

STANDARDIZED
DEVELOPMENT
OF
COMPUTER
SOFTWARE

Robért C. Tausworthe

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

PART 1
. METHODS

PRENTICE-HALL, Inc., Englewood Cliffs, New Jersey 07632

Published in 1977 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Printed in the United States of America

10 9 8 7 6 5 4 3
ISBN: 0-13-842195-1

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, PTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

STANDARDIZED
DEVELOPMENT
OF
COMPUTER
SOFTWARE

PREFACE

This monograph started as a set of rules given piecemeal as standards to
a team developing a conversational, incrementally-compiled, machine-
independent version of the Dartmouth BASIC language for the Jet
Propulsion Laboratory, called MBASIC. (Originally, “M” stood for
“management-oriented”, indicating its intended set of users; however, its
great flexibility and ease of use has since won over many scientific and
engineering users as well.) The first draft was a mere collection of the first
sketchy set of rules, along with some background material on structured
programming.

As the design progressed, the emphasis expanded from the design of a
language processor to a project developing software methodology using the
MBASIC developmeént as a testbed activity. New rules were supplied as
necessary and old ones had to be revised or discarded. Some of the ones
that sounded so good when first imposed had effects just opposite to what
was desired. The MBASIC design and documentation standards underwent
several complete iterations, each under new rules to calibrate their
effectiveness. The working drafts of this monograph were in constant
revision to maintain a current set of standards for the project.

Further expansions of the working drafts were made to include much
tutorial material, since I used portions of the text as lecture topics for
graduate-level computer science classes at West Coast University and for
seminars in software standards at the Jet Propulsion Laboratory.
Interactions with the students and professional programmers with widely
different backgrounds proved to be very enlightening.

I realize that some who have already “learned programming” may find
fault with what they read here. I hope their objections are mostly with how
the rules impact their personal programming style. Style is a reflection of a
programmer’s personal programming habits and his own preferences in

vii

viii Preface

the way he does things. If the rules given here don’t work, that is another
matter.

What I have attempted to do is to merge individual disciplines and good
practices into a methodology that neither destroys personal style nor
reduces motivation and involvement. The given set of rules is the base for a
consistent and effective methodology; but there may be other equally
effective and consistent methodologies. I do not allege to profess the only
way toward improved software development—just one that works.

The monograph does not reflect, nor is it meant to reflect, exact
standards or practices now in effect at JPL; however, much of the material
has formed the basis for Deep Space Network software guidelines and
standard practices currently in effect.

Several individuals at the Jet Propulsion Laboratory have reviewed the
drafts and many have provided rules, suggestions, and other material. I
have expected such criticism, and welcomed constructive material by any
who cared to supply it. I have tried to be open to all correct, potentially
worthwhile ways to improve the development of software and to build
these into a uniform coordinated methodology for programming, a set of
rules universally sound.

I offer one apology at the outset—for my literary style. About half-way
through writing this monograph, I was suddenly surprised to learn that I
often referred to software development personnel in the masculine. Lest I
be accused of male chauvanism, let me attempt to defend myself by
explaining that the references appear thus because I tended to place
myself in the roles of these individuals. In writing, I also tended to be
addressing myself, rather than any envisioned reader or actual software
development person. By the time I realized I might be taken to task for
this by distaff readers, the style was set and writing was too far along—
another case where a software error was discovered too late to change the
product without having major schedule and economic impact!

I would like particularly to acknowledge the aid given to me in the form
of encouragement, ideas, criticisms, reviews, questions, and informative
discussions by Walter K. Victor, Mahlon Easterling, Robert Holzman,
James Layland, Robert Chamberlain, Edward Posner, Daniel Preska,
Richard Morris, and Henry Kleine of the Jet Propulsion Laboratory, and
Daniel Lewis, Frank Bracher, John MacMillan, Richard Jaffee, and Howard
Mayberry of National Information Systems, Inc. Also, I want to express my
appreciation to Margaret Seymour for typing the many drafts and to Shozo
Murakami for editorial assistance on this final version.

Preface ix

Finally, I wish to thank those who have attended the many seminars and
classes given from this work during its various stages of completion; many
insights into the secrets of software engineering across a broad programmer
base occurred to me as the result of these classroom discussions.

Robert C. Tausworthe

STANDARDIZED
DEVELOPMENT
OF
COMPUTER
SOFTWARE

v.

CONTENTS

INTRODUCTION .

