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Prefac~

This book is an introduction to the differential geometry of curves and
surfaces, both in its local and global aspects. The presentation differs from
the traditional ones by a more extensive use of elementary linear algebra
and by a certain emphasis placed on basic geometrical facts, rather than
on machinery or random details.

We have tried to build each chapter of the book around some simple
and fundamental idea. Thus, Chapter 2 develops. around the concept of a
regular surface in R®; when this concept is properly developed, it is prob-
ably the best model for differentiable manifolds. Chapter 3 is built on the
Gauss normal map and contains a large amount of the local geometry of
surfaces in R®. Chapter 4 unifies the intrinsic geometry of surfaces around
the concept of covariant derivative; again, our purpose was to prepare the
reader for the basic notion of connection in Riemannian geometry. Finally,
in Chapter 5, we use the first and second variations of arc length to derive
some global properties of surfaces. Near the end of Chapter 5 (Sec. 5-10),
we show how questions on surface theory, and the experience of Chapters 2
and 4, lead naturally to the consideration of differentiable manifolds and
Riemannian metrics.

To maintain the proper balance between ideas and facts, we have
presented a large number of examples that are computed in detail. Further-
more, a reasonable supply of exercises is provided. Some factual material
of classical differential geometry found its place in these exercises. Hints or
answers are given for the exercises that are starred.

The prerequisites for reading this book are linear algebra and calculus.
From linear algebra, only the most basic concepts are needed, and a
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vi Preface

standard undergraduate course on the subject should suffice. From calculus,
a certain familiarity with calculus of several variables (including the state-
_ ment of the implicit function theorem) is expected. For the reader’s con-
venience, we have tried to restrict our references to R. C. Buck, Advancd
Calculus, New York: McGraw-Hill, 1965 (quoted as Buck, Advanced
Calculus). A certain knowledge of differential equations will be useful but
it is not required.

This book is a free translation, with additional material, of a book and
a set of notes, both published originally in Portuguese. Were it not for the
enthusiasm and enormous help of Blaine Lawson, this book would not
have come into English. A large part of the translation was done by Leny
Cavalcante. I am also indebted to my colleagues and students at IMPA
for their comments and support. In particular, Elon Lima read part of the
Portuguese version and made valuable comments.

Robert Gardner, Jiirgen Kern, Blaine Lawson, and Nolan Wallach read
critically the English manuscript and helped me to avoid several mistakes,
both in English and Mathematics. Roy Ogawa prepared the computer pro-
grams for some beautiful drawings that appear in the book (Figs. 1-3, 1-8,
1-9, 1-10, 1-11, 3-45 and 4-4). Jerry Kazdan devoted his time generously
and literally offered hundreds of suggestions for the improvement of the
manuscript. This final form of the book has benefited greatly from his
advice. To all these people—and to Arthur Wester, Editor of Mathematics
at Prentice-Hall, and Wilson Goées at IMPA—I extend my sincere thanks.

Rio de Janeiro .Manfredo P. do Carmo



Some Remarks on
Using This Book

We tried to prepare this book so it could be used in more than one type of
differential geometry course. Each chapter starts with an introduction that
describes the material in the chapter and explains how this material will be
used later in the book. For the reader’s convenience, we have used footnotes
to point out the sections (or parts thereof) that can be omitted on a first
reading.” v

Although there is enough material in the book for a full-year course (or
a topics course), we tried to make the book suitable for a first course on
differential geometry for students with some background in linear algebra
and advanced calculus.

For a short one-quarter course (10 weeks), we suggest the use of the
following material: Chapter 1: Secs. 1-2, 1-3, 1-4, 1-5 and one topic of
Sec. 1-7—2 weeks. Chapter 2: Secs. 2-2 and 2-3 (omit the proofs), Secs.
2-4 and 2-5-—3 weeks. Chapter 3: Secs. 3-2 and 3-3—2 weeks. Chapter 4:
Secs. 4-2 (omit conformal maps and Exercises 4, 13-18, 20), 4-3 (up to
Gauss theorema egregium), 4-4 (up to Prop. 4; omit Exercises 12, 13, 16,
18-21), 4-5 (up to the local Gauss-Bonnet theorem; include applications
(b) and (f) )—3 weeks.

