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Preface

This book provides an introduction to the structure and stability properties of
solutions of Volterra integral and integro-differential equations. It is primarily an
exposition of Liapunov’s direct method. Chapter 0 gives a detailed account of the
subjects treated.

To most seasoned investigators in the theory of Volterra equations, the study
centers in large measure on operator theory, measure and integration, and general
functional analysis. This book, however, is aimed at a different audience. There
are today hundreds of mathematicians, physicists, engineers, and other scientists
who are well versed in stability theory of ordinary differential equations on the
real line using elementary differentiation and Riemann integration. The purpose
of this book is to enable such investigators to parlay their existing expertise into a
knowledge of theory and application of Volterra equations and to introduce them
to the great range of physical applications of the subject.

Stability theory of Volterra equations is an area in which there is great activity
among a moderate number of investigators. Basic knowledge is advancing rap-
idly, and it appears that this area will be an excellent field of research for some
time to come. There are elementary theorems on Liapunov’s direct method
waiting to be proved; really usable results concerning the resolvent in noncon-
volution cases are scarce; much remains to be done concerning the existence of
periodic solutions; good Liapunov functionals have abounded for 10 years and
await development of general theory to permit really effective applications; and
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X Preface

there is a great need for careful analysis of specific simple Volterra equations as a
guide to the development of the general theory.

I am indebted to many for assistance with the book: to the editors at Academic
Press for their interest; to Professor Ronald Grimmer for reading Chapters 1 and
2; to the graduate students who took formal courses from Chapters 1-6 and
offered suggestions and corrections; to Professor John Haddock for reading
Chapters 3—8; to Professor L. Hatvani for reading Chapters 5 and 6; to Mr. M.
Islam for carefully working through Chapters 3 and 5; to Professor Wadi
Mahfoud for reading Chapters 1-6; to my wife, Freddd, for drawing the figures;
and to Shelley Castellano for typing the manuscript. A special thanks is due
Professor Qichang Huang for reading and discussing the entire manuscript.
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Introduction
and Overview

0.1. Statement of Purpose

Although the theory of Volterra integral and integro-differential equations
is old, well developed, and dense in the literature and in applications, we
have been unable to find a systematic treatment of the theory’s basic structure
and stability properties. This book is a modest attempt to fill that void.

There are, of course, numerous treatments of the subject, but none seem
to present a coherent set of results parallel to the standard treatments of
stability theory given ordinary differential equations. Indeed, the student
of the subject is hard put to find in the literature that the solution spaces of
certain Volterra equations are identical to those for certain ordinary differ-
ential equations. Even the outstanding investigators have tended to deny
such connections. For example, Miller (1971a, p. 9) states: “While it is true
that all initial value problems for ordinary differential equations can be
considered as Volterra integral equations, this fact is of limited importance.”
It is our view that this fact is of fundamental importance, and consequently,
it is our goal to develop the theory of Volterra equations in such a manner
that the investigator in the area of ordinary differential equations may
parlay his expertise into a comprehension of Volterra equations. We hasten
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to add that there are indeed areas of Volterra equations that do not parallel
the standard theory for ordinary differential equations. For a study of such
areas, we heartily recommend the excellent treatment by Miller (1971a).

0.2. An Overview

It is assumed that the reader has some background in ordinary differential
equations. Thus, Chapter 1 deals with numerous examples of Volterra
equations reducible to ordinary differential equations. It also introduces the
concept of initial functions and presents elementary boundedness results.

In Chapter 2 we point out that the structure of the solution space for the
vector system

X(1) = A(OX(1) + fo C(t, 5)x(s) ds + f(z) 0.2.1)
is indistinguishable from that of the ordinary differential system
X'(t) = B(t)x(t) + g(1). (0.2.2)

In fact, if Z(t) is the n x n matrix satisfying
Z'(t) = A@)Z(t) + f(; C(t,5)Z(s)ds, Z00)=1, (0.2.3)

and if x,(t) is any solution of (0.2.1), then any solution x(t) of (0.2.1) on [0, o)
may be written as

x(1) = Z(O)[x(0) — x,(0)] + x,(1). (0.2.4)

Moreover, when A4 is a constant matrix and C is of convolution type, the
solution of (0.2.1) on [0,00) is expressed by the variation of parameters
formula

x(t) = Z(1)x(0) + f; Z(t — s)f(s)ds,

which is familiar to the college sophomore.

Chapter 2 also covers various types of stability, primarily using Liapunov’s
direct method. That material is presented with little background explanation,
so substantial stability results are quickly obtained. Thus, by the end of
Chapter 2 the reader has related Volterra equations to ordinary differential
equations, has thoroughly examined the structure of the solution space,
and has acquired tools for investigating boundedness and stability properties.
The remainder of the book is devoted to consolidating these gains, bringing
the reader to the frontiers in several areas, and suggesting certain research
problems urgently in need of solution.
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Chapter 3 outlines the basic existence, uniqueness, and continuation
results for nonlinear ordinary differential equations. Those results and
techniques are then extended to Volterra equations, making as few changes
as are practical.

