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Preface

In a traditional course of probability theory, the main result is the central limit
theorem — the assertion that Gaussian distributions approximate those of sums
of independent random variables. Since its discovery, probabilists have had to
work hard, both learning calculus and inventing their own tools, before the view
of the effects that appear in summing real random variables became reasonably
clear.

The more recent shift to study of distributions in “very high” or infinite
dimensions brought new discoveries and disappointments.

A fact that can safely be included into either category is that many results for
sums of infinite-dimensional random vectors are quite similar to their real-line
counterparts, and can be obtained by extremely simple means.

This book is an exposition of this homely part of probability in infinite di-
mensions — inequalities and asymptotic expressions for large deviation proba-
bilities, normal and related approximations for distributions of sums — all of
them considered as preparations for the feat of getting a very general CL.T with
an estimate of convergence rate.

Naturally, something is lost upon the passage from one to infinitely many
dimensions — distributions in high dimensions can develop all real-line patholo-
gies as well as some unthinkable in the classical context. Thus, most results
concerning convergence rates in the CLT become fairly bulky if attention is paid
to details. This makes the choice between transparency and completeness of
exposition even less easy.

The compromise attempted here is to provide a reasonably detailed view of
the ideas that have already gained a firm hold, to make the treatment as unified
as possible, and sacrifice some of the details that do not fit into the scheme
or tend to inflate the text beyond reasonable limits. The price is that such a
selection inevitably results biased, and one of the sacrifices was the refined CLT
itself. Bibliographic commentary is intended as a partial compensation of bias.

Most of the text of this book was written in Novosibirsk at the Institute of
Mathematics of Siberian Division of the Russian Academy of Sciences. At the
final stage, the author stayed for some time at Departamento de Matematicas de
Universidad de Oviedo as a scholarship holder of the FICYT (Fundacién por el
Fomento en Asturias de Investigacion Cientifica Aplicada Y Tecnologia). I am
sincerely grateful to these two institutions for the opportunity to work without
haste they gave me.

I am sincerely grateful to my colleagues, in Novosibirsk, Moscow, Vilnius,
Kiev, and many other places, who shared their ideas and created the-intellectual
stimuli indispensable for any mathematical research, and I profit of the opportu-
nity to thank specially the librarians of the Institute of Mathematics who manage
to keep our Novosibirsk library fairly complete despite all the difficulties.

I express my gratitude to Professors Yu.V.Prokhorov and V.V.Sazonov for
advice and encouragement.
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Chapter 1

Gaussian Measures
in Euclidean Space

This chapter exposes some theorems about the distributions of convex functions
with a Gaussian random vector for argument. The results included are mainly
inequalities for specific characteristics of such laws. Some of them will later serve
to derive similar estimates in infinite dimensions.

The terms “normal” and “Gaussian” (distribution, random variable, etc.)
are used as synonyms. The former usually refers to the real line, and the latter
to the case of several dimensions.

1.1 Preliminaries

This section is a reminder of basic facts concerning Gaussian distributions in
Euclidean spaces.

1.1.1 Standard Normal Distribution

On the real line, the density and distribution function (DF) of the standard
normal distribution are

z

o) = e (-4} Vom, 0() = [ ety (1)

— 00

Its characteristic function (CF) is [%_e'*%¢(z)dz = exp{—t2/2}.
For £ — oo, the behavior of the standard normal DF is described by the
asymptotic relation

1 —®(z) = [l + O(1/z?)]p(z)/x. (1.1.2)
There are similar expressions for its derivatives:

' (z) =z [l — ®(z)](1 +0(1)), ¢"(z)=—z?[1 - ®(z)](1+0(1)). (1.1.3)
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The following estimates for integrals with respect to the standard normal
distribution (1.1.1) are used in some calculations below.

Lemma 1.1.1 Fort€ R and =1, 2,
oo
IL(t) = / (z—1)'dd(z) < (1+t_)".
t
Proof of Lemma 1.1.1. The inequality I5(t) < I5(0) = § is evident for t > 0
since the derivative I5(t) is nonpositiive.
Ift <0, then
o o)
I(t) < / (2% + 2|z|t- +12] dB(z) < (1+1-)%.
—o0
The estimate for I;(t) is derived similarly. O

Lemma 1.1.2 If 7>t >0, then

/ (z—t) d<I>(:c)<I'(1'—t Ypr—-o ]i

m:O

T(T—t).

Proof of Lemma 1.1.2. If 7 > 0, then the functions

pi(z) = rexp{—7(z — 1)}, p2(2) = p(z)/[1 - &(7)]

are both densities of distributions concentrated on the half-line [r, 0o).

