PRINCIPLES of PHYSICAL CHEMISTRY # PRINCIPLES of PHYSICAL CHEMISTRY ### An Introduction to Their Use in the Biological Sciences by WALLACE S. BREY, Jr. University of Florida | | | PERIODS | | | | | | # | + | | |-----------------|------------------|------------------------|----------------------|----------------------|---------------------------------------|------------------------|--------------------------|-------------------------------------|---|--| | 1 | 1
H
1.008 | 3
Li
6.940 | 11
Na
22.99 | 19
7
39.10 | 37
Rb
85.48 | 55
Cs
132.9 | 87
7 Fr
(223) | * Lantharide →
Elements
58-71 | † Actinide →
Elements
90-101 | | | Ħ | 82 | i Be | 12
12
39 24.32 | Ca
Ca
10 40.08 | % % % % % % % % % % % % % % % % % % % | 5 56
S Ba
137.4 | 7 88
r Ra
3) 226.1 | aride –
ents
71 | its 1 | | | <u> </u> | | | non | 21
Sc
8 44.96 | 39
X
3 88.92 | 57*
L La
4 138.9 | 89†
1 227 | † | | | | N A | | | | 22
Ti
36 47.90 | 2 2r 2z 91.22 | 72
1 Hf
19 178.5 | + ,, _ | Ce 58 | 847.28 | | | Y | | | | 23
V
90 50.95 | 41
Nb
22 92.91 | 73
f Ta
.5 181.0 | | 59
Pr
1 140.9 | 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 | | | VI _b | | | | 24
Cr
5 52.01 | 42
Mo | 74
W
0 183.9 | | 00
Nd
144.3 | 20
D
238.1 | | | VП. | | | | 25
Mn
1 54.94 | 43
(99) | 75
Re
9 186.2 | | 61
Pm
(145) | 8 N (752) | | | | | | | 26
Fe
55.85 | Ru 101.1 | 76
Os
190.2 | | Sm
150.4 | Pu (242) | | | VШδ | | | | 27
Co
58.94 | 45
Rh
102.9 | 77
Fr
192.2 | | 63
Eu
152.0 | 95
Am
(243) | | | | | | | 28
Ni
58.71 | 46
Pd
106.4 | 78
Pt
195.1 | | 64
157.3 | 8 9 8
8 H 8 | | | I | | | | 29
Cu
63.54 | 47
Ag
107.9 | 79
Au
197.0 | | 65
Tb
158.9 | 97
Bk
(249) | | | пп | | | | 30
Zn
65.38 | 48
Cd
112.4 | 80
Hg
200.6 | | 98
Dy
162.5 | 82.8
83.8 | | | щ | | 5
B
10.82 | 13
A1
26.98 | 31
Ga
69.72 | 49
In
114.8 | 81
T1
204.4 | | 67
Ho
164.9 | 8 ta (8) | | | IV. | | 6
C
12.01 | 14
Si
28.09 | 32
Ge
72.60 | 50
Sn
118.7 | 82
Pb
207.2 | | 68
Er
167.3 | 100
(254) | | | 'n | | 7
N
14.01 | 15
P
30.98 | 33
As
74.91 | 51
Sb
121.8 | 83
Bi
209.0 | | 69
Tm
168.9 | 101
Mv
(256) | | | VI. | | 8
O
16.00 | 16
S
32.07 | 34
Se
78.96 | 52
Te
127.6 | % P8 210 | | 70
Yb
173.0 | | | | VII | | 9
F
19.00 | 17
Cl
35.46 | 35
Br
79.92 | 53
I
126.9 | 85
At
(210) | | 71
Lu
175.0 | | | | VIII, | 2
He
4.003 | 10
Ne
20.18 | 18
A
39.94 | % Kr
83.80 | Xe
131.3 | 8 Kr 88 | | | | | #### **COMMON LOGARITHMS** | n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | Prop. Parts | | | | | | |-----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--|---|------------------------------|------------------------------|--------------------------------------|--------------------------------------| | 10 | 0000 | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0294 | 0334 | 0374 | | 43 | 42 | 41 | 40 | | | | 11
12
13
14 | 0414
0792
1139
1461
1761 | 0453
0828
1173
1492 | 0492
0864
1206
1523
1818 | 0531
0899
1239
1553 | 0569
0934
1271
1584
1875 | 0607
0969
1303
1614
1903 | | 0682
1038
1367
1673 | 0719
1072
1399
1703 | 0755
1106
1430
1732
2014 | 1
2
3
4
5 | 4.3
8.6
12.9
17.2
21.5 | 21.0 | 20.5 | | | | | 16
17
18
19 | 2041
2304
2553
2788 | 2068
2330
2577
2810 | 2095
2355
2601
2833 | 2122
2380
2625
2856 | 2148
2405
2648
2878 | 2175
2430
2672
2900 | 2201
2455
2695
2923 | 2227
2480
2718
2945 | 2253
2504
2742
2967 | 2279
2529
2765
2989 | 6
7
8
9 | 30.1
34.4
38.7 | 37.8 | 28.7
32.8
36.9 | 36.0 | | | | 20 | 3010 | 3032 | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 | 3181 | 3201 | | 39 | 38 | 87 | 36 | | | | 21
22
23
24
25 | 3222
3424
3617
3802
3979 | 3243
3444
3636
3820
3997 | 3263
3464
3655
3838
4014 | 3284
3483
3674
3856