The 10-week program above is on a pretty tight schedule. A more re-
laxed alternative is to allow more time for the first three chapters and to
present survey lectures, on the last week of the course, on geodesics, the
Gauss theorema egregium, and the Gauss-Bonnet theorem (geodesics can
then be defined as curves whose osculating planes contain the normals to
the surface). :

In a one-semester course the first alternative could be taught more
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viii Some Remarks on Using this Book

leisurely and the instructor could probably include additional material (for
instance, Secs. 5-2 and 5-10 (partially), or Secs. 4-6, 5-3 and 5-4).

Please also note that an asterisk attached to an exercise does not mean
the exercise is either easy or hard. It only means that a solution or hint is
provided -at the end of the book. Second, we have used for parametrization
a bold-faced x and that might become clumsy when writing on the black-
board. Thus we have reserved the capital X as a suggested replacement.

Where letter symbols that would normally be italic appear in italic con-
text, the letter symbols are set in roman. This has been done to distinguish
these symbols from the surrounding text.
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1 Curves

7=7. Introduction

The differential geometry of curves and surfaces has two aspects. One, which
may be called classical differential geometry, started with the beginnings of
calculus. Roughly speaking, classical differential geometry is the study of
local properties of curves and surfaces. By local properties we mean those
properties which depend only on the behavior of the curve or surface in the
neighborhood of a point. The methods which have shown themselves to be
adequate in the study of such properties are the methods of differential
calculus. Because of this, the curves and surfaces considered in differential
geometry will be defined by functions which can be differentiated a certain
number of times. _

The other aspect is the so-called global differential geometry. Here one
studies the influence of the local properties on the behavior of the entire
curve or surface. We shall come back to this aspect of differential geometry
later in the book.

Perhaps the most interesting and representative part of classical differen-
‘tial geometry is the study of surfaces. However, some local properties of
curves appear naturally while studying surfaces. We shall therefore use this
first chapter for a brief treatment of curves.

The chapter has been organized in such a way that a reader interested
mostly in surfaces can read only Secs. 1-2 through 1-5. Sections 1-2 through
1-4 contain essentially introductory material (parametrized curves, arc
length, vector product), which will probably be known from other courses
and is included here for completeness. Section 1-5 is the heart of the chapter



2 Curves

and contains the material of curves needed for the study of surfaces. For
those wishing to go a bit further on the subject of curves, we have included
Secs. 1-6 and 1-7. ’

7-2. Parametrized Curves

We denote by R? the set of triples (x, y, z) of real numbers. Our goal is to
characterize certain subsets of R* (to be called curves) that are, in a certain
sense, one-dimensional and to which the methods of differential calculus
can be applied. A natural way of defining such subsets is through differenti-
able functions. We say that a real function of a real variable is differentiable
(or smooth) if it has, at all points, derivatives of all orders (which are automa-
tically continuous). A first definition of curve, not entirely satisfactory but
sufficient for the purposes of this chapter, is the following.

DEFINITION. A parametrized differentiable curve is a differentiable
map o.: I — R? of an open interval I = (a, b) of the real line R into R3.1

The word differentiable in this definition means that a is a correspondence
which maps each ¢ € [ into a point a(t) = (x(¢), y(t), z(t)) € R® in such a
way that the functions x(z), y(2), z(z) are differentiable. The variable ¢ is called .
the parameter of the curve. The word interval is taken in a generalized sense,
so that we do not exclude the cases @ = —oo, b = +$oo.

If we denote by x'(¢) the first derivative of x at the point 7 and use similar
notations for the functions y ‘and z, the vector (x'(¢), y'(2), z'(¢)) = &'(¢) € R?
is called the tangent vector (or velocity vector) of the curve a at z. The image
set a(/) = R? is called the trace of a. As illustrated by Example 5 below, one
should carefully distinguish a parametrized curve, which is a map, from its
trace, which is a subset of R>.

A warning about terminology. Many people use the term “infinitely
differentiable” for functions which have derivatives of all orders and reserve
the word “differentiable” to mean that only the existence of the first deriva-
tive is required. We shall not follow this usage.

Example 1. The parametrized differentiable curve given by
o(t) = (acos t, asin t, bt), t ER,

has as its trace in R? a helix of pitch 2zb on the cylinder x* 4 y? = a2. The
parameter ¢ here measures the angle which the x axis makes with the line
joining the origin 0 to the projection of the point a(z) over the xy plane (see
Fig. 1-1).

