10

Performance
Measurement of

Computer Systems
Phillip McKerrow

Performance
Measurement of

Computer Systems
Phillip McKerrow

University of Wollongong,

&)

ADDISON-WESLEY
PUBLISHING
COMPANY

Sydney - Wokingham, England - Reading, Massachusetts
Menlo Park, California - New York - Don Mills, Ontario
Amsterdam - Bonn - Singapore - Tokyo - Madrid
Bogota - Santiago - San Juan

© 1988 Addison-Wesley Publishers Limited.
© 1988 Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written
permission of the publisher.

The programs presented in this book have been included for their instructional
value. They have been tested with care but are not guaranteed for any particular
purpose. The publisher does not offer any warranties or representations, nor does
it accept any liabilities with respect to the programs.

Cover design by John Gibbs.
Cover graphic by Laurence M. Gartel.
Printed in Great Britain by T.J. Press (Padstow) Ltd, Cornwall.

First Printed in 1987.

British Library Cataloguing in Publication Data

McKerrow, Phillip
Performance measurement of computer systems.
—(International computer science series).
1. Electronic data processing—Evaluation
I. Title II. Series
004 QA76.9.E94

ISBN 0-201-17436-7

Library of Congress Cataloguing in Publication Data

McKerrow, Phillip, 1949-
Performance measurement of computer systems.

(International computer science series)

Bibliography; p.

Includes index.

1. Electronic digital computers—Evaluation

I. Title. -
QA76.9.E94M39 1988 004.2'4 87-19363
ISBN 0-201-17436-7

Performance
Measurement of
Computer Systems

INTERNATIONAL COMPUTER SCIENCE SERIES

Consulting editors A D McGettrick University of Strathclyde
J van Leeuwen University of Utrecht

OTHER TITLES IN THE SERIES

Programming in Ada (2nd Edn.) J G P Barnes

Software Engineering (2nd Edn.) I Sommerville

An Introduction to Numerical Methods with Pascal L V Atkinson and P J Harley
The UNIX System S R Bourne

Handbook of Algorithms and Data Structures G H Gonnet

UNIX for Super-Users E Foxley

Software Specification Techniques N Gehani and A D McGettrick (eds.)
The UNIX System V Environment S R Bourne

Data Communications for Programmers M Purser

Prolog Programming for Artificial Intelligence I Bratko

Modula-2: Discipline & Design A H J Sale

Introduction to Expert Systems P Jackson

Local Area Network Design A Hopper, S Temple and R C Williamson
Programming Language Translation: A Practical Approach P D Terry
Data Abstraction in Programming Languages J M Bishop

System Simulation: Programming Styles and Languages W Kreutzer

The Craft of Software Engineering A Macro and J Buxton

An Introduction to Programming with Modula-2 P D Terry

Pop-11 Programming for Artificial Intelligence =~ A M Burton and N R Shadbolt
PROLOG F Giannesini, H Kanoui, R Pasero and M van Caneghem
UNIX System Programming K F Haviland and B Salama

The Specification of Computer Programs W M Turski and T S E Maibaum
Software Development with Ada I Sommerville and R Morrison

Text Processing and Typesetting with UNIX D Barron and M Rees

Syntax Analysis and Software Tools K J Gough

In memory of lan Paul and John Mark,
born 31 August 1981, died 1 September 1981

Preface

In this book, I have attempted to combine the results of the last three
decades of research in measuring the performance of computer systems
into a unified body of knowledge: theory and practice. Unification is
based on a formulation of performance measurement.

We can model the code of a computer system with an abstract
mathematical object. When this code is executed it becomes an
executable object, which we can measure. To ascertain the extent of this
executable object is the task of performance measurement. An object
(computer system, task, program, procedure) is defined recursively in
terms of lower level objects. In the theoretical section of this work, I
have defined a set of measures for an executing object. These measures
apply at every level of the object hierarchy, have been expressed in
mathematical equations, and define a formulation of performance
measurement. The measured data can be displayed in graphical form,
making evaluation easier.

This formulation provides a general, overall context within which
measurement and evaluation can take place. The purpose of
measurement is not to collect numbers, but to gain insight into the
actions of the object under study. By recording appropriate stimulus
information, and by using graphical techniques to analyse the data, we
can understand the actions of the object.

The formulation has been validated in a number of ways:

¢ measurement experiments have been conducted,

e measures proposed by the formulation have been compared to
current measurement practice,

e other formulations have been compared to it, and
e corollaries have been hypothesized and tested.

