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ABSTRACT

The purpose of this article is to fill some part of the gap
existing between the mathematical theory of the Navier-Stokes Equations
and the conventional theory of Turbulence and to provide a rigorous

connection between these theories.

The number of degrees of freedom of a turbulent flow which
was estimated on physical assumptions by Kolmogorov-Landau-Lifschitz is
interpreted here as the fractal dimension of the corresponding attractor
and the estimate is reobtained as a consequence of the (deterministic)

Navier-Stokes equations.
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INTRODUCTION

Since the pioneering work of J. Leray [28] [29] on the equa-
tions of fluid mechanics, the difficult question of the regularity of the
solutions of these equations remains open, namely we do not know yet if,
the data being smooth, the solutions to the three dimensional Navier-
Stokes Equations (N.S.E.) remain smooth for all time or not ; for the most
recent results in this direction the reader is refered to V. Scheffer
[38], L. Caffarelli, R. Kohn and L. Nirenberg [5] . Whether singularities
do develop spontaneously or not, the question of the description of a
turbulent flow remains open since the actual solution of the equations
is expected to be highly oscillating and therefore to contain more in-
formation than needed. In order to overcome this difficulty it will be
necessary in the future to develop appropriate mathematical tools and
in a preliminary step to obtain, with the help of the new powerful com-

puters, a better qualitative description of a turbulent flow.

A first result in this direction is the idea that a turbulent flow
is finite dimensional, i.e. depends on a finite number of parameters (a
finite number of degrees of freedom in the language of physics). This
idea is familiar in the conventional theory of turbulence and follows
from the Kolmogorov theory : cf. L. Landau and I.M. Lifschitz [27] where
one can find an estimate of the number of degrees of freedom. On the ma-
thematical side, this idea was investigated by E. Hopf [22] in the case
of a simplified model equation. More recently, the authors of the present
article have already, alone or in collaboration, derived in a rigorous
way a set of results showing that under some circumstances a three dimen-
sional flow depends indeed on a finite number of parameters : see C.
Foias-G. Prodi [12] , C. Foias-R. Temam [14]-[16], C. Foias-0. Manley-
R. Temam-Y. Tréve [11][15] , R. Temam [41] .

One of the tasks of this article is to make more precise the condi-
tions under which these results were proved, namely we show that all the
above mentionned and related results are true under the only condition
that singularities do not develop in three dimensional flows (see chapter

1 and below). Beside the development of mathematical tools which, in our
opinion, could be helpful, another major task of this article is to give
a rigorous proof of the result already mentionned of Kolmogorov-Landau-
Lifschitz (see [27] p. 32-33) concerning the "number of degrees of free-
dom" of a turbulent flow, i.e. the number of parameters controling a
turbulent flow. In [27] , it is shown using physical arguments pertaining
to the conventional theory of turbulence, that the number N of degrees

of freedom of a turbulent flow is of the order of
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Lo\ 3
(0.1) N~ (7‘3) ’
»

where ﬁo is the large scale typical length and Qd is the Kolmogorov

dissipation length
o ) _ v_3_ 1/4
- d E ’

given in terms of the dissipation € of the energy per mass and time and
of the kinematic viscosity v . In Chapter 4, after a precise and appro-
priate definition of Zo and ld , we give a rigorous proof of this
result of Landau and Lifschitz (under again the assumption that no singu-
larities develop in the flow). For this purpose the number of degrees of
freedom is identified with the dimension of the attractor representing the

flow.

We now describe how this article is organized. Chapter 1 gives the
relation between the boundedness assumption used here and in the referen-
ces [141[11][15][41] quoted above and the assumption that singularities do

not develop spontaneously in 3-D flows ; they are shown to be equivalent
1

(the boundedness assumption mentionned above is that the H norm of the
velocity of the considered solution of the NSE remain uniformly bounded
for 0 < t < »). Chapter 2 deals with the squeezing property for the tra-
jectories. This is another form of the finite dimensionality of a flow
which was first proved in C. Foias-R. Temam [14] : we provide here a much
simpler proof and an improved form of this result which is optimal in
some sense. Chapter 3 which is independent of the previous ones gives