Chapter 4 is an in-depth account of some of the more interesting historical
problems encountered in the development of Volterra equations. We trace
biological growth problems from the simple Malthusian model, through the
logistic equation, the predator—prey system of Lotka and Volterra, and on
to Volterra’s own formulation of integral equations regarding age dis-
tribution in populations. Feller’s work with the renewal equation is briefly
described. We then present many models of physical problems using integral
equations. These problems range from electrical circuits to nuclear reactors.

Chapters 5-8 deal exclusively with Liapunov’s direct method. Indeed,
this book is mainly concerned with the study of stability properties of
solutions of integral and integro-differential equations by means of Liapunov
functionals or Liapunov—Razumikhin functions.

Chapter 5 deals with very specific Liapunov functionals yielding necessary
and sufficient conditions for stability.

Chapter 6 is a basic introduction to stability theory for both ordinary
differential equations and Volterra equations. Having shown the reader in
Chapters 2 and 5 the power and versatility of Liapunov’s direct method, we
endeavor in Chapter 6 to promote a fundamental understanding of the
subject. The basic theorems of ordinary differential equations are presented,
proved, and discussed in terms of their history and their faults. Numerous
examples of construction of Liapunov functions are given. We then show how
Liapunov functionals for Volterra equations can be constructed in terms of
extensions of the idea of a first integral. Theorems are proved, and examples
are given concerning stability, uniform stability, asymptotic stability,
uniform asymptotic stability, and perturbations.

Chapter 7 deals with perturbations, the construction of collections of
Liapunov functionals, and it contains a converse theorem of Miller on the
existence of Liapunov functionals.

Chapter 8 is a brief treatment of general functional differential equations
involving both bounded and unbounded delays. A main feature is the
existence and stability theory synthesized and improved by Driver for
functional differential equations with unbounded delay. It also contains a
brief account of stability and limit sets for the equations

x* =.F(,;) (0.2.5)
and
x' = f(oc). (0.2.6)
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Much effort is devoted to certain recurring problems in earlier chapters.
These may be briefly described as follows:
(i) If V(t,x) is a scalar function whose derivative along solutions of

x' = F(t,x) (0.2.7)

is negative for |x| large, then it is frequently possible to conclude that solutions
are bounded. Such results are of great importance in proving the existence
of periodic solutions. We survey literature that tends to extend such results
to Volterra and functional differential equations.

(i) If V(t,x) is a scalar function whose derivative along solutions of
(0.2.7) is negative in certain sets, then knowledge about limit sets of solutions
of (0.2.7) may be obtained, provided that F(t,x) is bounded for x bounded.
This boundedness hypothesis is sometimes reasonable for (0.2.7), but it is
ludicrous for a general functional differential equation. Yet, authors have
required it for decades. We explore three alternatives to asking F(t, x)
bounded for x bounded in the corresponding treatment of functional
differential equations.
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The General
Problems

1.1. Introduction

We are concerned with the boundedness and stability properties of the
integral equation

x(1) = f(1) + fo g(t, s, x(s)) ds (1.1.1)

in which x is an n vector, f: [0, 00) > R" is continuous, and g: w x R" — R"
is continuous, where 7 = {(t,s):0<s<t< oo}

It is unusual to ask that g be continuous. With considerable additional
effort, one may obtain many of the results obtained here with weaker
assumptions. For some such work, see Miller (1971a). The techniques we
use to show boundedness will frequently require that (1.1.1) be differentiated
to obtain an integro-differential equation

X(0) = £(0) + 86,6, x(0)) + [ g,(t.5,x(5))ds,
where g, denotes dg/ot or, more generally,

X() = h(t, x(t)) + fo F(t,s,x(s)) ds. (1.1.2)
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Notation For a vector x and an n X n matrix A, the norm of x will
usually be [x| = max; |x;/, whereas |A| will mean sup,, ., |4x]|.

Convention It will greatly simplify notation if it is understood that
a function written without its argument means that the function is evaluated
at t. Thus (1.1.2) is

— h(t.x) + f; F(t, s, x(s)) ds.

We notice that if f is differentiable and g is independent of ¢, in (1.1.1),
then differentiation yields an ordinary differential equation

x'(t) = G(t, x(t)). (1.1.3)

The process of going from (1.1.1) to (1.1.3) is easily reversed, as we simply
write

x(t) = x(to) + ﬁ' G(s, X(s)) ds

To pass from (1.1.2) to (1.1.1), integrate (1.1.2) and then change the order
of integration.

It is assumed that the reader has some familiarity with (1.1.3). Our pro-
cedure will generally be to state, but usually not prove, the standard result
for (1.1.3) and then develop the parallel result for (1.1.1) or (1.1.2).