From the results of these validation procedures, I have confirmed a
high degree of correlation between the formulation and current practice.
On the basis of the formulation, we have designed a hybrid performance
analyser, which we have used in performance evaluation, in system
optimization, in program execution monitoring, when debugging
software, and for finding software related hardware faults. A number of
future research areas, which flow out of the formulation, are proposed.

vii

viii PREFACE

This book commences with an introduction to the field of
performance measurement and an overview of various aspects of it.
Then, the formulation of performance measurement is described in
detail. Other formulations proposed by researchers in the performance
evaluation field are discussed, and the underlying conceptual models of
program execution are compared. Following this, measurement tools
and techniques are reviewed. Next comes the design of a hybrid
performance analyser, which is built around a logic state analyser, and is
based on a philosophy of hybridization derived from the formulation of
performance measurement. Finally, the design of computer systems for
performance measurement is discussed. In the last two chapters, the
formulation is extended to cover parallel processors, and measurement in
a number of other applications.

Case studies are included to illustrate performance measurement
methods and software debugging techniques. I have used these case
studies to demonstrate the practicality and power of a performance
measurement methodology based on the formulation of performance
measurement.

Trademark notices

Ada™ is a trademark of the US Government — Ada Joint Program Office. Apple II and
Macintosh are trademarks of Apple Computer, Inc. CUE and PPE are trademarks of Boole
and Babbage, Inc. CYBER and HEMI are trademarks of Control Data Corporation.
DIAMOND, PDP, VAX and VMS are trademarks of Digital Equipment Corporation.
GECOS is a trademark of General Electric. 0OS/360, PEC, POEM, SAMI, SIPE, SUM,
TS/SPAR and VM/370 are trademarks of IBM. uANALYSTg, is a registered trademark of
Northwest Instrument Systems, Inc. UNIX™ is a registered trademark of AT & T in the
USA and other countries.

Acknowledgements

I wish to thank the following for permission to reproduce material from
published sources:

AFIPS Press and T.E. Bell, B.W. Boehm and R.A. Watson (1972) for
Figures 3 and 4 from ‘Framework and initial phases for computer
performance improvement’, FJCC Proceedings, No. 41, 1141-1154.

Domenico Ferrari for a figure from Computer Systems Performance
Evaluation © 1978, p. 14. Reprinted by permission of Prentice-Hall,
Inc., Englewood Cliffs, New Jersey.

Hewlett Packard for a photograph of the HP 1610A logic state analyser
and a block diagram; also for photographs of the HP 1630 taken from
their brochure no. 5953-9208.

The Institute of Electrical and Electronics Engineers, Inc. for various
figures from the following: English, W.R., Engelbart, D.C. and Berman,
M.L. (1967) ‘Display-Selection Techniques for Text Manipulation’,
IEEE Transactions on Human Factors in Electronics, Vol. 8, No. 1, 5-
20; Fromm, H., Hercksen, U., Herzog, U., John, K.H., Klar, R. and
Kleinder, W. (1983) ‘Experiences with Performance Measurement and
Modeling of a Processor Array’, IEEE Transactions on Computers, Vol.
C32, No. 1, January, 15-31; Gehringer, E. F., Jones, A.K. and Segall,
Z.Z. (1982) ‘The CM* Testbed’, IEEE Computer, Vol. 15, No. 10,
October, 40-53; Segall, Z. et al. (1983) ‘An Integrated Instrumentation
Environment for Multiprocessors’, IEEE Transactions on Computers,
Vol. C32, No. 1, January, 4-14.

Northwest Instrument Systems, Inc. for a photograph of their
p.ANALYSTR connected to an Apple Ile.

Tektronix, Inc. for a photograph of a DAS 9129 logic analyser taken
from their brochure no. 57W-5025.

K. Terplan for a table which appeared in ‘Network Monitor Survey’,
Computer Performance, Vol. 2, No. 4, pp. 58-173 (Butterworth & Co.
(Publishers) Ltd).

I also wish to thank Professor Juris Reinfelds, Professor Geoff
Dromey, Richard Miller, Gary Stafford, and Michael Milway for their

1X

X ACKNOWLEDGEMENTS

encouragement and direction during this research. Their comments
forced me to clarify my ideas, prompting further avenues of thought and
deeper insight.

The logic state analyser used in this research was bought with a grant
from the Department of Science and Technology, Australian Research
Grants Committee. The Apple microcomputer and other facilities were
provided by the Department of Computing Science, University of
Wollongong.

During the course of this research I have regularly prayed about
problems and meditated upon insights. I have always found God to be
one step ahead of me, and ready to give insight and understanding.

Finally I would like to thank my wife and family for the hours of
my time they have given up so that I could write this tome. No
acknowledgement is complete without heartfelt thanks to the typist, Mrs
Lynn Maxwell, who can type faster than I can think, and to Mr John
Murray from whose work the line illustrations have been prepared.

This book has been typeset on a Compugraphic phototypesetter
using the troff word processor, at the University of Wollongong.

