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Preface

The present book is based in part on an earlier book, Introduction to Quantum
Theory, which was published in 1967. At that time I intended that the book be
used as a text for junior or senior undergraduates in physics and for senior
undergraduates and first-year graduate students in chemistry. In the preface I
outlined my approach to the teaching of quantum mechanics and the goals that
I hoped to achieve in a one-semester course on the subject. Since then the book
has been used for 12 years, and I have modified some of my original ideas,
either because of my own observations or due to suggestions made by
colleagues. In order to describe the present book I quote the relevant parts of
the preface to the old book and then discuss the changes in my philosophy and
in the new book.

“The approach is semihistorical. First, it is shown how classical mechanics
became inadequate for the explanation of certain experimental findings. This is
followed by a discussion of the wave nature of free particles from which the
Schrodinger equation is more or less derived. In the historical discussion I felt
free to omit certain developments that had no pedagogic value, although they
might be important from a historical point of view. I tried to keep the
discussion closely linked to physical ideas. Whenever there was a conflict
between physical understanding and mathematical rigor, I always decided in
favor of the former.

“An important consideration in teaching quantum theory at the elementary
level is the inadequate mathematical background of the students. In order to
understand quantum theory and to apply it, the student must have some
knowledge of many branches of mathematics: differential and integral calcu-
lus, Fourier analysis, differential equations, vector analysis, complex numbers,
matrices and determinants, linear equations and eigenvalue problems, and the
theory of special functions. I expect students to be acquainted with elementary
differential and integral calculus, but the other mathematical topics listed
above are discussed here. Naturally the teacher is free to omit any of them
from his discussion if he feels the students are already familiar with them.

“I hope the present work can be used for a variety of courses, particularly
junior and senior physics courses and senior and first-year graduate chemistry
courses. Its length and contents make it suitable for a one-semester course
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vi Preface

designed as a formal introduction to quantum mechanics. It is also suitable for
the first half of a two-semester course in quantum chemistry. In this case, it
needs to be supplemented by another text for the second semester.”

Today, students in physical chemistry need to know more about quantum
mechanics than they did in the past. Specifically, time-dependent quantum
mechanics and the interaction between radiation and matter are essential for
the understanding of newly developed areas in spectroscopy and kinetics. I
added these topics to the new book. I also rounded off the chapter on atomic
structure. Consequently the new book is about 25% larger than the old book,
and it is not possible to cover all its material in one semester. The new version
is suitable for a two-semester course rather than a one-semester course in
quantum mechanics.

I found that most students appreciate the detailed mathematical derivations
in the book. The better qualified students should be familiar with the more
elementary derivations, but they still like to be able to review them. Some of
the readers criticized the organization of the material; they felt that the
relevance of some mathematical discussions to the quantum theory was not
immediately clear because they were separated into different chapters. I felt
that this criticism was justified, and I rearranged the material so that each
mathematical derivation was immediately followed by its quantum mechanical
application. I left the chapter on matrices as a separate entity. Usually I do not
discuss the matrix algebra while teaching the course, but most students like to
have the material available for review purposes.

I revised and expanded the problem sets at the end of each chapter; most
of the new problems are taken from exams that I gave. I also added a list of
recommended books at the end of each chapter. Naturally these lists are far
from complete; they are mostly books that I found useful myself and the
selection reflects my personal taste.

Finally, I wish to thank Dr. O. Zamani-Khamiri for her help in correcting
the manuscript.

HENDRIK F. HAMEKA

Philadelphia, Pennsylvania
May 1981
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CHAPTER ONE

Preliminaries

1-1 Introduction

A beginning student usually has more difficulty in learning quantum mecha-
nics than classical mechanics, although the complexities of the two theoretical
approaches are not widely different. Certain simple systems can be treated
exactly in either quantum mechanics or classical mechanics; examples are
one-dimensional motion, a particle in a central force field, or some two-particle
systems. More complex systems cannot be treated exactly in either classical or
quantum mechanics. They may at best be described by means of approximate
mathematical methods, which are just as complicated and laborious in classical
as in quantum mechanics.