The ratio pi(z)/p2(z) is increasing and the integrals of both functions over
[r, 00) equal 1, so there is a number A > 7 such that py(z) > pa(z) for z > A
and p;(z) < p2(z) for ¢ < A. Consequently, for each increasing function f

[ 1@ @) - maads = [ " () = £(A) [p1(2) = pa(e)) dz > 0,

and there is inequality

[ r@are) < n-em) [ s@ree
(1 —®(7)) /000 f(r+z/r)e " dz

It is easy to calculate the integral if f(z) = (z — t)'. The calculation yields the
inequality of the lemma. O

1.1.2 Gaussian Distributions: Basic Definitions

The standard Gaussian distribution in R¥, Nk ,o0,1, is one with the density

neo1(z) = (27r)_k/2 exp {—% |1:|2} : (1.1.4)
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A random vector (RV) with distribution (1.1.4) is also called standard Gaussian.
Its coordinates are independent random variables (rv’s) with distribution (1.1.1).

If the distribution of the RV n € R! is Ni,0,1, then, whatever the choice of a
constant vector a € R¥ and k x [ matrix A, the RV

£ =a+An e RF (1.1.5)
has the CF

3 . 1
gk,a,v(t) = Eexp {i(t,€)} = exp {z(a,t) - §(Vt,t)}, (1.1.6)
where t € RF and V = AAT. The covariance matrix of £ and its expectation

e ”cov (5(07 5(:'))

where cov (E(i),f(j)) = E£(el) —E¢(EEY). Each nonnegative matrix admits
some factorization V = AAT with | > k. Consequently, the right-hand side of
(1.1.6) defines the CF of a probability law in R¥ for any a and V > 0.

A Gaussian distribution in R* is a distribution with CF (1.1.6). It is de-
noted by Ni qv. Formula (1.1.5) shows that a RV with an arbitrary Gaussian
distribution can be obtained from a standard Gaussian one with same or greater
number of coordinates by an affine transform. This proves, in particular, that
for each Gaussian RV

Eexp {h|5|2} < oo if |h| < ho(V).

—V, Ef = a, (1.1.7)

The parameters a and V in (1.1.6) are the expectation and covariance matrix of
the distribution. The Gaussian distribution Ng o v is nondegenerate if V > 0.

Theorem 1.1.1 A nondegenerate Gaussian distribution N o v has density

1 |

ng,av(z) = N ) exp{ 5 (V' z - a], [z a])}. (1.1.8)

If the matrix V is degenerate, the Gaussian distribution Ng 4 v is concen-
trated in the affine manifold L = a + V!/2R*. It is absolutely continuous
with respect to the Lebesgue measure in this Euclidean space (whose metric is
inherited from the original space). This is easily verified, e.g., using (1.1.5).

Proof of Theorem 1.1.1. The right-hand side of (1.1.6) is summable if V' > 0,
so the distribution corresponding to this CF does indeed have the continuous
density

neav(z) = (21)7% [exp {—i(z — a,t) — 3(V1,1)} dt.

By changing variables to y = V!/2¢t and z = V~'/%(z — a), the integral is
transformed into

Nk,a,v(Z) = nio,1(2)/\/det (V) = gk,0,1(z)/V/det (27V).

This proves the theorem. O
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1.1.3 Characterization Theorems

Gaussian distributions are infinitely divisible and stable. It follows from the
definition of a multidimensional Gaussian distribution that a RV is Gaussian if
and only if its projection onto each one-dimensional subspace is Gaussian. This
circumstance allows one to extend known theorems concerning characterization
of Gaussian distributions on the real line to multidimensional Euclidean spaces.

Theorem 1.1.2 Let &, n € RF be independent RV ’s.
If £ + n is Gausstan, then both £ and n are Gaussian as well.

Theorem 1.1.3 Let £ and n be i.i.d. RV’s. Put

&(a) = cos(a)é + sin(a)n, n(a) = —sin(a)é + cos(a)n.

a) If, for some a € (0, 7/2), the RV’s £(a) and n(a) are independent and
have identical distributions, then £ and n are centered Gaussian RV’s: L(€) =
L(n) = Ng,o,v with some matriz V > 0.

b) If € and n are independent and have distribulion N o,v, then £(a) and
n(a) are, for each value of a, also independent with the same distribution: L(€) =
L(n) = Nio,v.

1.1.4 Monotonicity in Covariances

The next theorem is a special case of the so-called Slepian inequality. It shows
that for a Gaussian RV the dependence of the joint DF function of coordinates

Pie <) = P (N (69 <00)

on its covariance matrix is, in a sense, monotone.
The CF inversion formula yields the following expression for the DF of a
Gaussian RV: if £(§) = Ng,q,v, then

Nk,a,v(z) = P{E < Z} = / I:(QW)_,C/ ei(l’”)gk’a,v(t)dt] dy. (1.1.9)
y<z

It follows from this equality that, for z fixed, the DI is a smooth function in its

parameters a and V on the set {(a, V) € R¥ x (R¥® RF) : V > 0}.