While investigating (1.1.1) we shall occasionally be led to examine

— h(t,x) + ﬁ'_r F(t,s, x(s)) ds (1.1.4)
and
(1) +f g(t,s,x(s))d (1.1.5)

It will turn out that results proved for (1.1.4) may be applied to the general
functional differential equation with bounded delay

xX() = H(t,x,), (1.1.6)

where x, is that segment of x(s) on the interval t — h < s < ¢ shifted back to

In the same way, we shall frequently see that results for (1.1.2) and (1.1.5)
apply to a general functional differential equation

x'(t) = K(t,x(s); a < s < 1), (1.1.7)
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where o« = — oo is allowed, including
X'(t) = L(t, x(2), x(t — r(t))), (1.1.8)

with r(t) > 0.
One may note that Egs. (1.1.1)—(1.1.3) are given in their order of generality.

1.2. Relations between
Differential and Integral
Equations

Most ordinary differential equations can be expressed as integral equa-
tions, but the reverse is not true. A given nth-order equation

x(t) = f(t,x, X, ..., x"" 1)

may be expressed as a system of n first-order equations and then formally
integrated. For example, if x” = f(t,x,x’), then write x = x, and x' =
X7 = x,, so that x" = x}, = f(t,x,,x,), and the system of two first-order

equations
x| _ X2
,:xz] B |:f(1’ X1, xz)]
results.
And, in general, if x € R", then

x' = G(t,x), X(to) = Xq, (1.2.1)

is a system of n first-order equations with initial condition (called an initial-
value problem), written as

x(1) = X + f ' G(s.x(5))ds, (1.2.2)

a system of n integral equations.

Thus, it is trivial to express such differential equations as integral equa-
tions. It is mainly a matter of renaming variables.

It may, however, be a surprise to find that when n is a positive integer
feC"on|[ty, T), and g continuous, then

)

x(t) = f(t) + ﬁ L (t = $V'g(s. x(s)) ds (12.3)

represents an (n + 1)st-order differential equation.
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For example, when n = 2, we have
X0 =10+ [ 2= 9g(s x(9) ds,

()= 170 + [ 2g(s, x(9)) ds,
and, finally,
X(0) = (1) + 2902, x(0))

a third-order differential equation.

Note that x(to) = f(to), x'(to) = f'(to), and x"(to) = f"(ty), so (1.2.3)
actually represents an initial-value problem and, if g is locally Lipschitz in
x, we would expect a unique solution.

For a general positive integer n, we see that (1.2.3) represents an initial-
value problem of order n + 1. Before we discuss the reverse process, let us
consider a simple example in some detail. We emphasize that the form of
(1.2.3) is not the only one possible for the reduction.

Example 1.2.1 Consider the scalar equation

() =1+ [ [~4+ e x(s)ds. (a)
Differentiation yields the integro-differential equation
X' = —3x— f; e ""9x(s)ds. (b)
Now multiply by e' and differentiate to obtain
X' +4x"+4x =0 ()
whose general solution is
x(t) = cre™ 2 + cyte” %, (d)

Thus, (a) gives rise to (c) with two linearly independent solutions. In (b) we
have x'(0) = —3x(0), which, when combined with (d), yields

X'(t) = —2cie” ¥ + cre™ % — 2 te™ %,
x'(0) = —2¢; + ¢,,
—3x(0) = — 3¢,
hence,
—2¢; + €= —3¢;

or
€y = —¢y.
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Thus

2

x(t)=ce” ¥ —cite™ (e)

is the solution of (b), and, as ¢, is arbitrary, (b) has one linearly independent
solution. Finally, in (a) we have x(0) = 1, which, when applied to (e), yields

x(t)=e " —te™ % (f)

as the unique solution of (a).

We consider now the inverse problem for linear equations. It is worthwhile
to consider n = 2 separately.
Let a(t), b(t), and f(t) be continuous on an interval [0, T), and consider

X"+ a(t)x" + b(t)x = f(1), x(0) = x,, x'(0) = x,. (1.2.4)
A Liouville transformation will transform (1.2.4) to
u" = —c(tyu + h(t), u0) = uy, u'(0)=u,, (1.2.5)

for ¢(t) and h(t) continuous. Integrate (1.2.5) from 0 to ¢ > 0 twice obtaining
successively

u(t) =u, — f(; c(s)u(s)ds + f(; h(s)ds
and
u(t) = uy + uyt — f; J: c(s)u(s)dsdv + JZ fOL h(s)ds dv.
The integral
J = f; fol c(s)u(s)ds dv

is taken over the triangle in Fig. 1.1. We interchange the order of integration
and obtain

J= f(; J: c(s)u(s)dvds = f(: (t — s)e(s)us) ds,
so that if we set
H(r) = f; fo h(s)ds dv,
then (1.2.5) becomes
u(t) = ug + uyt + Hr) — fo’ (t — s)c(s)u(s) ds. (1.2.6)

Incidentally, the same process allows us to pass from an integro-differential
equation

X'(t) = h(t, x(1)) + fo F(t,s,x(s)) ds (1.1.2)