4031 | 3304
3502
3692
3874
4048 | 3324
3522
3711
3892
4065 | 3345
3541
3729
3909
4082 | 3365
3560
3747
3927
4099 | 3385
3579
3766
3945
4116 | 3404
3598
3784
3962
4133 | 1
2
3
4
5
6
7 | 19.5
23.4 | 7.8
11.7
15.6
19.5
23.4
27.3 | 22.8
26.6 | 22,2
25.9 | 18.0
21.6
25.2 | | | 26
27
28
29 | 4150
4314
4472
4624 | 4166
4330
4487
4639 | 4183
4346
4502
4654 | 4200
4362
4518
4669 | 4216
4378
4533
4683 | 4232
4393
4548
4698 | 4249
4409
4564
4713 | 4265
4425
4579
4728 | 4281
4440
4594
4742 | 4298
4456
4609
4757 | 9 | 31.2
35.1
35.1 | | 29.6
33.3
33 | 28.8
32.4
32 | | | | 30 | 4771 | 4786 | 4800 | 4814 | 4829 | 4843 | 4857 | 4871 | 4886 | 4900 | 1
2 | 3.5
7.0 | 3.4
6.8 | 3.3
6.6 | 3.2
6.4 | | | | 31
32
33
34 | 4914
5051
5185
5315 | 4928
5065
5198
532 8 | 4942
5079
5211
5340 | 4955
5092
5224
5353 | 4969
5105
5237
5366 | 4983
5119
5250
5378 | 4997
5132
5263
5391 | 5011
5145
5276
5403 | 5024
5159
5289
5416 | 5038
5172
5302
5428 | 3 4 5 6 7 | 10.5
14.0
17.5
21.0
24.5
28.0 | 10.2
13.6
17.0
20.4
23.8 | 9.9
13.2
16.5
19.8 | 9.6
12.8
16.0 | | | | 35 | 5441 | 5453 | 5465 | 5478 | 5490 | 5502 | 5514 | 5527 | 5539 | 5551 | 8 | | | 26.4 | 25.6 | | | | 36
37
38
39 | 5563
5682
5798
5911 | 5575
5694
5809
5922 | 5587
5705
5821
5933 | 5599
5717
5832
5944 | 5611
5729
5843
5955 | 5623
5740
5855
5966 | 5635
5752
5866
5977 | 5647
5763
5877
5988 | 5658
5775
5888
5999 | 5670
5786
5899
6010 | 1 | 31 | 3.0 | 2.9 | 28 | | | | 40 | 6021 | 6031 | 6042 | 6053 | 6064 | 6075 | 6085 | 6096 | 6107 | 6117 | 3 | 6.2
9.3 | 6.0
9.0 | 5.8
8.7 | 5.6
8.4 | | | | 41
42
43
44 | 6128
6232
6335
6435 | | 6149
6253
6355
6454 | 6160
6263
6365
6464 | 6170
6274
6375
6474 | 7180
6284
6385
6484 | 6191
6294
6395
6493 | 6201
6304
6405
6503 | 6212
6314
6415
6513
6609 | 6222
6325
6425
6522
6618 | 4
5
6
7
8
9 | 12.4
15.5
18.6
21.7
24.8 | 15.5
18.6
21.7
24.8 | 15.5
18.6
21.7
24.8 | 12.0
15.0
18.0
21.0 | 11.6
14.5
17.4
20.3
23.2 | 11.2
14.0
16.8
19.6
22.4 | | 45
46 | 6532 | 6542 | 6551
6646 | 6561
6656 | 6571
6665 | 6580
6675 | 6590
6684 | | 6702 | 6712 | ľ | | | | | | | | 47
48
49 | 6628
6721
6812
6902 | 6637
6730
6821
6911 | 6739
6830
6920 | 6749
6839
6928 | 6758
6848
6937 | 6767
6857
6946 | 6776
6866
6955 | | 6794
6884
6972 | 6803
6893
6981 | 1 2 | 2.7
5.4 | 2.6
5.2 | | 2.4
4.8 | | | | 50 | 6990 | 6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067 | 3
4 | 8.1
10.8 | | 10.0 | 7.2
9.6 | | | | 51
52
53
54 | 7076
7160
7243
7324 | 7084
7168
7251
7332 | 7093
7177
7259
7340 | 7101
7185
7267
7348 | 7110
7193
7275
7356 | 7118
7202
7284
7364 | 7126
7210
7292
7372 | 7135
7218
7300
7380 | 7143
7226
7308
7388 | 7152
7235
7316
7396 | 5
6
7
8
9 | 13.5
16.2
18.9
21.6
24.3 | 15.6
18.2
20.8 | 15.0
17.5 | 14.4
16.8
19.2 | | | | n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Parts | | | | _ | | | #### **COMMON LOGARITHMS** | Prop. Parts | | | | n | 0 | 1 | 2 | 3 | 4 | 5 | _* 6 | 7 | 8 | 9 | | |-----------------------|---------------------------------|---------------------------------|---------------------------------|--|----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------| | | 23 | 22 | 21 | 20 | 55 | 7404 | 7412 | 7419 | 7427 | 7435 | 7443 | 7451 | 7459 | 7466 | 7474 | | 1
2
3
4 | 4.6 4.4
6.9 6.6 | 2.2
4.4
6.6
8.8 | 2.1
4.2
6.3
8.4 | 2.0
4.0
6.0
8.0 | 56
57
58
59 | 7482
7559
7634
7709 | 7490
7566
7642
7716 | 7497
7574
7649
7723 | 7505
7582
7657
7731 | 7513
7589
7664
7738 | 7520
7597
7672
7745 | 7528
7604
7679
7752 | 7536
7612
7686
7760 | 7543
7619
7694
7767 | 7551
7627
7701
7774 | | 5
6 | 11.5
13.8 | 11.0
13.2 | 10.5
12.6 | 10.0