abstract results concerning the Hausdorff and the fractal dimensions of

functional invariant sets (attractors in particular) ; these general
results extend previous results of A. Douady-J. Oesterlé [8] and P. Cons-
tantin-C. Foias [6]. Finally Chapter 4, after some preliminary technical
results, provides various estimates on the fractal (and thus Hausdorff)
dimension of the attractor associated to a three dimensional turbulent
flow : one of these estimates precisely corresponds to (0.1), the
Kolmogorov-Landau-Lifschitz estimate. The other estimates are made in term
of various Reynolds number that one can associate to the attractor :
Reynolds numbers based on the time average of the supremum of the modulus
of the velocity vector (Re), or on the absolute maximum in space and time
of the modulus of the velocity vector (Re > Re), or a Reynolds number
based on the supremum of the enstrophy (directly related to the H1—norm).
Chapter 4 is concluded, for the sake of completness, with a brief reminder
of some other aspects of finite dimensionality of flows which have been
investigated elsewhere. The finite dimensionality of the attractors for
the Navier-Stokes and related equations has been recently investigated

by 0.A: Ladyzhenskaya [26] , A.V. Babin-M.I. Vishik [2]{4], who, however,
do not investigate the physical significance of the bounds on the dimen-
sion which are obtained ; concerning the magnetohydrodynamic equations

7



vii INTRODUCTION

see [39] and for other related situations in fluid mechanics (thermo-
hydraulic, N.S.E. with non homogeneous boundary conditions,...) see the
general framework of J.M. Ghidaglia [19]. Most of the questions addressed
here where already investigated in C. Foias-R. Temam [14] and in some way
this article is intended as a continuation of [14].

During the realization of the present work we have benefited of
stimulating discussions with O.P.Manley and part of the work is the result
of a fruitful collaboration with him (see Sec. 4.3.a and [7]).

After this work was completed three related articles were bringed
to our attention, D. Ruelle [37], E. Lieb [30] and very recently D. Ruelle
[43]. In [37] D. Ruelle determines a bound of the Hausdorff dimension of
the attractors associated to the three dimensional Navier-Stokes equations
and expresses this bound in term of physical quantities ; his proof
however relies on an assumption on the eigenvalues of the
Schroedinger operators. In the article [30] , E. Lieb completes and sim-
plifies the proof in [37] by utilization of a remarkable inequality of
E. Lieb and W. Thirring [31] which improves the classical Sobolev inequa-
lity. The result of [37]1[30] related to the Hausdorff dimension of the
attractors is better than ours as far as the Hausdorff dimension is con-
cerned, however [37]1[30] do not cover our results since the fractal dimen-
sion is not considered in these articles. We have thus added afterwards
the Sec. 4.5 incidating the improvements to our results which follow from
a slight modification of our proof based on the use of the Lieb-Thirring's
inequality instead of the usual Sobolev's inequality. Concerning the two
dimensional Navier-Stokes equations, the best estimates presently availa-
ble for the fractal and Hausdorff dimensions of the universal attractor
are given (using Lieb-Thirring's inequality) in R. Temam [42] and, for the

Hausdorff dimension , in D. Ruelle [43].

Acknowledgement. This research was supported in part by the US
Department of Energy under the contract DE-AC02-82ER12049.A00.
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CHAPTER 1

ON THE APPEAFANCE OF SINGULARITIES IN A THREE DIMENSIONAL FLOW

1.1. THE FUNCTIONAL SETTING OF THE NAVIER-STOKES EQUATIONS

The Navier-Stokes eguations can be written as a nonlinear evolution

equation in a Hilbert space H of the form

du _
(1.1) It + v Au + B(u) = f
(1.2) u(o) = ug .
where Vv > O is given and f 1is given say in Lw(o,w;H) . The operator

A is a linear unbounded positive self-adjoint operator in H with domain
D(A) ; we denote by (u,v) and |u| the scalar product and the norm in

’

H , and clearly D(A) 1is a Hilbert space for the scalar product and the

norm (Au,Av) , |Au| . One can define the powers A* of A , a € R , with
domain D(Aa) . For o =1/2 , we set V = D(Al/z) , which is a Hilbert
space of dual V' = D(A—l/z) , and we endow V with the Hilbert scalar

product and norm,

((u,v)) = (al

/24,8129y, il = a2

We recall also that A possesses an orthonormal family of eigenvectors

w. , jJ > 1 , which is complete in H ,

(1.3) ij = Aj wy o 3210 0 <A S Ay e
XJ — +® as ] — @
For B we have B(u) = B(u,u) where B(.,.) is a bilinear

continuous operator from D(A) x D(A) into H and from V x V into V'
which enjoys several other continuity properties which will be recalled
when needed.

