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Preface

Calculus is one of the supreme accomplishments of the human intellect.
Many of the scientific discoveries that have shaped our civilization during
the past three centuries would have been impossible without the use of cal-
culus. Today this body of computational technique continues to serve as the
principal quantitative language of science and technology.

We prepared this revision with the goal of making the riches of calculus
more attractive and understandable to the increasing number of men and
women who take the standard calculus course for science, mathematics, and
engineering students. This edition (like the first) was written with five related
objectives in constant view: concreteness, readability, motivation, applicability,
and accuracy.

CONCRETENESS

The power of calculus is impressive in its precise answers to realistic
questions and problems. In the necessary development of the theory, we keep
in mind the central question: How does one actually compute it? We place
special emphasis on concrete examples, applications, and problems that serve
both to highlight the development of the theory and to demonstrate the
remarkable versatility of calculus in the investigation of important scientific
questions.

READABILITY

Difficulties in learning mathematics often are complicated by language
difficulties. Qur writing style stems from the belief that crisp exposition,
both intuitive and precise, makes mathematics more accessible—and hence
more readily learned—with no loss of rigor. We hope our language is clear
and attractive to students and that they can and actually will read it, thercby
enabling the instructor to concentrate class time on the less routine aspects

of teaching calculus.



MOTIVATION

Our exposition is centered around examples of the use of calculus to
solve real problems of interest to real people. In selecting such problems for
our examples and exercises, we took the view that stimulating interest and
motivating effective study go hand in hand. We attempt to make it clear to
students how the knowledge gained with each new concept or technique will
be worth the effort expended. In theoretical discussions, especially, we try to
provide an intuitive picture of the goal before we set off in pursuit of it.

APPLICATIONS

Its diverse applications are what attract many students to calculus, and
realistic applications provide valuable motivation and reinforcement for all
students. Section 1-1 contains a list of twenty sample applications that the
student can anticipate for later study. This list illustrates the unusually broad
range of applications that we include, but it is neither necessary nor desirable
that the course cover all the applications in the book. Each section or sub-
section that may be omitted without loss of continuity is marked with an
asterisk. This provides flexibility for each instructor to steer his or her own
path between theory and applications.

ACCURACY

To help ensure authoritative and complete coverage of calculus, both
this edition and its predecessor were subjected to a comprehensive reviewing
process. With regard to the selection, sequence, and treatment of mathe-
matical topics, our approach is traditional. With regard to the level of rigor,
we favor an intuitive and conceptual treatment that is careful and precise in
the formulation of definitions and the statements of theorems. Some proofs
that may be omitted at the discretion of the instructor are placed at the ends
of sections. Others (such as the proofs of the intermediate value theorem
and of the integrability of continuous functions) are deferred to the book’s
appendices. In this way we leave ample room for variation in seeking the
proper balance between rigor and intuition.

SECOND EDITION FEATURES

In preparing this edition, we have taken advantage of many invaluable
comments and suggestions from users of the first edition. The changes made
in such a comprehensive revision as this are too numerous and pervasive to
be detailed completely in a preface, but the following paragraphs summarize
the changes and additions that may be of widest interest.

Additional Problems This edition contains about 1600 new problems in
addition to the approximately 4300 problems in the first edition. Most of
these new problems are drill or practice exercises. They have been inserted
mainly at the beginnings of problems sets to insure that students gain suf-
ficient confidence and computational skill before moving on to less routine
problems.
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New Examples and Computational Details In many sections throughout
the book, we have inserted a simpler first example as an initial illustration
of the main ideas of the section. Moreover, we have inserted an additional
line or two of computational detail in many of the worked-out examples to
make them easier for student readers to follow.

Split Sections We divided a number of the longer sections in the first edi-
tion into two sections for this revision. For instance, each of the following
pairs of sections corresponds to a single original section: Sections 1-2 and
1-3 (real numbers and functions), Sections 2-1 and 2-5 (limits), Sections 3-4
and 3-5 (maxima and minima), Sections 4-4 and 4-5 (the first derivative test
and graphs of polynomials), Sections 5-4 and 5-5 (evaluation of integrals and
the fundamental theorem of calculus), Sections 11-1 and 11-2 (indeterminate
forms and ’Hépital’s rule), Sections 14-4 and 14-5 (space curves and curva-
ture), Sections 15-2 and 15-3 (functions of several variables and limits), Sec-
tions 16-1 and 16-2 (double integrals), Sections 17-2 and 17-3 (line integrals).
In each case the separation of sections enabled us to add more explanatory
discussions for the benefit of the student.