12.0 | 60 | 7782 | 7789 | 7796 | 7803 | 7810 | 7818 | 7825 | 7832 | 7839 | 7846 | | 7
8
9 | 16.1
18.4
20.7 | 15.4
17.6
19.8 | 14.7
16.8
18.9 | 14.0
16.0
18.0 | 61
62
63
64 | 7853
7924
7993
8062 | 7860
7931
8000
8069 | 7868
7938
8007
8075 | 7875
7945
8014
8082 | 7882
7952
8021
8089 | 7889
7959
8028
8096 | 7896
7966
8035
8102 | 7903
7973
8041
8109 | 7910
7980
8048
8116 | 7917
7987
8055
8122 | | | 19 | 18 | 17 | 16 | 65 | 8129 | 8136 | 8142 | 8149 | 8156 | 8162 | 8169 | 8176 | 8182 | 8189 | | 1
2
3
4
5 | 1.9
3.8
5.7
7.6
9.5 | 1.8
3.6
5.4
7.2
9.0 | 1.7
3.4
5.1
6.8
8.5 | 1.6
3.2
4.8
6.4
8.0 | 66
67
68
69 | 8195
8261
8325
8388 | 8202
8267
8331
8395 | 8209
8274
8338
8401 | 8215
8280
8344
8407 | 8222
8287
8351
8414 | 8228
8293
8357
8420 | 8235
8299
8363
8426 | 8241
8306
8370
8432 | 8248
8312
8376
8439 | 8254
8319
8382
8445 | | 6
7
8 | 11.4 | 10.8
12.6 | 10.2
11.9 | 9.6
11.2 | 70 | 8451 | 8457 | 8463 | 8470 | 8476 | 8482 | 8488 | 8494 | 8500 | 8506 | | 9 | 15.2
17.1
15 [| 14.4
16.2 | 13.6
15.3 | 12.8
14.4 | 71
72
73
74 | 8513
8573
8633
8692 | 8519
8579
8639
8698 | 8525
8585
8645
8704 | 8531
8591
8651
8710 | 8537
8597
8657
8716 | 8543
8603
8663
8722 | 8549
8609
8669
8727 | 8555
8615
8675
8733 | 8561
8621
8681
8739 | 8567
8627
8686
8 745 | | 1 | 1.5 | 1.4 | 1.3 | 1.2 | 75 | 8751 | 8756 | 8762 | 8768 | 8774 | 8779 | 8785 | 8791 | 8797 | 8802 | | 2 3 4 5 6 | 3.0
4.5
6.0
7.5
9.0 | 2.8
4.2
5.6
7.0
8.4 | 2 3.9
6 5.2
0 6.5 | 3.9 3.6
5.2 4.8
6.5 6.0
7.8 7.2 | 76
77
78
79 | 8808
8865
8921
8976 | 8814
8871
8927
8982 | 8820
8876
8932
8987 | 8825
8882
8938
8993 | 8831
8887
8943
8998 | 8837
8893
8949
9004 | 8842
8899
8954
9009 | 8848
8904
8960
9015 | 8854
8910
8965
9020 | 8859
8915
8971
9025 | | 7
8
9 | 10.5
12.0
13.5 | 9.8
11.2
12.6 | 9.1
10.4 | 9.6
10.8 | 80 | 9031 | 9036 | 9042 | 9047 | 9053 | 9058 | 9063 | 9069 | 9074 | 9079 | | | 111 | 10 | 9 | 8 | 81
82
83 | 9085
9138
9191 | 9090
9143
9196 | 9096
9149
9201 | 9101
9154
9206 | 9106
9159
9212 | 9112
9165
9217 | 9117
9170
9222 | 9122
9175
9227 | 9128
9180
9232 | 9133
9186
9238 | | 1 2 3 | 1.1
2.2
3.3 | 1.0
2.0
3.0 | 0.9
1.8
2.7 | 0.8
1.6
2.4 | 84
85 | 9243
9294 | 9248
9299 | 9253
9304 | 9258
9309 | 9263
9315 | 9269
9320 | 9274
9325 | 9279
9330 | 9284
9335 | 9289
9340 | | 4
5
6
7
8 | 4.4
5.5
6.6
7.7
8.8 | 4.0
5.0
6.0
7.0 | 3.6
4.5
5.4
6.3 | 3.2
4.0
4.8
5.6 | 86
87
88
89 | 9345
9395
9445
9494 | 9350
9400
9450
9499 | 9355
9405
9455
9504 | 9360
9410
9460
9509 | 9365
9415
9465
9513 | 9370
9420
9469
9518 | 9375
9425
9474
9523 | 9380
9430
9479
9528 | 9385
9435
9484
9533 | 9390
9440
9489
9538 | | 9 | 9.9 | 8.0
9.0 | 7.2
8.1 | 6.4
7.2 | 90 | 9542 | 9547 | 9552 | 9557 | 9562 | 9566 | 9571 | 9576 | 9581 | 9586 | | 1 2 | 7
0.7
1.4 | 0.6
1.2 | 0.5
1.0 | 0.4
0.8 | 91
92
93
94 | 9590
9638
9685
9731 | 9595
9643
9689
9736 | 9600
9647
9694
9741 | 9605
9652
9699
9745 | 9609
9657
9703
9750 | 9614
9661
9708
9754 | 9619
9666
9713
9759 | 9624
9671
9717
9763 | 9628
9675
9722
9768 | 9633
9680
9727
9773 | | 3
4 | 2.1
2.8 | 1.8
2.4 | 1.5
2.0 | 1.2
1.6 | 95 | 9777 | 9782 | 9786 | 9791 | 9795 | 9800 | 9805 | 9809 | 9814 | 9818 | | 5
6
7
8
9 | 3.5
4.2
4.9
5.6
6.3 | 3.0
3.6
4.2
4.8
5.4 | 2.5
3.0
3.5
4.0
4.5 | 2.0
2.4
2.8
3.2
3.6 | 96
97
98
99 | 9823
9868
9912
9956 | 9827
9872
9917
9961 | 9832
9877
9921
9965 | 9836
9881
9926
9969 | 9841
9886
9930
9974 | 9845
9890
9934
9978 | 9850
9894
9939
9983 | 9854
9899
9943
9987 | 9859
9903
9948
9991 | 9863
9908
9952