The difficulty in learning quantum mechanics is caused mostly by the fact
that everyone is much more familiar with the concepts and everyday applica-
tions of classical mechanics than with those of quantum mechanics. For
example, in driving a car we must be able to predict the positions of the other
cars on the road at future times and we adjust the future positions of our car
accordingly by using the steering wheel, the gas pedal, and the brake. All this
involves applications of the laws of classical mechanics.

Another example of applied classical mechanics is a baseball game. Every
aspect of a baseball game is related to classical mechanics because it involves
predictions about the orbit of the ball. A major league baseball player must
have an intuitive understanding of classical mechanics because he can judge
and anticipate the flight of the ball much quicker and much more effectively
than any theoretician can calculate it.

As we go through life, we use the results and the concepts of classical
mechanics all the time; we use them when we walk, when we drive a car, when
we play, and even when we eat.

The fundamental laws of classical mechanics were first proposed by
Newton during the seventeenth century. These same laws were transformed
into more sophisticated mathematical form during the eighteenth and nine-
teenth centuries by Lagrange and Hamilton. They were supplemented by
Maxwell during the late nineteenth century in order to describe the behavior of
electrically charged particles.



2 Preliminaries

It is not surprising that, when the structure of the atom was first dis-
covered, scientists expected the particles within the atom to obey the same laws
of classical mechanics as did all other systems that they had been able to
observe. In particular, Lorentz published extensive calculations on the behav-
ior of the electrons within the atom, using a combination of classical mechanics
and the Maxwell equations. This work had a certain degree of success; for
instance, Lorentz explained the Zeeman effect in this way. However, as more
experimental information on atomic structure became available, it showed
conclusively that classical mechanics was not valid within the atom. In order to
explain all these new experimental observations in a logical and consistent
manner, it became necessary to derive a new mechanics.

Since the evidence of experiments and the authority of leading scientists
support the necessity of using quantum mechanics for the description of
atomic motion, the beginning student has no choice but to accept this
situation. Yet emotionally he has difficulty in believing that a baseball game
and a hydrogen molecule are governed by different laws of motion, and he
clings to the classical concept of electrons orbiting around the nuclei as long as
he can. Therefore, before discussing quantum mechanics, we think it is useful
to discuss briefly the arguments and experiments that led to the abandonment
of classical mechanics for atomic motion. This means that we will use the
historical approach in teaching quantum mechanics.

We feel that the historical approach constitutes the best method for
teaching quantum mechanics because it provides a smooth transition from the
old classical mechanics that we are familiar with to the new quantum mecha-
nics that we wish to learn. We will only discuss those theoretical advances that
were important in the development of quantum mechanics because our pur-
pose is to teach the subject and not to give its complete history. Even so, we
will mention some old theories that are now obsolete but that were important
at the time as long as these theories have pedagogical value.

In these early chapters we also review some of the main features of classical
mechanics so that we will be able to recognize where it differs and where it
agrees with quantum mechanics.

Throughout the book we explain the various topics in mathematics that are
necessary for expressing the physical concepts in classical and quantum
mechanics. For example, in Sections 2 and 5 of this chapter we describe some
aspects of vector analysis; in Chapter 3 we discuss Fourier analysis; in Chapter
5 we give a brief review of the theory of differential equations, and so on. We
feel that this mixing of mathematics and physics makes the book more
readable than the other alternative of segregating all mathematics into separate
chapters.

1-2 Classical Mechanics

The basic equation of classical Newtonian mechanics for a particle in three-
dimensional space is most conveniently expressed in terms of vectors. We
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Z

Fig. 1-1 Graphic representation of a vector u
and its three components u,, #,, and u,.

briefly discuss a few vector properties in this section; some additional vector
properties are discussed in Section 5 of this chapter.