Optional Computer Applications We have included twenty-one optional
programming notes for supplementary reading by those students who might
be motivated by computer applications. Each of these notes appears at the
end of a section (following the problems) and applies very simple BASIC
programming to illustrate the ideas of the section. These programming notes
are completely optional—we never assume that any have been included in
the calculus course, and we never refer to them in the text proper. Their
purpose is to stimulate interest in calculus in the rapidly increasing popula-
tion of students who are already interested in computers. Those who would
like to explore this topic further may consult Edwards: Calculus and the
Personal Computer (Englewood Cliffs, N.J.: Prentice-Hall, 1986) for self-study
or as a computer calculus laboratory text.

Introductory Chapters The initial chapter of the first edition has been di-
vided into two shorter chapters for this edition. This permits the inclusion
of more review material and a slightly slower pace at the beginning of the
course. But we still retain the objective of a quick start on calculus itself.
Section 1-6 gives a first look at the derivative, and it serves to motivate the
formal treatment of limits in Chapter 2.

Trigonometric Functions A review of the elementary trigonometry needed
for calculus has been inserted in Section 2-5, preceding the first appearance
of trigonometric limits. The derivatives of the sine and cosine functions ap-
pear in Section 3-6 and hence are available to help illustrate the chain rule
in Section 3-7.

Differentiation Chapters We have substantially reordered the sequence of
topics on differentiation in Chapters 3 and 4. Our objective is to build stu-
dent confidence by introducing topics more nearly in order of increasing dif-
ficulty. We cover the basic techniques for differentiating algebraic functions
in Sections 3-2 and 3-3 before discussing maxima and minima in Sections
3-4 and 3-5. Section 3.10 on Newton’s method has been simplified. The mean
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xii

value theorem and its applications are deferred to Chapter 4. All curve-
sketching techniques now appear consecutively in Sections 4-5 through 4-7.
In Section 4-8 we have all but eliminated the alternative D~ ! notation for
antiderivatives that appeared in the first edition.

Integration Chapters The proof of the fundamental theorem of calculus in
Section 5-5 is preceded by an intuitive treatment in Section 5-4. We have
also inserted a number of additional and simpler examples in Chapters 5
and 6, as well as in Chapter 9 (techniques of integration).

Infinite Sevies and Taylor’s Formula Taylor’s formula and polynomial ap-
proximations appear in Section 11-3. The extension to Taylor series is now
delayed until Section 12-7 in the chapter on infinite series.

Analytic Geometry and Vectors Vectors in the plane and vectors in space
now appear in the consecutive Chapters 13 and 14; these are now easy to
combine as a single unit if the instructor so wishes. We have augmented
substantially the discussion of vector fields in Section 17-1.

Differential Equations Sections 7-6 and 7-8 introduce the very simplest
separable differential equations and their impressive applications. Neverthe-
less, these are optional sections, and the instructor may delay them until
Chapter 18 (on differential equations) is covered. Chapter 18 has been revised
substantially—it now ends with Section 18-7 on elementary power series
methods and Section 18-8 on elementary numerical methods. Some of the
lengthier applications have been deleted but are now included in Edwards
and Penney, Elementary Differential Equations with Applications (Englewood
Cliffs, N.J.: Prentice-Hall, 19835).

Computer Graphics  The ability of students to visualize surfaces and graphs
of functions of two variables should be enhanced by the IBM-PC graphics
that appear in Chapters 14 and 15. For these excellent computer graphics,
fully integrated with text discussions, we are indebted to John K. Edwards.
He developed and programmed them using the APL*PLUS/PC System from
STSC, Inc. (with the exception of Figures 15.22-15.33, for which he used the
PLOTCALL System from Golden Graphics).

ANSWERS AND MANUALS

Answers to most of the odd-numbered problems appear in the back of
the book. Solutions to most problems (other than those odd-numbered ones
for which an answer is sufficient) are available in an Instructors Manual. A
subset of this manual, containing solutions to problems numbered 1, 4, 7,
10, ..., is available as a Student Manual.
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Introduction

We live in a world of ceaseless change, filled with bodies in motion and with
phenomena of ebb and flow. The principal object of the body of computa-
tional methods known as calculus is the analysis of problems of change and
motion. This mathematical discipline stems from the seventeenth-century
investigations of Isaac Newton (1642—-1727) and Gottfried Wilhelm Leibniz
(1646-1716). Many (if not most) of the scientific discoveries that have shaped
our civilization during the past three centuries would have been impossible
without the use of calculus, and today it continues to serve as the principal
quantitative language of science and technology. We list below some of the
problems that you will learn to solve as you study this book. The first two
problems will be discussed in this chapter, and the others will be covered in
later chapters.