9996 | | | Prop. Parts | | | | n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ### PRINCIPLES of PHYSICAL CHEMISTRY #### TEXTS IN CHEMISTRY Ralph S. Halford, Columbia University CONSULTING EDITOR #### **PREFACE** This book is intended to acquaint the biological scientist with the field of physical chemistry and to indicate how the understanding of physicochemical principles sheds light on the behavior of matter. In addition to the fundamental principles of the subject, there are also presented some illustrations of the application of physical chemistry to the solution of biochemical problems. The mathematical background required of the reader is limited to simple algebra and the use of logarithms. Although some ideas of the calculus are introduced where appropriate to the development of the subject, these are fully explained as they are employed. A brief mathematical appendix summarizes pertinent mathematical principles. It is expected that the book will serve as a text for a one-semester course for premedical students, such as the author has taught for a number of years in three different institutions. Enough material has been included, however, so that it will be adequate for a full year's course, while for one semester's work the instructor has the opportunity to make a selection from among the subject matter in the latter chapters. Experienced workers in the biological and biochemical fields may find the book useful as a review of basic principles and as an introduction to some unfamiliar areas. To this end, the author has endeavored to make the discussions of fundamental ideas sufficiently complete so that they may be of value to the independent reader, and to supply in the bibliographies a guide to helpful supplemental information to be found in the literature at various levels of specialization, from the elementary introduction to the advanced treatment appropriate for someone who wishes to undertake research in a particular field. Finally, it is a pleasure to express my appreciation for assistance in the preparation of the manuscript to my wife, Mary Louise. Her aid, encouragement, and constructive criticism have contributed materially to the writing of the book. Gainesville, Florida W. S. B., Jr. #### Copyright © 1958 by #### APPLETON-CENTURY-CROFTS, INC. All rights reserved. This book, or parts thereof, must not be reproduced in any form without permission of the publisher. 5107-1 Library of Congress Card Number: 57-10958 ### **CONTENTS** | Preface | V | |---|-----| | 1. STATES OF MATTER | 1 | | 2. SOLUTIONS OF NONELECTROLYTES | 46 | | 3. THERMODYNAMICS AND ENERGY RELATIONS 3.1, Energy, Work, and Heat 3.2, Thermochemistry 3.3, Availability of Energy 3.4, Chemical Equilibrium 3.5, Energy Relations in Living Systems | 89 | | 4. SOLUTIONS OF ELECTROLYTES | 132 | | 5.1, Brönsted-Lowry Concept of Acids and Bases 5.2, Aqueous Solutions and the pH Scale 5.3, Weak Electrolyte Equilibria 5.4, Equilibria Involving Several Solutes 5.5, Physiological Applications | 163 | | 6. OXIDATION-REDUCTION EQUILIBRIA | 196 | | 7. ADSORPTION AND SURFACE EFFECTS | 230 | | viii | CON | TENTS | |---------|--|-------| | 8. CC | DLLOIDAL DISPERSIONS | 259 | | | 8.1, Nature 8.2, Preparation and Stability of Dispersions 8.3, Filtration and Particle Size 8.4, Optical Properties 8.5, Kinetic Properties 8.6, Electrokinetic Properties 8.7, Structural Properties | | | 9. OS | MOSIS AND MEMBRANE EFFECTS | 301 | | | 9.1, Osmosis and Osmotic Pressure 9.2, Selective Permeability 9.3, Donnan Membrane Effects 9.4, Membrane Potentials | | | 10. KIN | NETICS OF CHEMICAL REACTIONS | 319 | | | 10.1, Introduction 10.2, Kinetics of Simple Reactions 10.3, Reaction Orders and Rate Constants 10.4, Complex Reactions 