1.1 THE NEED FOR SOFTWARE STANDARDS
1.2 SOFTWARE DEVELOPMENT
1.3 ORIENTATION.

FUNDAMENTAL PRINCIPLES AND CONCEPTS

2.1 SYSTEMS, PROGRAMS, AND PROCESSORS .

2.2 STRUCTURES . . .

2.3 SOFTWARE DEVELOPMENT

2.4 HIERARCHIES

2.5 CONCEPT HIERARCHIES

2.6 THE TOP-DOWN PRINCIPLE .

2.7 THE CONCURRENT DOCUMENTATION
PRINCIPLE

2.8 SUMMARY

SPECIFICATION OF PROGRAM BEHAVIOR

3.1 SOFTWARE REQUIREMENTS
3.2 IMPLIED REQUIREMENTS

3.3 CREATING THE SOFTWARE REQUIREMENT .

3.4 SOFTWARE FUNCTIONAL DEFINITION

3.5 INTERACTION BETWEEN REQUIREMENTS
AND DEFINITION ACTIVITIES

3.6 INFORMATION-FLOW DIAGRAMS .

3.7 SUMMARY

PROGRAM DESIGN

4.1 DESIGN CONSIDERATIONS

4.2 TOP-DOWN PROGRAM DEVELOPMENT
4.3 PROGRAM ALLOCATIONS :
4.4 MODULARITY IN PROGRAM DESIGN .
4.5 ESTABLISHING DESIGN PRIORITIES .
4.6 SUMMARY

xi

a1 W

10
13
17
19
20
29

32
39

41

42
44
45
46

49
50
53

55

55
59
65
76
89
90

xii

VL.

VIL

VIIL

Contents

STRUCTURED NON-REAL-TIME PROGRAMS

5.1
5.2
5.3
5.4

5.5

5.6

5.7
5.8

STRUCTURED PROPER PROGRAMS

HIERARCHIC EXPANSION OF PROGRAM DETAIL .

PROGRAM CORRECTNESS . .
STRUCTURING UNSTRUCTURED PROPER
PROGRAMS . .

PROGRAM STRUCTURES FOR NON PROPER
PROGRAMS

ABNORMAL TERMINATIONS OF STRUCTURED

PROGRAMS

LABELING FLOWCHART EXITS
SUMMARY

REAL-TIME AND MULTIPROGRAMMED
STRUCTURED PROGRAMS

6.1
6.2
6.3
6.4
6.5
6.6

ATTRIBUTES OF MULTIPROGRAMS .
MULTIPROGRAM DESIGN REQUIREMENTS .
SYNCHRONIZATION METHODS .
CONCURRENT PROGRAM DESIGN METHODS

CONCURRENT STRUCTURE DESIGN .
SUMMARY

CONTROL-RESTRICTIVE INSTRUCTIONS FOR
STRUCTURED PROGRAMMING (CRISP)

7.1
7.2
7.3
7.4
7.5
7.6

THE CRISP CONCEPT
A CRISP PREPROCESSOR
CRISP CODING

CRISP AS A PROCEDURE- DESIGN LANGUAGE ;

DESIGN DOCUMENTATION IN CRISP .
SUMMARY

DECISION TABLES AS PROGRAMMING AIDS .

8.1

8.2 ADDITIONAL ASPECTS OF DECISlON TABLES .

DECISION TABLE TYPES

8.3 APPLICATION OF DECISION TABLES

99

99
113
117

120

140

153
158
160

165

166
177
186
189
206
214

217

218
227
231
242
244
246

249

250
253
256

IX.

Contents

8.4 THE USE OF DECISION TABLES IN
PROGRAMMING . R
8.5 SUMMARY W m w5 g s owm e

ASSESSMENT OF PROGRAM CORRECTNESS

9.1 FORMAL PROOFS . .

9.2 COMPUTER-AIDED ASSESSMENT OF
PROGRAM CORRECTNESS . .

9.3 ASSESSING REAL-TIME PROGRAM
CORRECTNESS

9.4 CONFIDENCE LIMITS FOR VERIFICATION
TESTING

9.5 SUMMARY

PROJECT ORGANIZATION AND MANAGEMENT

10.1 SOFTWARE TEAM PRODUCTIVITY

10.2 THE SOFTWARE DEVELOPMENT TEAM .

10.3 CONDUCT OF THE PROJECT . . .

10.4 SOFTWARE PRODUCTION MANAGEMENT
AND CONTROL . :

10.5 MANAGING THE SOFTWARE DEVELOPMENT

10.6 DESIGN AND PROGRESS REVIEWS .

10.7 EVALUATION OF THE SOFTWARE AND
DEVELOPMENT TEAM .

10.8 SUMMARY

REFERENCES
INDEX

xiii

271
284

287

288

298

306

308
316

321

322
329
335

340
346
355

360
361

365
373

l. INTRODUCTION

A computer system is a rigid, dispassionate machine; it is designed and
built to react in definite, microscopically precise ways to programmed
commands. The program it executes comprises a large collection of atomic
instructions organized into macroscopic algorithms and computational
procedures in performance of a desired task. The differences between a
hoped-for behavior and the actual are evidences of human failures to
instruct the computer properly. Nevertheless, such failures are referred to
as “errors in the program” or “bugs”, and justly so—the servant has
executed but cannot comprehend any reasoning behind the instructions
given it. Moreover, it has constrained the human capacity to communicate
in doing even this much, as it has required instructions in its own
programming language, rather than in more human terms.