Contents

Preface
Acknowledgements
Chapter 1 Introduction
1.1 Performance measurement
1.2 Measurement categories
1.3 Measurement tools and techniques
1.4 Measurement methodology
Chapter 2 A Formulation of Performance Measurement
2.1 Other formulations of measurement
2.2 World view
2.3 Performance
2.4 Object definition
2.5 Object hierarchy
2.6 Performance measurement
2.7 Object extent and object state
2.8 Data reduction and analysis
2.9 Performance evaluation
2.10 Validation of formulation
2.11 Current measurement practice
2.12 Models
2.13 Corollaries
2.14 Conclusion
Chapter 3 Other Formulations and Theories
3.1 Software science — Halstead (1977)
3.2 Software physics — Kolence (1972)
3.3 Program performance indices — Ferrari (1978a)
3.4 Measurement concepts — Svobodova (1976a)
3.5 Monitoring program execution — Plattner and Nievergelt (1981)
3.6 A sequential program model — Franta et al. (1982)
3.7 A measure of computational work — Hellerman (1972)
3.8 Program behaviour: models and measurements — Spirn (1977)

vii

ix

O NN W= =

14

15
16
17
18
19
22
31
32
39
41
41
43
44
45

48

48
51
54
56
58
60
61
62

xi

xil CONTENTS

Chapter

Chapter

Chapter

Chapter

Chapter

3.9
3:1

0

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5

5.1
5.2
5.3
5.4
5:5
5.6
5.7

6

6.1
6.2
6.3
6.4
6.5
6.6

7.1
72
73
7.4
7.5
7.6
7.7
7.8

7

8

8.1
8.2

Workload models — Hellerman and Conroy (1975)
Conclusion

Measurement Tools and Techniques

Measurement tool modules
Measurement tool characteristics
Hardware tools and techniques
Software tools and techniques
Hybrid tools and techniques
Virtual machine emulation
Workload characterization
Statistical methods

Using a Logic State Analyser

Performance measurement
Interrupt handling
Common interrupt handler
Performance improvements
The logic state analyser
Newer logic state analysers
Conclusion

Measurement Methodology and Tool Design

Measurement of objects

Data display

Memory usage and variable access measurement
Hybrid tool design

Desirable features of a hybrid tool

An actual tool

Monitoring Program Execution

Programming tools

Static evaluation and simple timing
Microprocessor development systems
Program execution monitoring
Hybrid monitoring tools

Program execution history

Program debugging — case study
Conclusion

Computer System Design for Measurement

Instrumentation of Multics
Design of the MUS

63
64

65

66
68
69
77
86
94
95
96

98

99
100
102
106
109
115
118

120

123
131
132
133
138
148

154

155
155
156
157
158
163
167
171

172

174
176

8.3
8.4

Chapter 9

9.1
9.2
9.3
9.4

Chapter 10

10.1
10.2
10.3

Chapter 11

Bibliography

Index

CONTENTS

Microprocessor design for measurement
Instrumentation and measurement of a small computer
system - case study

Measurement of Multiprocessor Systems

Performance measurement of SIMD machines
Performance measurement of MIMD machines
Instrumentation of parallel processors

Performance measurement of distributed processors

Other Measurement Applications

Performance models
Man-machine interaction
Computer networks

Conclusion

xiii

178

185

200

201
205
209
214

217

217
223
227

223

237

255

Chapter 1
Introduction

1.1 Performance measurement

Techniques used to evaluate the performance of computer systems can be
grouped into four overlapping areas: measurement of system
parameters, evaluation of collected data, modelling of system behaviour,
and modifications to improve performance. In this work, I concentrate
on the measurement of system parameters. Measurement is discussed in
the context of the whole field when other areas of performance
evaluation determine and constrain the parameters to be measured.

In the early days of computing, a programmer’s main goal was to
get a working program with little thought about its efficiency; however,
there were some exceptions. Von Neumann (1946) compared the speed
with which a number of early computers, including ENIAC, performed
multiplications when computing ballistic trajectories. Herbst et al. (1955)
measured the instruction mix of programs running on the Maniac
computer.

In the early sixties, performance measurement was commenced in
earnest. As computers became readily available, users sought ways to
increase the productivity of both the computer and the programmer and
hence to reduce the cost of computing. Computer throughput was
increased by using operating systems to handle resource sharing:
initially, simple batch systems; more recently, time sharing and
multiprogramming. Program development time has been shortened
through the use of high-level languages, structured programming, and
other software engineering techniques.

Concurrent with these developments, and spurred on by the high cost
of computing, has been a desire to evaluate how well systems are
performing, and to find ways of improving that performance. During
the sixties, performance measurement studies were carried out on many
installations. By 1967, the field had grown to the point where Calingaert
(1967) was able to publish a survey of the then common techniques, and
a few years later Miller (1972) published a bibliography of over 250
papers. The early seventies saw a burst of measurement activity, which
diminished to a mere trickle of papers by the mid-seventies as researchers
turned to modelling techniques.