The reader is referred for instance to R. Temam [41] for more
details about the functional setting of the N.S.E., the definition and
properties of the operators A and B and the concept of strong and
weak solutions which will be recalled in Sec.2, Ch.1l. Although the

Received by the editors November 28, 1983.
B i



2 P. CONSTANTIN, C. FOIAS, R. TEMAM

functional setting above applies to several situations in fluid mechanics,

the main cases that we have in view are the flow in a bounded domain @

of R" , n =3 (or sometimes 2), with a homogeneous boundary condition

(u =0 on 23R) , or the flow in r™ (n = 3 or 2) with space periodicity
condition (the flow is periodic with period L > O in each direction

X s.+.,%)) . In the first case we have (see [40] [41])

b E

2(Q)n , div v = 0 , v.y = O on ant ,

H={v €L
Y the unit outward normal on 932 = the boundary of @ ,

V= {v € Hé(n)“ , div v = 0}

2 n

D) = H (@™ 1 # (9

Au = - PAu , B(u,v) = P((u.V)v) ,
where P 1is the orthonogonal projector in Lz(Q)n onto H . We use the

standard notation for the space LZ(Q) and the Sobolev spaces Hé(ﬂ) i
Hl(Q) M HZ(Q) ; -.. In the case of the flow with space periodicity, we

denote by Q the cube (O,L)n and by Fi and ri+n its faces xi =0
and x; =1L ; then (see 141] where this situation is emphasized)
2 n . P
H={veLlLQ)", div v = 0, v dx = O, Vil = Vil , i=1,...,n}
Q X,= X, =0
i i
_ 1 n i _ _ _ .
v={veH(Q , divv =0, f v dx = 0, Vige=L = V|x,=0’ 1= 1,...,n}
Q i i
- 2 1 - [ - - oo
D(A) = {v e H°(Q) , divv =0, |, v dx = O, v! =V ., i=1,...,n}
Ig x;=0 |x;=L
Au = - PAu = - Au, B(u,v) = P((u.v)v) ,
P being the orthogonal projector in LZ(Q)n onto the space H .

In either case, we have

(u,v) = J u(x).v(x) dx ,
4

n Bui avi
((u,v)) = 7§ J 7 (%) 3 (0 dx
i,3=1 % 73 j

¢ =Q or Q . For n= 3, it is easy to check that for every v €V ,

(1.4) vl 2 = ((v,v) = J leurl v(x)|? ax ,
0
and %||VH 2 is called the enstrophy of the vector field v ; the same is
v v
true for n = 2 with curl v replaced by the scalar curl v = 5§l - §§£

2 1



ATTRACTORS REPRESENTING TURBULENT FLOWS 3

1.2. THE INITIAL VALUE PROBLEM

Given ug in Vv and f as above

(1.5) u €V, f€ L7 (0,«;H) ,

a strong solution of the initial value problem (1.1) (1.2) defined on some

interval [O0,T] , T > O , is a function u ,
(1.6) u € 17(0,7;v) 0 L2(0,T;D(A))

which satisfies (1.1) on (0,T) and (1.2). A weak solution of these

equations (the N.S.E.) on (0,T) is a function u
© 2
(1.7) u €L (0,T;H) N L°(O,T;V) ,
which satisfies (1.1) on (0,T) and (1.2). We recall that given ug and

f satisfying (1.5), if the dimension of space is n = 2 (1), a strong

(and therefore a weak) solution exists and is unique for all T > O . If

the dimension n = 3 , then a strong solution is known to exist (and is
unique) only onsome interval BLTIJ , where T1 is of the form

“1
(1.8) Ty =T1(||u0]|) = ——

(s Jlug l %)