Computer programs have thus, from the very first been subject to error—
missteps in coding committed by the programmer—and then not discovered
until after the program’s operation can be examined and seen to be in
error. The cause of such errors may then be either obvious, very elusive, or
somewhere in between. In any case, the diagnosis comes after the fact, as
the computer proceeds at such a pace as to make concurrent diagnoses out
of the question. Once diagnosed, any subsequent (trial) corrections must be

1

2 Introduction [CHAP. 1

rerun to validate the proper response, at extra expense. The human
proclivity to err in programming is probably the singularly most
prominent, overriding factor against producing economical, reliable
software.

Because the computer lacks judgement itself and responds to direction
totally ignorant of the task to be done, programmers attempt to build in
some measure of quasi-judgement by instructing the device to perform
certain tests on input and to check for known or probable processing
anomalies. They may instruct the computer, based on such information, to
take some less abrasive action than complete failure. Such programming
practices are often called “user forgiving”, “error insensitivity”, or
“defensive”. Regardless of the terminology, such practices are attempts to
establish the proper master/servant relationship, whereby the machine
adapts to the human, rather than vice-versa.

R. Holzman, a colleague at JPL, once remarked (1972) “When you can
tell a computer, ‘Oh, you know what I mean!’—and it does—then that’s a
computer language!” The industry, of course, may never attain that goal of
man/machine communication, but it is reaching. In its reaching, it has
made several significant progressions to define methods, procedures, and
standards for use by programmers to reduce the number and severity of
their “program errors”.

Among the first significant developments were the inventions of higher-
level languages, language processors, and the provisions for programmers
to annotate their programs with some form of rationale for their own
benefit. In addition, novice programmers learned to draw flowcharts, as a
prelude to coding, as a means of developing their skill, and as a method for
designing the program procedure—the algorithm scoping the task. But
programmers still made errors, at about the same rate per instruction as
they had previously. The only difference was that as many errors did not
reach the run-time stage, and each instruction did more in a higher-level
language. Still more higher-level languages have been developed; until
today, there are probably as many programming languages as there are
natural languages.

At some point, programmers, or their supervisors, or their customers,
recognized that, even though a program might be working, no one could
understand how it was working well enough to make changes without
introducing a lot of side-effect errors, or how well it was working enough
to assess the programming quality. So the idea, “document what you have
coded so I can understand it”, sprang up. Managerial seminars developed
methods to cajole and coerce [1,2] designers, programmers, coders, et al.,
to document. The necessity to document [3] was evident to all who had to

Sec. 1.1] The Need for Software Standards 3

read and maintain the software, but dreaded by the documentor.
Flowcharting was a nuisance and rarely matched the code, regardless
which was produced first. Annotations of the code were in a similar state,
as were narrative descriptions. Since the computer cannot execute a
flowchart, narrative, or annotation anyway (only the code), and the human
was just as likely to err in describing his code as he was in coding it, other
systems emerged: self-documenting code, automatic flowcharting, standard-
ized documentation formats, etc. Computer technology was beginning to
evolve into an engineering discipline.

1.1 THE NEED FOR SOFTWARE STANDARDS

Years ago, the cost of computing was largely in machine costs; now the
larger portion is paid to people developing, using, and maintaining
programs. In fact, the trend in computing costs is the complete dominance
of manpower costs over machine costs.

Software is big business; the indirect costs caused by failures to meet
schedule or performance requirements often exceed the costs of the
software itself, because software development always seems to be on the
“critical path” of a system development. Boehm [4] suggested the following
prescription for software headaches:

a. Get software off the critical path in system development.

=3

Increase software productivity.

c. Improve software management.

d. Get an earlier start.

e. Make software responsive to actual user needs.

f. Increase software reliability.

The present monograph is an attempt to provide formal disciplines for
increasing the probability of securing software that is characterized by high
degrees of initial correctness, readability, and maintainability, and to
promote practices that aid in the consistent and orderly development of a
total software system within schedule and budgetary constraints. These
disciplines and practices are set forth as a set of rules to be applied during
software development to eliminate (this is the goal)—or at least to
drastically reduce—the time spent debugging the code, to increase
understandability among those who come in contact with it—especially
managers, who must often make decisions relative to competing resources
(such as budget, schedule, execution speed, memory size, etc.)—and to

4 Introduction [CHAP. 1

facilitate operation and alteration of the program as the requirements or
program environment evolves.