11n italic context, letter symbols will not be italicized so they wi\ll be clearly distin-
guished from the surrounding text.
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Figure 1-1 Figure 1-2

Example 2. The map a: R — R? given by a(t) = (£*,1*), t € R, is a
parametrized differentiable ~urve which has Fig. 1-2 as its trace. Notice that
a’(0) = (0, 0); that is, the velocity vector is zero for t = 0.

Example 3. The map a: R — R* given by a(t) = (> —41,t* — 4),
t € R, is a parametrized differentiable curve (see Fig. 1-3). Notice that
(2) = a(—2) = (0, 0); that is, the map « is not one-to-one.

by}

0 y
0
Figure 1-3 Figure 1-4

Example 4. The map a: R — R? given by a(t) = (¢, |t]),t € R, is not a
parametrized differentiable curve, since |7z| is not differentiable at 1 =0
(Fig. 1-4).

Example 5. The two distinct parametrized curves

o(t) = (cos t, sin 2),
P(@) = (cos 2t, sin 21),
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where t € (0 — €, 2n + €), € > 0, have the same trace, namely, the circle*
x* 4+ y? = 1. Noticé that the velocity vector of the second curve is the
double of the first one (Fig. 1-5).

Figure 1-5

We shall now recall briefly some properties of the inner (or dot) product
of vectors in R3. Let u = (u,, u,, ;) € R?® and define its norm (or length) by
|u] = Jut + ul +ul.

Geometrically, |u]| is the distance from the point (u,, u,, u,) to the origin
0 = (0,0, 0). Now, let v = (u,, u,, u;) and v = (v,, v,, ¥;) belong to R3?, and
let 8, 0 << @ < =, be the angle formed by the segments Ouw and Ov. The inner
product u-v is defined by (Fig. 1-6)

4 u-v = |ul|v|cos@.

(5

Figure 1-6

The follo;aving properties hold:

1. Assume that # and » are nonzero vectors. Then u-» = 0 if and
only if u is orthogonal to .
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2. uv = veu.
3. Au-v) = Au-v = u-v.
4. u-(w+w) =u-v+ u-w.

A useful expression for the inner product can be obtained as follows.
Let e, = (1,0,0), e, = (0, 1,0), and e; = (0, 0, 1). It is easily checked that
ere; =1 if i = j and that e;-e; = 0 if i 5= j, where i, j =1, 2, 3. Thus, by
writing

U = uyey + u,e, + use,, v = v.€; + Ve, + V€5,
v
and using properties 3 and 4, we obtain
UV = U0y + U0, + U3V;.

From the above expression it follows that if u(f) and »(z), f € I, are
differentiable curves, then u(¢)-2(¢) is a differentiable function, and

2 (ule) o) = w/)-0(0) + u())-v'().

EXERCISES

1. Find a parametrized curve &) whose trace is the circle x2 4+ y2 = 1 such that
a(?) runs clockwise around the circle with &(0) = (0, 1).

2. Let 0(7) be a parametrized curve which does not pass through the origin. If a(t,)
is the point of the trace of & closest to the origin and ®’(f,) = 0, show that the
position vector &(¢,) is orthogonal to &'(z,).

3. A parametrized curve &(r) has the property that its second derivative a'’(z) is
identically zero. What can be said about & ?

4. Let &: I — R3 be a parametrized curve and let v € R? be a fixed vector. Assume
that &/(¢) is orthogonal to v for all # € I and that ®(0) is also orthogonal to ».
Prove that &(z) is orthogonal to v for all ¢ € 1.

S5. Leta:I— R3bea parametriz.ed curve, with «’(r) = 0 for all + € 1. Show that
|&(7)| is a nonzero constant if and only if &(¢) is orthogonal to &'(¢) for all t € I

7-3. Regular Curves; Arc Length
Let a: 7 — R® be a parametrized differentiable curve. For each ¢ € I where

a'(r) # 0, there is a well-defined straight line, which contains the point ()
and the vector a'(z). This line is called the fangent line to « at t. For the study
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of the differential geometry of a curve it is essential that there exists such a
tangent line at every point. Therefore, we call any point ¢ where a'(f) = 0
a singular point of o and restrict our attention to curves without singular
points. Notice that the point 7 = 0 in Example 2 of Sec. 1-2 is a singular
point.