A vector u can be defined as a directed line segment. It is determined by its
three components u,, u,, and u, along the x, y, and z axes (see Fig. 1-1).
Therefore, the boldface vector symbol u actually represents three quantities,
which can be denoted by u=(u,, u,, u,). The direction of u is determined by
the three direction cosines, and its magnitude, which is the length of the line
segment and which is denoted by |u| or u, is given by

u=(u§+u§+u22)]/2 (1-1)
The sum w of two vectors u and v,
w=u-+vy (1-2)

is defined such that each component of w is the sum of the two corresponding
components of u and v,

W, =u, to,
w,=u, +vy
w,=u, +v, (1-3)

When a vector u is a function of a parameter ¢, that is, each component of u

is a function of ¢, we can define the derivative of u with respect to #:
du(t)  lim u(r+Ar)—u(z) L4
dt ~ Ar—>0 At (1-4)

This definition is again equivalent to the three equations:

(du) _lim u(t+A)—u (1)

%) A0 Ar and so on (1-3)
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In classical mechanics we can represent the position of a point particle in
three-dimensional space by means of a vector. In Fig. 1-1 we show how the
position of the point P is determined by the vector r, which is identical with
the line segment OP. The Cartesian coordinates (x, y, z) of the point P are the
three components of the vector r. The motion of the point P is described by its
orbit, which is the time dependence r(¢) of its position vector r.

The velocity v(7) of the particle is defined as

_dr
v(t)= 7 (1-6)
and the acceleration a(¢) of the particle is defined as

dv(e) _ d*r(1)

a(r) =g =" (1)
The fundamental equation of Newtonian mechanics is
F=ma (1-8)

In other words, if a particle (or a body) is subject to a force F, it will
experience an acceleration a that is proportional to F. The proportionality
constant m is defined as the mass of the particle. Clearly, the particle will have
zero acceleration a=0 if it is not subjected to any exterior forces. In that case it
will move through space with a constant velocity v.

We may rewrite Eq. (1-8) in a different form by introducing the momentum
p of the particle, which is defined as

p=mv (1-9)
It is easily seen that
_dp
F= @ (1-10)

The equations of motion (1-8) and (1-10) may be solved for simple systems,
such as one-dimensional motion, a particle in a central force field, and so on.
For more complex systems it is useful to make use of a more general
mathematical formulation of the laws of motion. This formulation can be
derived from Hamilton’s principle or the principle of least action, and it leads
to a set of differential equations that are known as the Lagrangian equations of
motion or the Hamiltonian equations of motion. The latter are quite important
in the formulation of quantum mechanics and we feel that it is helpful to
discuss them here. However, we do not present the rigorous derivation of
Hamilton’s equations from the principle of least action; instead we just
illustrate their validity for a simple one-particle system.
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We consider a system of one particle with mass m moving in a conservative
force field. Such a force field is defined by the condition that the three
components F,, F,, and F, of the force acting on the particle can all be
represented as the derivatives of a single function V(x, y, z) of the position
coordinates x, y, and z.

__9
F, = axV(x,y,z)
F=——a V(x, y,z)
ay s b

__ 90
172_ 82 V(X,}’,Z) (1-11)

Equations (1-11) can be combined into a vector equation,
F=—-v¥(x,y,z2) (1-12)

where the three components (d/dx), (3/dy), and (3/9z) are symbolically
represented by the vector symbol v. Each component of F is a function of the
position coordinates x, y, and z. We write F, therefore, as F(x, y, z) and we
call it a vector field. The quantity v V is called the gradient of the function V'
and we can write Eq. (1-12) also as

F(x, y,z)=—grad ¥(x, y, z) (1-13)

A vector field that can be expressed as the gradient of a function of position is
called an irrotational field; it should be noted that not all vector fields are
irrotational.