To be effective, I recognize that a set of standards must not be imposed
so much as adopted. But once a set is adopted, its rules should be enforced.
Needless to say, some of the rules I give are broad and, therefore, open to
interpretation. I have tried to make these as specific as I could without
destroying their general applicability. But some vagueness may yet remain.

One may question whether the strict adherence to definition, design,
production, testing, and documentation rules hamper programmer
creativity or decrease his motivation and involvement; this has not, in my
experience, turned out to be the case. Programming methodology tends to
be rather scantily taught in computer-science courses in the universities.
What methodology a programmer possesses he may have had to learn
largely for himself, tutored by his own coding, discovered osmotically from
reading programs others have written, or found through discussion with his
peers. Programmers, as any problem-solvers, generally welcome a
workable, well-disciplined approach to problem solving, so they do not
have to re-invent the wheel, so they know what is expected of them and
how they will be judged on their performance, so they know what level of
reporting is required, and so they can really get into the design and make a
clean, good, well-operating system.

Good standards enforce themselves. Once the programmer recognizes
that his own performance is improved by standardized methods, he is its
foremost proponent. When he suddenly realizes that he is capable of
understanding a program written by someone else, he is convinced forever.
I have personally seen instances where experienced programmers have at
first rebelled at the entire concept, but once forced, they recognized the
benefits derived, assisted in further development, and helped enforce
standards in their own organizations.

The reports from industry are equally encouraging. Although productiv-
ity indices tend to be highly variable across wide ranges of applications and
across software development personnel, nevertheless, analysis of quantita-
tive data [5] indicates that the standards forming the basis of this
monograph generally produce better than 50% improvement in overall
project productivity. This overall productivity figure includes analysis,
design, testing, management, support, and documentation, in addition to
coding and debugging. Moreover, the figures in support of this
improvement have been computed in terms of delivered code—the
incidental effort spent in developing code used to support the production
and code, which later had to be replaced, have not been counted.

Sec. 1.2] Software Development 5

1.2 SOFTWARE DEVELOPMENT

At the outset of a programming project, there are only a problem
(program requirement) and a programming language in which the solution
to that problem is to be stated. In between, there is the gap to be bridged
by the development process.

The actual creative process which goes on in a program designer’s mind
is certainly not well understood. It probably rambles from broad concept to
details and completeness, and, perhaps on occasion, from detail to the
broader concept.

When writing a paper or preparing a talk, one first jots down notes, then
an outline of the material to be covered. After the outline is expanded by
way of a few iterations, the narrative is written. Many revisions are usually
necessary if the paper or speech is to be of any significance.

A piece of software probably should not be much different in the way it
is created. Successive refinements and revisions of a program are going to
be necessary if it is to be of high quality.

Moreover, the revision process in software development is unavoidable.
People cannot think of everything, in the right order, correctly, in one pass
(Figure 1-1). One can hope, however, that there are procedures that tend
to let the creative process take a natural course, but yet minimize the
probability that, at some advanced stage of development, one must “throw
out the whole thing and start all over from scratch.”

One of the most costly ways to develop software is to begin the
production phase before the program definition and design have reached
an adequate state of completion. A small change in the program definition,
for example, can avalanche down through the work done, resulting in
suboptimal design, patched programs and code, introduction of undesirable
side effects, and excessive debugging time.

The pressure of a schedule and the awareness that a great deal of coding
has to be done cause many managers to let the design or coding begin,
anyway, just to get started on a job that is obviously huge. Hence, the
process of design is begun throughout the system at the very bottom before
the design has been properly thought out and precisely defined at the top.
A classical “bottom-up” design emerges, leading to difficulty in integrating
the resulting components in a system.

Yet cooperative interaction between the definition, design, and
production activities associated with developing a program can be
mutually beneficial when properly interfaced. The proper interface in this

6 Introduction | [CHAP. 1

Figure 1-1. Bridging the software gap

context is an organization of the tasks to permit revisions and refinements
without requiring extensive rework.

The procedures of this monograph have evolved from the belief that
successive refinement of a concept by adding more and more detail is a
less costly, more certain discipline than refinement by succesive alterations
of the original concept.

One principle by which program concepts evolve in a natural, structured
way emerged from Dijkstra’s work in the THE Multiprogramming System
[6]. He conceived that a program could be organized into hierarchic levels
of support. The principle, known as levels of abstraction (see Sec. 2.5),
formed the basis for what has become known since as structured