DEFINITION. A parametrized differentiable curve a: 1 — R3 is said to
be regular if a'(t) # O for all t € 1.

From now on we shall consider only regular parametrized differentiable
curves (and, for convenience, shall usually omit the word differentiable).

Given ¢ € I, the arc length of a regular parametrized curve a: / — R3,
from the point 7,, is by definition -

s@) = f la’(@)| at,

where

l'()| = ~V/(x'®) + (V' (0)* + (' (@)*

is the length of the vector /(). Since a'(¢) # 0, the arc-length s is a differen-
tiable function of ¢ and ds/dt = |a'(z)|.

In Exercise 8 we shall present a geometric justification for the above
definition of arc length.

It can happen that the parameter ¢ is already the arc length measured from
some point. In this case, ds/dt = 1 = |a'(z)|; that is, the velocity vector has
constant length equal to 1. Conversely, if |a’'(z)| = 1, then

3
fo

i.e., 7 is the arc length of & measured from some point.

To simplify our exposition, we shall restrict ourselves to curves para-
metrized by arc length; we shall see later (see Sec. 1-5) that this restriction is
not essential. In general, it is not necessary to mention the origin of the arc
length s, since most concepts are defined only in terms of the derivatives of
o(s).

It is conveiiient to set still another convention. Given the curve « para-
metrized by arc length s € (a, b), we may consider the curve § defined in
(—b, —a) by B(—s) = a(s), which has the same trace as the first one but is
described in the opposite direction. We say, then, that these two curves
differ by a change of orientation.
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EXERCISES

1. Show that the tangent lines to the regular parametrized curve &(r) = (3¢, 3t2,
2t3) make a constant angle with the line y = 0, z = x.

2. A circular disk of radius 1 in the plane xy rolls without slipping along the x
axis. The figure described by a point of the circumference of the disk is called a
cycloid (Fig. 1-7).

Figure 1-7. The cycloid.

*a, Obtain a parametrized curve &: R — R2? the trace of which is the cycloid,
and determine its singular points.
b. Compute the arc length of the cycloid corresponding to a complete rotation
of the disk.

3. Let 04 = 2a be the diameter of a circle S! and 0Y and A4V be the tangents to S
at 0 and A, respectively. A half-line r is drawn from 0 which meets the circle S
at C and the line AV at B. On 0B mark off the segment Op = CB. If we rotate r
about 0, the point p will describe a:curve called the cissoid of Diocles. By taking
0A as the x axis and 0Y as the y axis, prove that

a. The trace of

2 3
2at 2at )’ teR,

0 = (5w 7p
is the cissoid of Diocles (¢ = tan ; see Fig. 1-8).
b. The origin (0, 0) is a singular point of the cissoid.

¢. As t — oo, 0i(z) approaches the line x = 24, and &'(z) — (0, 2a4). Thus, as
t — oo, the curve and its tangent approach the line x = 2a; we say that
x = 2a is an asymptote to the cissoid.

4. Let o (0, m) — R? be given by
o(?) (sm t, cos t + log tan 3 )

where ¢ is the angle that the y axis makes with the vector &(r). The trace of & is
called the tractrix (Fig. 1-9). Show that
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v

= ) a(r)

Figure 1-8. The cissoid of Diocles. Figure 1-9. The tractrix.

a. & is a differentiable parametrized curve, regular except at r = 7/2.
b. The length of the segment of the tangent of the tractrix between the point of
tangency and the y axis is constantly equal to 1.

5. Let «: (—1, +o0) — R2? be given by

=7 Jat 3ar*
ek (1 130T F 13)'

Prove that:
a. For t = 0, & is tangent to the x axis.
b. As t — oo, &(t) — (0, 0) and () — (0, 0). -
c. Take the curve with the opposite orientation. Now, as r — —1, the curve
and its tangent approach the line x -+ y + a == 0.
The figure obtained by completing the trace of & in such a way that it
becomes symmetric relative to the line y = x is called the folium of Descartes
(see Fig. 1-10).

6. Let a(r) = (ae® cos t,ae%sint), t € R, a and b constants, a> 0, b <0, be a
parametrized curve.