2 PERFORMANCE MEASUREMENT OF COMPUTER SYSTEMS

Measurement is a fundamental technique in any science (Curtis,
1980). The fact that little work has been reported on the measurement
of computer systems in the last few years has been seen by some as an
indication that all the work has been done. This is not true - computer
performance measurement remains a collection of techniques with no
unified body of knowledge. Research effort dwindled, not because all
the problems were solved, but because of a number of other factors:

® Measurement ideas were several years ahead of the available
technology. It is interesting to read papers from the heyday of
measurement, and see the gradual transition from what we have
done, to what we are doing, to what we think we might be able to
do when we finish developing the tool. Consequently, most of the
ideas are not new, but the technology of the early seventies was not
cheap enough for the development of powerful, general-purpose
tools.

® The complexity of computer systems increased rapidly, making
measurement more difficult.

® Researchers were attracted by the mathematical tractability of
modelling techniques, particularly analytical queuing models.
Modelling provided a rich source of research ideas at a time when
measurement was being frustrated by the increasing complexity of
computer systems. The lack of tools powerful enough to handle this
complexity made measurement too hard.

¢ The literature of the time consisted of descriptions of measurement
techniques and their results. No unified body of knowledge had
been established and no theoretical basis for measurement had been
developed. Hence, there was no framework within which to tackle
the measurement problems posed by the new, more complex systems.

During the last decade, advances in technology have made computing
power so cheap that all new test instruments include microprocessors.
One new instrument, the logic state analyser, is more powerful than any
of the hardware measurement tools of a decade ago. As a result of these
advances, technology is no longer a limitation in measurement. The
growing use of microcomputers increases dramatically the need for
effective performance measurement tools. However, the design of these
tools must be grounded in a unified formulation of measurement if
lasting results are to be achieved. Such a formulation is developed in the
next chapter. In subsequent chapters, current measurement techniques
are evaluated in the light of this formulation, and some of the
implications of the formulation for future measurement techniques and
tools are investigated. The result is a unified body of performance
measurement knowledge.

INTRODUCTION 3

1.2 Measurement categories

To develop a unified formulation of measurement we must gather all the
independent measurement categories together under one umbrella. Then
common principles can be extracted. The differences between
measurement situations are differences in the application of theory and
tools, not conceptual differences in either theory or tools. In the
following paragraphs, the major applications of performance
measurement are briefly discussed. As many of these areas overlap, the
discussion is aimed at showing the breadth of performance measurement.

Human engineering is the design of computer systems for use by
people. It includes measuring the interactions between the user and the
system. Users influence the performance of a system by producing
inputs: requests for program execution, data, system commands, new
programs, etc. The response of the system to these inputs is important,
particularly on an interactive system (Figure 1.1) where the user expects
fast response to commands which are input at highly irregular intervals.
If the response is too slow, the user gets frustrated and will use another
system. If a terminal is poorly designed, people may refuse to use it.
Ease of use can be partially evaluated by measuring human and system
response times (Figure 1.2).

Lack of feedback to the user may result in the user executing
additional commands to check if the previous command worked,
significantly increasing the workload. The classic example of this
occurred in 1963 when a major American airline was trying

|e-—————Interaction cycle———
Response Response
begins completed
Response Output
time time L
. . } Time :
System portion Terminal portion
(‘think time’)
User Command User
input processing input
completed completed completed
(Program requires
new input)

Figure 1.1 User-computer interaction cycle (Ferrari, 1978).

4 PERFORMANCE MEASUREMENT OF COMPUTER SYSTEMS

unsuccessfully to go on line nationwide with its new computerized

reservation system (Warner, 1974). Everything went well until they tried
to bring the last and busiest region, New York City, on line. The system

crashed, hopelessly overloaded. When the system was measured, they
found that before New York was brought on line the existing load was
90%, not 40% as predicted by simulation. Each operator, after keying
in a reservation, would immediately enquire to see if the system had the
data. The solution: the ball on the typewriter was wiggled to let the
operator know the data was in.

6 i .
Joystick
(rate)

5 —

é il Joystick

§ Grafacon ~ (absolute)

2 3

E

=

Figure 1.2 Comparison of average times taken by inexperienced users to locate
a cursor at a character using a variety of graphics input devices
(English et al., 1967; copyright © 1967 IEEE).

Selecting new computing equipment for a company often involves
the running of benchmarks on comparative systems in an effort to
measure workload characteristics such as: capacity, throughput, batch
turnround time, number of interactive users, response time of high usage
programs, etc. Benchmarks range from the execution of typical
application programs, for example a floating point number cruncher in a
scientific application, to complex job control scripts, for example the
reproduction of the workload from a typical day on an existing system.

Capacity planning includes measuring how the available resources are
used by the system. With this data, management can schedule the
workload and plan for growth. Workload can change unpredictably over