4 depending only on |f]| - , v.and 2 . A week solution exists for
K (0,x;H)

every T > 0, coincides with the strong solution on [0,T1], at least, but
we do not know if this weak solution is unicue ; for all these classical
results see for instance [25]1[32]1[401041]

If we are interested in solutions defined for every t > O , then
if n = 2 , according to a result of C. Foias and G. Prodi [12] the strong
solution is uniformly bounded in the Hl—norm (see (1.3)), for t >0
u € L7(0,%;V) and

’

(1.9) [lall <Kk, < w
L (0,x;V)

where K, depends only on [f] , v and 0 (or Q) .
L (0,~;H)
No such result is of course available if n = 3 , since we are not
even certain, in this case, that the strong solution exists on the whole
interval R, = [O,m) . All the results derived in [11][14]1[15][41]

concerning three dimensional flowswere made under the assumption that the

1

(") The difference between the dimensions n and n = 3 1lies on the

continuity properties of B which will be recalled below.



4 P. CONSTANTIN, C. FOIAS, R. TEMAM

flow under consideration satisfies (1.9). Our aim in this Section is to

investigate the significance of this assumption.

1.3. THE MAIN RESULT (of Chapter 1).

By lack of information on the three dimensional case, we must admit
that it is conceivable that a strong solution exists for all time but does
not satisfy (1.9) (i.e. no result analogous to that of C. Foias - G. Prodi
[13]). Hence the assumption made in the references guoted above (and
hereafter), that the solutions satisfy (1.9) seems stronger than the

assumption that singularities do not develop in the flow, i.e. that

(1.10) Nuall <C(T) <o, VT>O0,

L (0,T;V)
the quantiy C(T) being perhaps allowed to be unbounded as T -— «
We recall that it was the conjecture of J. Leray [30][31] and his
motivation for the introduction of the concept of weak (or turbulent)

solutions, that singularities do develop in a finite time, i.e. that
2
Hu(.,t)[|2 = J Jeurl u(x,t) | dx
Q

becomes infinite at a finite time ; this assumption has not yet been
proved nor disproved. Our aim here is to show, under a mild assumption on
f , that the assumption (1.9) is not actually stronger than (1.10), i.e.
the assumption that singularities do not develop in flows in a finite time.

The assumption that we make on f is that f 1is nonchaotic at

infinity ; by that we mean the following :

2

Lioc(O,®iH) is nonchaotic at infinity,

(1.11) £ €

if there exists ¢ > 0 such that, for every sequence tj

converging to + « , the sequence of functions

fJ = Tt. f|
J [tj,tj+aJ

is relatively compact in L2(0,a;H).

(Taf(S) = f(s-a)) ,

REMARK 1.1.
The assumption (1.11) is satisfied in the following cases

i) f is independent of t , f(t) = f € H , VY t >0 ;

ii) £ € Lioc(o,w;H) is periodic with period T (a = T) ;

2 . 1 po B , _4f _ .2 o

iii) £ € Lloc(o' sH nH(Q) ) , £' = 3t € Lloc(o’ ;V') , and for some
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T > 0 and for every a > O ,

[ £] + |£'] <c(m ,
12 (a,a+T;HN (@) D) L2 (a,a+T; V")

where C(T) may depend on T but is independent of a . In this case we
can take o = T and (1.11) follows by compactness (l) ‘

We have the

THEOREM 1.1.
If there exists ug €V, £ € L°(0,o;H) nonchaotic at infinity
such that a solution u of (1.1) (1.2) does not satisfy (1.10), then we

can find Vo € V and g € L (0,o;H) such that the solution v of (1.1)

(1.2) with u, f , replaced by Vo 1 9s becomes singular at a finite

time ty .
Proof.

We assume that u satisfies (1.6) since otherwise the result is
obvious. If (1.10) is not verified, there exists a sequence sj — + o,
such that

(1.12) ||u(sj)|| — +® as j — o

. i) We first derive an a priori estimate on u . For that purpose
we recall the classical energy equality

(1.13) Shal? + 2v flull 2 = 25,0

which is obtained by taking the scalar product in H of (1.1) with 2u
and using the orthogonality property (see [41])

(1.14) (B(d,¥),¥) =0, Vo,v €V .
From (1.13), and since
(1.15) lol < a7 Y2 Yloll , vo €v,

we obtain

|£].

vAl

d 2 2 2
Spal?eavull 2 < 21g), AL < v pup 2+
1

) The space {g € Lz(o,a;H n Hl(Q)n) , g'€ L2(O,a;V')} is compactly
imbedded in L2(O,a;H) ; see for instance [40], Ch.3, sec. 2.