10.5, Effect of Temperature on Rate Constant 10.6, Catalysis 10.7, Enzyme-Catalyzed Reactions | | | 11. RA | DIATION AND MOLECULAR STRUCTURE | 351 | | | 11.1, Electromagnetic Radiation 11.2, The Electronic Structure of the Atom 11.3, Valence 11.4, Polarization of Molecules 11.5, Absorption and Emission of Radiation by Molecules | | | 12. NU | CLEAR CHEMISTRY | 397 | | | 12.1, Structure of the Atom 12.2, Nuclear Reactions 12.3, Nuclear Radiations 12.4, Tracers | | | Appendi | X: MATHEMATICAL PRINCIPLES | 419 | | (Notes: | | 400 | 1 #### STATES OF MATTER #### 1.1 INTRODUCTION #### Molecular picture of matter The differences that we observe in the characteristics of the three states of matter—gas, liquid, and solid—depend upon variations in the condition of aggregation of the molecules of which matter is composed. In a gas, the molecules are relatively far apart and are free to move almost independently of one another. The kinetic theory describes the molecules of gases as separate particles which are in continuous motion. Each molecule travels in a straight line until it collides with another molecule or strikes the wall of the vessel in which it is confined. When the confining vessel is enlarged, molecular motion causes the gas to spread through all of the newly accessible space, whereas external application of pressure readily compresses the gas into a smaller volume, for the molecules have a relatively large amount of empty space between them. In a liquid, the molecules are more restricted in their movements; they are able to roll past one another so that the liquid can flow, but they detach themselves from intimate association with other molecules in the bulk of the liquid only with considerable difficulty. In a solid, each molecule has a definitely assigned average position, about which it may vibrate; movement of the molecule out of its own small compartment, formed by neighboring molecules, is a comparatively unusual event. The state assumed by a particular sample of matter under a given set of conditions depends upon a balance between the kinetic energy of the molecules, on the one hand, and the sum of the intermolecular attractive forces plus the restraining effect, or pressure, imposed by the environment, on the other hand. The average kinetic energy per molecule in a group of molecules increases as the absolute temperature increases. In fact, a rise in temperature is essentially an increase in molecular activity resulting from the addition of energy: for gaseous molecules the velocity of translational motion increases, whereas in a solid the vibratory motion becomes greater in magnitude. At a sufficiently low temperature any material will be a solid; let us now picture what happens as the temperature of the material is raised. The molecules acquire additional energy, and eventually the amount of this energy is sufficient to disrupt the solid structure and to permit the molecules to leave their localized positions. At this temperature there occurs fusion, or melting, of the solid to form liquid. Further increase in temperature of the liquid decreases its resistance to flow, or viscosity, and there is finally reached a temperature at which another change of state occurs, the formation of a vapor. Vaporization requires energy sufficient both to pull the molecules away from one another against the forces of attraction which hold them together in the liquid, and to do the work of pushing back the atmosphere or the surrounding container to permit the very large volume change associated with conversion of