Lemma 1.1.3 Consider the Gaussian disiribution Nlc o with the covariance

1 &

mairic _ _
V=V(u) =V+uC, ueR.

where V' > 0 and the real square matriz C = (Cj;) is symmetrical with zero
diagonal elements: c¢;; = 0, i = 1,k. The DF of this distribulion satisfies the
relations

d

du k,a,v(m)

= 5> cm / kv () mesim(dy) > 0,

u=0 I#m Atm(2)
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where mes;, is the Lebesgue measure in the (k — 2)-dimensional orthant
Aim(@) = {5 9 <o), j £ bm; y® = 20, 0 = 5m

Proof of Lemma 1.1.3. CF (1.1.6) decays rapidly as |t| — oo. Hence for
small values of u it is possible to interchange the order of differentiation and
integration. It follows that in a neighborhood of zero

d -y | )
— ~ = JUS— E (I) (m) A _'(tly)
d”Nk’a’v(z) 2(2m)* /y<z- I# c’m/t t gk,a,V(t)e dt | dy.

The inner integral in the right-hand side can be represented as a derivative with
respect to y() and y(™): indeed,

m —1 62 -1
I o R Chat

n, -
_ k k,a,V
= (2m) 3y(”(')y("‘) (y)-
To obtain the assertion of the lemma, it suffices to integrate the last identity in
variables y("), (™) and put u=0. O

Theorem 1.1.4 Assume that L(§) = N,a,v and L(n) = Nia,w. If the covari-
ance matrices of these Gaussian distributions satisfy the relations

Vij = Wij, Vij < Wi, i #5,

then for all z € R*
P{{ <z} < P{n<yz}.

Proof of Theorem 1.1.4. If both covariance matrices are nondegenerate, the
inequality of the theorem follows from Lemma 1.1.3. Indeed, in this case the
matrix V = uW+(1—u)V is also nondegenerate forall u € [0,1],and C = W -V
satisfies the conditions of this lemma, so (d/du)Nk,u’;(u)(:z:) > 0.

If at least one of the covariance matrices degenerates, one can first derive the
inequality of the theorem for the distributions with covariance matrices V + €/
and W + €I assuming that € > 0.

As € — 0, the distributions corresponding to these latter matrices weakly
converge to the original ones. This convergence yields the inequality of the
theorem at all continuity points of the DF’s considered. The set of these points
is dense in R¥. Thus, one more passage to the limit shows that the inequality
holds everywhere.

1.1.5 Conditional Distributions and Projections

For Gaussian rv’s, independence and absence of correlations are equivalent.
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Theorem 1.1.5 Let the joint distribution of the real Tv’s € and n be a Gaussian
one. Then £ and n are independent if and only if they are uncorrelated, i.e., if
cov(€,n) = 0.

Proof of Theorem 1.1.5 reduces to calculating the joint CF:
Eexp {is€ +itn} = exp {isE + itEn — 35°DE — 31°Dn — st cov(§, n}.

The right-hand side of this equality splits into the product of CF’s of £ and 7
only if the covariance equals zero. ()
One more result of this kind is

Theorem 1.1.6 Let £ € R* be a Gaussian RV with the distribution Ng,a,v
and b € R* a constant vector. Assume, moreover, that (Vb,b) > 0, and put

n=(0b).
The conditional distribution of £ given n = y is Gaussian with ezpeclalion
and covariance malrizc

m(y) = a— (V6,57 [y—(a,8)]Vb, T =V —(Vb,b)~'Vh(Vb)",
ie, P{€€ Aln=y} = Nimy)s(A) for each measurable subset A C R*.

Proof of Theorem 1.1.6. The RV £ can be represented in the form § = nB+ X,
where the coordinates of X are uncorrelated with the real rv 5. To obtain a
decomposition of this kind it suffices to set B = (Vb,6)”' Vb and X = £ —gB.

Apply (1.1.6) to compute Eexp {i(A, X) + i(p, nB)}, the CF of the 2k-di-
mensional joint distribution. It splits into the product of marginal CF’s, those
of X and nB. Hence these RV’s are independent. 'T'he same calculation shows
they are also Gaussian, and a little more work yields the covariance matrix and
expectation: thus, given n = y the conditional expectation of £ equals EX +yB,

etc. O
The following special case will be used later on. Let £ = (E(j), 9 = I,_k) be a

Gaussian RV. For the conditional distribution of (E(j), j = Q,_Ic) € R*-! given

€(1) = y. the coordinates of the expectation are, by Theorem 1.1.6,

cov (6(1),5(1))

cov (€M), (M)

and the covariance matrix has the elements

cov (E(l), 5(')) cov (E(l),f(.’))
cov (E(l), E( 1 ))

m0) = Eel) 4 (y—Ef(l)), (1.1.10)

vy = cov (£0),6) - (1.1.11)

1.1.6 Laplace Transform for DF of Squared Norm

Let £ € R¥ be a Gaussian RV with the distribution N o v whose covariance
matrix V has the eeigenvalues

2 - . 2 2 2
a—l — _o-u > g'”+1 Z Z Uk’
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where v is the multiplicity of the principal eigenvalue.