(
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|£]2

o«

2 2
12+ vilull = <

d
(1.16) 3E [u ey

where |f|_ is the norm of f in L (0,=;H) . Hence with (1.15) and

Gronwall Lemma

2
£
d 2 2 I )
ge o7+ v 4lul® ¢ 5
1
(l-exp(-vA,t))
(1.17) lu(e)|? < ju_|? exp(- vi t) + ——— L |£12 , >0,
= [e} i 2,2 L
vo oA
1
2 2 1 2
(1.18) Jlut) |© < |u0[ + e [£]12, £ >0

For any a > O and any t > O we then conclude from (1.16) that

t+a
\)J lu(s) || 2 ds < Ju(t)|? + 2 |2
t:

vxl L)

t+a 2
(1.19) J [lu(s)|] = ds < Ky o £>0,a>0

t
where K depending on U £, v, Al, a, is equal to

= X 2 1 a 2
(1.20) Ky = ;|uof + g7 + =3 ) £]2
vooA vooA

1 1

/2K
ii) Let now r = _Eé ; it follows from (1.19) that on any interval
[t,t+a] of length a , the set

M= {s € [t,t+a], [[u(s)|] > r} ,

has its measure bounded by

3 a
meas (M) < — < 5 .
r
and therefore there exists points s in [t,t+a] such that |lu(s)]| <r .
We set a = % , oo as in (1.11) and we conclude that for every 3Jj ,
8k
there exists ty € (sj - %,sj), such that [Iu(tj)H 2 < —&é . By transla-
tion, setting
u, = 1 u f. =1 £
i ot | "3 te | ’
t.,t.+a t.,t.+a
3 [eyetyta] s
(!) This is an aspect of intermittency in turbulence. If ||u(t) |
becomes very large at some time then ||u(s)|| must become again

smaller than some a priori bound at some other time s "close” to t.
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we obtain sequences uj, fj’ such that

©
uj € L (0,a;V)

£, € L7(0,a;W) and is relatively compact in L% (0,a;H) (by (1.11))

duj
(1.:21) Fre + v Auj + B(uj) = fj on (0,a) ,
8K1 1/2
(1.22) Huj(O)H < {e=)
(1.23) ||uj(aj)H —+eas j — e ,ay;=s; -ty € (0,a) .

By extracting a subsequence, we can assume that aj — a € (0,a)

as j — <« and that fj — g in L2(0,a;H) strongly and L7 (0,a;H)
weak-star, as j — o . We can also assume that uj(O) converges

weakly in V and strongly in H to some Vo such that

8K1 1/2
(1.24) Il 2 = .

It is then classical to pass to the limit j — « in (1.21) (see for

instance [40] for many similar situations) : we show that uy is bounded

in 1L7(0,a;H) and LZ(O,a;V) and we extract a subsequence converging to
some limit v , weakly in L2(O,a;V) and weak-star in L”(0,a;H) . The
passage to the limit in (1.21) gives then that
dv
(1.25) It + v Av + B(v) =g on (0,a) .
By the result recalled in Sec.2, Ch.1l, v € Lm(O,Tl;V) ‘
T, = T1ﬂ|voH). In fact we will see that v € L”(0,a;V) because of (1.23))

M.

. iii) We now assume that v € Lw(o,u;v) and we will show that this

leads to a contradiction. Let wj = uj - v ; by substracting (1.25) from

(1.21) we obtain easily

dw.

(1.26) aEl + v Awg + B(wy) + B(V,wy) + B(wy,v) = fj -qg.