liquid to gas. #### Intermolecular forces The nonchemical forces, often referred to as van der Waals forces, by which atoms or molecules attract one another, are primarily electrical in nature, the attraction of positive charges for negative charges. Despite the fact that an atom or molecule when viewed from a distance is electrically neutral, an observer close to the particle may find himself nearer to the charge of one sign than to that of the opposite sign. As a consequence of their origin, van der Waals forces are then very short range forces. Molecules are composed of atoms, each of which consists of a positive nucleus and negative electrons moving about outside the nucleus. In forming a molecule the constituent atoms share some of their electrons, which are then able to move about in the vicinity of two or more different atoms. If the "center of gravity" of the negative charges carried by the electrons does not, in a certain molecule, coincide with the center of gravity of the positive charges resident on all the atomic nuclei, that molecule is said to have a separation of charge, or a dipole. When two particles having dipoles meet with appropriate orientation, either end-to-end or side-by-side, they attract one another: In some molecules, a dipole is a permanent feature of the structure as a consequence of differing affinities of unlike atoms for the valence electrons. These unequal forces pull the electrons toward one part of the molecule. There are, for example, permanent dipoles in water, methanol, bromobenzene, and gaseous hydrogen chloride molecules: INTRODUCTION 3 In other molecules—even in monatomic molecules—which do not themselves have a permanent dipole, a temporary charge-separation or induced dipole may be produced on approach of another molecule which has a permanent dipole. The direction of the *induced dipole* is always that which causes attraction to the inducing dipole. Consider as a nonpolar particle the helium atom, and as the approaching polar molecule a water molecule. If the negative end of the water molecule approaches the helium atom, it repels electrons from the portion of the atom nearest to itself, producing in this region of the helium atom a positive charge which will attract the negative end of the water molecule. If, on the contrary, the positive end of the water molecule happens to be nearest the helium atom, electrons in the latter will be drawn toward the water molecule, placing a negative charge on the part of the helium atom closest to the water molecule; the opposite charges will again attract one another. The two situations may FIG. 1.1 Attraction between dipole of water molecule and induced dipole in a helium atom. be represented as in Figure 1.1. The solubility of helium in water is probably due to this effect. Two molecules which are near together may attract one another in yet a different fashion, despite the fact that neither has a permanent dipole. Because the electrons in a molecule are in constant motion, chance may lead to a momentarily unsymmetrical charge distribution. This in turn may affect the neighboring molecule, inducing a simultaneous and opposite electrical dipole. Thus, two molecules such as two hydrogen molecules, which have on an average over a period of time complete symmetry of negative charge about the nuclei, may experience mutual attractive forces through synchronization of electronic motions. Interactions of this sort, usually referred to as dispersion forces, are responsible for the fact that even the noble gases condense at