We will now reformulate the equations of motion (1-10) into the Hamilto-
nian form. By substituting the set of equations (1-12) we find

dp,__ v 4, _ W  dp, W

dt x d 3y at ~  az (1-14)

We define the kinetic energy T of the particle either in terms of the velocity v
or in terms of the momentum p as

_m 1
T—7(03+03+022)—m(pﬁ'*‘pf-i'pzz) (1-15)
Obviously,
dx _  _p._oT
i T m ) (1-16)
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and we have the three equations,

dx oT dy dT dz 0T

—_— = - = — = 1-17
dt dp, dr  dp, d dp, (1-17)

We next introduce the function
H(x, y,2; py, Py P,)=T(Pys Pys ) T V(X, , 2) (1-18)

which is called the Hamiltonian function and which is the energy of the
particle written as a function of the three position coordinates x, y, and z and
of the momentum components p,, p,, and p,. Since T does not depend on x, y,
and z, we have

0H 3V 3H _oV  dH _ v

% dx  dy dy 8z ez (1-19)
and since ¥ does not depend on p, we have
oH _ T 0H _ oT 0H _ dT
— = — = = 1-20
. 9%, O, o, 9. 9 (1-20)
Hence Egs. (1-14) and (1-17) can be reformulated as
de _H &y _OH  d_OH
dt  dp, dr ap, dt dp,
d, d d,
. _ _3H %y __H @, _ (1-21)

dr x dr y dt ~ 08z

In this way the motion of the particle can be derived mathematically from a
single function, the Hamiltonian function H. We note that in Eq. (1-21) the
coordinates and momenta have been “paired off”: the first pair is p, and x, the
second is p, and y, and the third is p, and z. We say that the momentum p, is
conjugate to the coordinate x, and so on.

Equations (1-21) are called Hamilton’s equations of motion. We use them
to show that the Hamiltonian function H is time independent. We have

dH _(3H dx  OH dp.\ (dH dy  OH 9| (3H dz  8H dp,)_
dt ox dr  dp, ot dy dt ~ dp, dr 8z dt  dp, dt |

(1-22)
The Hamiltonian function H represents the energy E of the system; since the

Hamiltonian function is time independent, the energy of the system remains a
constant in time. We call the energy a constant of the motion.
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We mentioned already that Hamilton’s equations of motion are generally
valid; they are valid in different coordinate systems, they are valid for
describing N-particle systems, and so forth. For example, they can be used to
describe the vibrational motion in polyatomic molecules such as methane,
benzene, and so on. We will describe these generalized Hamilton’s equations of
motion, but we do not derive them.

First, we consider again a particle in three-dimensional space, but now we
assume that its position is described by three generalized coordinates (g,, 4,, ¢3)
that are determined in a certain way by the Cartesian coordinates (x, y, z). In
other words, the coordinates g; are functions of x, y, and z:

ql :ql('xa Y Z)
q2 =q2(x$ Y, Z)
43 =4x(x, ¥, 2) (1-23)

For example, we may wish to use polar, elliptical, or cylindrical coordinates,
instead of the Cartesian coordinates. The transformation of Eq. (1-23) also
leads to a new set of momenta ( p,, p,, p;) and to a new Hamiltonian:

H=H(q,,42,95; P1s P2+ P3) (1-24)
The Hamiltonian equations are now given by

dq, dH dp,  0H .
@ op, a3 (i=1,2,3) (1-25)
We see that the momenta p; and the coordinate g, are coupled; we say that p, is
conjugate to g,, p, is conjugate to ¢,, and so on.
The above description is also applicable to systems that are determined by
N coordinates (4, 4;, 45,---,qy) With N either smaller or larger than 3. An
example of such a system is the vibrational motion of a polyatomic molecule.
Again we introduce a set of momenta (p,, py, P5,-.-, Py ), SO that p, is
conjugate to g, p, is conjugate to ¢,, and so forth, and a Hamiltonian function

H=H(4,,93,935--+>9N5 P1> P25+ PN) (1-26)
The Hamiltonian equations of motion are now given by

dgy_9H  dn__?H

dt dp, d  dq (i=1,2,3,...,N) (1-27)

i

If we can solve the Hamiltonian equations, we obtain the solution as a set
of expression g,(t) and p,(¢) as functions of time. However, each of the Egs.
(1-27) contributes an arbitrary integration constant, so that the solution for an
N-coordinate system contains 2 N undetermined parameters. This result agrees