1 The Fence Problem. What is the maximum rectangular area that can be
enclosed with a fence of perimeter 140 m?

2 The Refrigerator Problem. The manager of an appliance store buys re-
frigerators at a wholesale price of $250 each. On the basis of past experi-
ence, the manager knows she can sell 20 refrigerators each month at
$400 each and an additional refrigerator each month for each $3 reduction
in selling price. What selling price will maximize the monthly profit of
the store?

3 A cork ball of specific gravity 4 is thrown into water. How deep will it
sink? (Section 3-10)

4 What is the maximum possible radius of a “black hole” with the same
mass as the sun? (Section 4-9)

5 If you have enough spring in your legs to jump straight up 4 ft on the
earth, could you blast off under your own power from an asteroid of
diameter 3 mi? (Section 4-9)

6 How much power must a rocket engine produce in order to put a satellite
into orbit around the earth? (Section 6-5)

7 If the population of the earth continues to grow at its present rate, when
will there be standing room only? (Section 7-5)

8 Suppose that you deposit $100 each month in a savings account that
pays 7.5% interest compounded continuously. How much will you have
in the bank after 10 years? (Section 7-5)

9 The factories polluting a certain lake are ordered to ceasec immediately.
How long will it take for natural processes to restore the lake to an ac-
ceptable level of purity? (Section 7-6)

10 According to newspaper accounts, it is possible to survive a free fall
(without parachute) from a height of 20,000 ft. Can this be true? (Sec-
tion 7-6)

11 How can a pendulum clock be used to determine the altitude of a moun-
tain peak? (Section 8-4)

12 What is the best shape for the reflector in a solar heater? (Section 10-4)

13 How often can a fixed dose of a drug be administered without producing
a dangerous level of the drug in the patient’s bloodstream? (Section 12-3)

CHAP. 1. Prelude to Calculus



14 How do we know that © = 3.14159265 ... 7 (Section 12-7)

15 At what angle should the curve on a race track be banked to best ac-
commodate cars traveling at 150 mi/h? (Section 13-5)

16 How does a satellite of the earth use its thrusters to transfer from one
circular orbit to another? (Section 13-7)

17 Does a baseball pitch actually curve, or is it some sort of optical illusion?
(Section 14-4)

18 What temperature can a mercury thermometer withstand before its bulb
bursts? (Section 15-7)

19 How can two companies that make the same product conspire to maxi-
mize their total profits? (Section 15-11)

20 A coin, a hoop, and a baseball roll down a hill. Which will reach the
bottom first? (Section 16-5)

This first chapter contains some review material and material preliminary
to your study of calculus: real numbers and inequalities, functions and their
graphs, straight lines and slopes, and equations of circles and of parabolas. In
Section 1-6 we introduce (quite informally) limits of functions and the problem
of finding tangent lines to curves. This leads to the key concept of the deriva-
tive of a function, which can be used to solve problems such as the first two
just given. This preliminary discussion is intended to motivate the more
detailed and formal treatment of limits in Chapter 2 and of derivatives in
Chapter 3.

The real numbers are already familiar to you; they are just those numbers Real Numbers
ordinarily used in most measurements. The mass, speed, temperature, and

charge of a body are measured by real numbers. Real numbers can be repre-

sented by terminating or nonterminating decimal expansions. Any terminating

decimal can be written in nonterminating form by adding zeros:

2 = 0.375 = 0.375000000 . ...
Any repeating nonterminating decimal, such as
+ = 031818181818 .. .,

represents a rational number, one that is the quotient of two integers. Con-
versely, every rational number is represented by a repeating decimal expan-
sion (as displayed above). The decimal expansion of an irrational number
(one that is not rational), such as

J2

1.414213562 . ..

or

7w = 3.141592653589793 . . .,

is both nonterminating and nonrcpeating.

The geometric representation of real numbers as points on the real line
# should also be familiar to you. Each real number is represented by pre-
cisely one point of #, and each point of % represents precisely one real

SEC. 1-2: Real Numbers 3