sufficiently low temperatures. There may thus exist, under various circumstances, attractions resulting from the orientation of one permanent dipole by another, from the induction of a dipole by a permanent dipole, and from dispersion forces. Except for rather highly polar molecules such as ammonia and water, the van der Waals forces leading to condensation of gas to liquid consist largely of dispersion forces. #### Phase diagrams Each of the forms, or states of aggregation, or structures, which a chemical substance can assume is termed a phase. A sample of water may be found in the vapor phase, in the liquid phase, in that solid phase commonly encountered as ice, or in one of several other solid phases which appear at high pressures and which differ from ordinary ice in the manner in which water molecules are arranged in the crystalline pattern. More generally, a phase may be described as a homogeneous portion of a material system which, if present along with any other phases, is set off from the other phases by a boundary surface or discontinuity. A quantity of matter which is uniform in composition and structure, or homogeneous, throughout is said to consist of one phase. A one-phase system might be entirely gaseous, or might comprise a single liquid layer, or might be composed of particles of a solid all of which are of the same structural pattern or allotropic form. Another type of system is represented by liquid water with pieces of ice floating on the surface; here two phases, one liquid and one solid, are present. If benzene and water, which do not dissolve very much in one another, are mixed together, two liquid layers separated by a visible boundary surface result; again, two phases are coexisting. If liquid water is mixed with a relatively large amount of sodium chloride so that the latter does not all dissolve, the two phases present after equilibrium is reached are saturated aqueous salt solution and solid sodium chloride. The behavior of a chemical substance under various conditions of temperature and pressure is often represented by a phase diagram. In this diagram are shown the ranges of conditions under which each of the several phases that the substance can assume may exist as a stable form, as well as the more limited conditions under which equilibrium coexistence of two or more phases is possible. At this point we shall illustrate the interpretation of a phase diagram for a relatively simple system containing only one substance; later, more complex systems will be considered. Figure 1.2, the phase diagram for the substance water in the lower pressure region, represents schematically the results of experimental determinations of the equilibrium relations of three phases of water in the absence of air or any other foreign material, as in a closed container. In order that the distinctive features may be more clearly seen, the diagram is not drawn to scale. Suppose that the temperature of a sample of water is 50° C. So long as the pressure remains below 92.51 mm. of mercury, the gas phase continues to be stable. If the pressure is momentarily increased to just above 92.51 mm., either by decreasing the container volume or by adding more vapor, the vapor will partially condense to liquid until the loss of gas is sufficient to restore the pressure to its equilibrium value at 50° . If the pressure is increased above 92.51 mm. and kept there by external means, the vapor will completely condense; for in these circumstances only liquid can exist. Thus there is only one pressure under which liquid