. Let g1(z) 1/F(z). Then 6(0,g1) = i but 6(0,gi) = 0.
-(1/g(z)), we see from (4.17) that §&(0,9j) = 0.

Since n(r,O,g1) = 0, we have 6(0,g1) = 1. Lemma 2 is proved.

n

Proof. Since gi(z)

The following lemma gives a function which does not satisfy (3.24).

Lemma 3. If a finite value a is chosen such that A(a,F) = 0, then
the function g2(z) = 1/(a - F(z)) satisfies A(m,gz) = 0 and A(w,gé) =
14

Proof. Since A(a,F) = 0, we have A(w,gz) = 0. Since

g3(z) = £(z) (a - F(z)) ™2
and
m(r,f) < m(r,gé) + 2m(r,a - F),

we deduce from (4.18) that

m(Rn,gé)

v

m(R ,f) - 2m(R_,a - F) > (1 + o(1))T(R_,f)

(st 0(1))T(Rn,gé) as-n ro.

This shows that A(w,gé) = 1 which completes the proof of Lemma 3.
Now we shall construct a function 93 which does not satisfy (3.23).
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From the choice of tp and té we deducesthat: |£'(z) | =1

té_1 < el = tp' and we deduce from (4.1) and the choice of tp

s log r

p-1 p Gl 0(1))T(tp,f') Salat 0(1))N(tp,0,f )

(e o(1))n(té_1,0,f')log R

This implies that for all large p, say for p P

4

v

(@]

n(té_1,0,f') = n(tp,o,f') = (o l))s as p + .

p=1
We choose a sequence kp of positive integers such that
s SHle S nd s

p/P < Kp p/P

for any ' p, and a sequence ep, Ep 2O forsany by ep > A sas
is chosen such that the function

h,(z) = OZO e iz - t'))_kp

. pap_ - £ e
satisfies

T(r,h1) et o(1))N(r,m,h1) ast iy o
and

T(r,ha) e O o(1))N(r,W,hi) = Ce e AL

From (4.20) and (4.21) we deduce that
n(r,w,h;)

HT?TETfTT 0BG Ry (oo

which together with (4.23) implies that

T(r,ha)

We set g, = o h1. Since

Thr,£")

A

m(r,£f') .= m(r,gé Rl

1 m(r,gé) + m(r,ha) + log 2,

we get from (4.24)
m(r,gé) 2ol o1 T El)ns s o(1))T(r,gé)

as. r > o, which implies that d(w,gé) i [
From (4.21) and the choice of té we get for p > Py

T(rp,h1) > N(rp,w,h1) > (sp/p)log(rp/tp)

O(N(r,w,ha)) = o(N(r 0 £t o (e 8 )) Cag g >0l

on
that

(4.20)

(4.21)

piToey

(4.22)

(4.23)

(4.24)