Theorem 1.1.7 For each complez number z such that 202 Rez < 1

E exp {z|£|2} = exp{z ([1— 2zV]! a,a)} Hle 1/4/1 2202

The branch of the complex-valued square root in the right-hand side is se-
lected so as to satisfy the condition /1 — 220’? > 0 for Imz = 0.

Proof of Theorem 1.1.7. Let @ be an orthogonal matrix which transforms
V to its diagonal form: QTVQ = (0126,-,-). According to (1.1.5)-(1.1.6), the
distribution N 4,v is that of the RV a + QDn, where D = (0;6;;) is a diagonal
matrix and 7 a standard Gaussian RV. Hence

Eexp {z[¢[’} = Bexp{z[a+ D"} = [T}, 1@%),0;,2),
where @ = QTa = (al)) € R*, |a| = |a|, and

1 {z|d2|} / exp{—%(l—Qzaz) u2+220'&} du.

ex
V2T P

The integrand in I is analytical, so the choice of integration path in the
complex plane does not influence the value of the integral. If Re (1 - 2202) >0,
one arrives at the equality

1 za? 1 — 2z0? }
I _’ b ] = S i — 2 d
@o0) = gz e {aTaen) [, oo e

za?
L Y S Y
exp { T 9:57 }/ 1 —2z07.

The equality of the theorem now results from the relation

k (,—,(1))2 i e .
Zﬁz ([I—QZD] a,a) = ([1—22V] a,a).o

I(a,0,2) =

1.2 Extremal Properties of Half-Spaces

1.2.1 Isoperimetric Property of Sphere
The uniform distribution on the sphere S, C RF is defined by the equality

or(A) = |s,|-‘fm{|r,:,} ds(z), (1.2.1)

where |S;| is the surface area of the sphere (see (A.1.7) and (A.1.8)).
Distribution (1.2.1) can be considered both as a measure on Borel subsets of

RF and as one on subsets of the surface of the sphere. Whenever this does not

lead to misunderstanding, no special effort is spent on discerning between the
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two:
oy (A) = oy (AﬂS,-) , Ac B(R¥); o, (RF) =0, (S,) = L. (1.2.2)
For a half-space
Hep = {2: (2,) <p}, HE,{a: (2,¢)> p}, (12.3)

the value of o, (He,,) does not depend on the direction of the unit vector e,
le| = 1. For instance, o, (He0) = o ( 5,0) — %, whatever the choice of e. If
p >0, then o, (H.,) > 3 and o, (H{ ) < 3.

Half-spaces possess an important extremal property with respect to the u-
niform law on sphere. It is expressed by the so-called isoperimetric inequality
for sphere which is described below in Proposition 1.2.1. Some new notation is
necessary to state it.

On the sphere S, topology can be defined using the geodesic distance p(z,y)
equal to the length of the shortest geodesic connecting z and y. A geodesic

neighborhood of a set A C S; is (cf. (A.1.1))
U [A, 8] = {z € Sr: p(z,A) < 6}, p(z,A) = ig'i; p(z,y). (1.2.4)
v

Proposition 1.2.1 Let A be an arbitrary measurable subset of RF. If
or(4) > o, (H)

for some subspace H = H.,, e € R¥, p > 0, then the values of the unifor-
m distribution on geodesic neighborhoods of these sets are related through the

inequality
V6> 0 o (U [4(S.6]) > o (e [H)S0,8]). (1.2.5)

This proposition will not be proved here (see Appendix B for references).

1.2.2 Constructing Gaussian Law from Uniform Ones

The standard Gaussian distribution can be approximated by marginal distribu-
tions of uniform laws (1.2.1) on spheres in very high dimensions.

Below, the space R is considered as a k-dimensional subspace of the Eu-
clidean space RP with large (and later infinitely growing) number of dimen-
sions. The corresponding orthogonal projection is denoted by P : R? — R*,
and o, p is the uniform distribution (1.2.1) on the sphere of the larger space,

SP) = {zeRP: |z|=r}.
Lemma 1.2.1 The distribution in R* defined by the formula

ve,p(A) = orp ({z € SﬁD) : Pz € A})