and vapor of a pure substance can coexist permanently at a given temperature. Similar considerations apply to the vapor and solid: at -10° C., for example, vapor INTRODUCTION 5 can exist by itself at pressures below 1.95 mm. while the solid alone exists at pressures exceeding this. Only at this one particular pressure can the two phases be in equilibrium. Water is rather unusual in that increasing pressure lowers the melting point of the solid phase; this trend is indicated by the inclination of the line o-b to the left. At about 1000 atmospheres, the solid phase and the liquid phase may be in equilibrium at -10° . For most substances, the solid phase is more dense than the liquid phase and tends to be formed more FIG. 1.2 Phase diagram of water. Other forms of ice than ordinary ice exist at high pressures beyond the range of the diagram. readily at higher pressures, but the structure of ice is such that it is less compact and therefore less dense than liquid water at the same temperature. The phase diagram for the substance carbon dioxide is similar to that for water except for this one feature: the line corresponding to o-b and separating the solid and liquid regions slopes to the right rather than to the left. A point of particular interest in Figure 1.2 is that designated o and known as the triple point. At this point the temperature is 0.0098° and the pressure is 4.58 mm., and it is only under these conditions that all three phases, gas, liquid, and solid, can be together in equilibrium. If the three phases are mixed together at any other temperature or pressure, one or two of them will disappear in order to establish equilibrium. The zero of temperature on the centigrade scale is defined as the freezing point of water; this is not the same as the triple point but is the temperature at which ice and air-saturated water are in equilibrium under a total pressure of one atmosphere. Under these conditions, most of the pressure of the vapor phase is contributed by air. #### 1.2 GASES #### The ideal gas equation On the basis of experiment there has been evolved a generalized pattern of behavior which a number of gases closely approach and which most gases at least roughly approximate. The outstanding characteristic of a gas is the sensitivity of its volume to changes in temperature and in external pressure. An *ideal* or *perfect* gas is one for which the volume varies in direct proportion to the absolute temperature under constant pressure (Charles' Law) and in inverse proportion to the applied pressure at constant temperature (Boyle's Law): $$V \sim T$$ (1.1) $$V \sim \frac{1}{P} \tag{1.2}$$ These equations may be combined into one, useful for the prediction of volume change when both temperature and pressure vary at the same time: $$V \sim \frac{T}{P}$$ (1.3) Proportional variation implies that one quantity is equal to a constant numerical multiplier times the second quantity; thus the gas equation may be written with a constant of proportionality, c: $$V = \frac{cT}{P} \quad \text{or} \quad PV = cT \tag{1.4}$$ A further result of experiment is the conclusion that the numerical value of the constant c varies directly with the number of gram-molecular-weights of gas in the sample being described, and is the same for samples of different gases which contain the same number of moles. If c is accordingly set equal to nR, where n is the number of moles of gas and R is called the gas constant, the ideal gas law becomes: $$PV = nRT (1.5)$$ This equation, it must be remembered, is a limiting equation, in the