Taking the scalar product in H with 2wj and using (1.14) we obtain as

(}) since v remains smooth until (at least) the time Tl(llvoll) ;

v £ Lm(o,a;V) implies that the first interval of regularity for v
is of the form [o0,t [, with T ([lv |l) < t, < a, and
lve)]] — + » as t — ty -0 .
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in (1.13)

d

2
It I

|w.|2 + 2v ||w,

3 ;! = - 2(B(wj,v),wj) + 2(fj-g,wj) .

We have the following inequalities for B (see [41] Sec. 2) :

(1.272) [ B, w0 ] <y lloil Nl 16122 JolI'/2 |, v 6.y, 6e v

(1.270) | (6, ,0 ] < o Nl 21ae1™ 211 wll 1 oll , vo e, v, 8 € v
(1.27¢) | Bo,¥),0) | < el ol |l wllY/2 |av|/?l6] , Yy €D(A), ¢ €V, 0€H.
Thus with (1.19)

3/2 1/2
132 w1

A

axlwyl? + 2v lwyll 2 < 2eyllvll llwy + —=lgg-al lw]

1

(with Schwarz and Young inequalities)

IA

2
|

IA

2 4
vilwgll 2+ ey IvIE® lwy

2 2
317+ 9 l£5-91% |

where cyr ci, c;, ..., denote positive constants.
We obtain
[2

(1.28) g lwsl? v llwgll 2 < ef livll #lwy

2 2
+.\’_ﬂ: Ifj-g| .

We remove in a first step the term \)||ij2 , and we apply Gronwall's

lemma to obtain

2 2 t 4
ij(t)| < [wj(o)l exp(f cill vis) |l "as) +
o

2 (t 2 @ 4
+ GTI (] Ifj-g[ ds) exp(f ci[lv(s)l[ ds)
o (o]

Since v € L”(o,a;v) by assumption and wj(o) — O in H strong as
j — o= , we conclude that wj — O in Lw(o,a;H) strong as j — .

Returning to (1.28) we then find also that wj = uj -v — 0 in

Lz(o,a;v) strong as j — « |
Since uj - v — O strongly in Lz(o,a;v) we conclude by
extracting a subsequence that, for almost every t € (0,a)

(1.29) uj(t) — v(t) in V .

Let us consider a particular ¢t = t1 , for which (1.29) is valid. The
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sequence ”Uj(t1)|l is bounded and for j sufficiently large

A

u, Dl < e, = vl + 1.
3 L= =0 L”(0,a;V)

1

Because of (1.8) ("), for j sufficiently large,

A

2 + 2r1 , for s € [tl’t +T1(r1)] .

(1.30) Il ()] )

Since T(rl) is actually independent of t1 , we can cover the interval
(0,0) by a finite number of intervals [tk,tk+T1(r1)] , k=1,...,N ,
such that u.(tk) — v(tk) for every k , and (1.30) holds for

s € [tk,tk+T1(rl)] . It follows that the norm of u. in L”(0,a;V)
remains uniformly bounded as j — <« . This contradicts (1.23) and the

proof is complete.

REMARK 1.2.

The proof above shows that if (1.10) is satisfied but not (1.9),
then we can find vy and g for which the corresponding solution of (1.1)
(1.2) (uo,f replaced by vo,g) , blows up in the V norm at a time tx

arbitrarily small, tx <a, Ya, O<ac<aua.

REMARK 1.3.

With a slight modification of the proof of Theorem 1.1, we can show
the following : given @, v > O, T > 0, R> 0 and f € Lm(O,T;V) « 1f for
every u, €V with ][uoH < R, all the solutions to the (3 dimensional)

Navier-Stokes equations belong to Lw(O,T;V) (i.e. are strong solutions)

then there exists a number Ky depending on @, v, T, R, f, such that (2)

(1.31) fall < Kgov
L (0,T;V)
for every solution u of (1.1) (1.2) with I|uoH <R .
By contradiction, if (1.31) were not true, then we could find a
sequence {uo. , u.}, u. solution of (1.1) on (0,T) with uj(o) = uOj ,

J
such that duoj]f <R and

Null o — 4@ , as j —
37 1%0,T;v)

(1

) We use a more precise form of (1.8) (see [41]) 2

luceill <20+ flull) , for t € [o,T, ( Huo||)] :

(2) The functional dependence of Ky on the data is not given by the

following proof which provides only the existence of Kg <@ -



