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Preface

In this book, I have attempted to combine the results of the last three
decades of research in measuring the performance of computer systems
into a unified body of knowledge: theory and practice. Unification is
based on a formulation of performance measurement.

We can model the code of a computer system with an abstract
mathematical object. When this code is executed it becomes an
executable object, which we can measure. To ascertain the extent of this
executable object is the task of performance measurement. An object
(computer system, task, program, procedure) is defined recursively in
terms of lower level objects. In the theoretical section of this work, I
have defined a set of measures for an executing object. These measures
apply at every level of the object hierarchy, have been expressed in
mathematical equations, and define a formulation of performance
measurement. The measured data can be displayed in graphical form,
making evaluation easier.

This formulation provides a general, overall context within which
measurement and evaluation can take place. The purpose of
measurement is not to collect numbers, but to gain insight into the
actions of the object under study. By recording appropriate stimulus
information, and by using graphical techniques to analyse the data, we
can understand the actions of the object.

The formulation has been validated in a number of ways:

¢ measurement experiments have been conducted,

e measures proposed by the formulation have been compared to
current measurement practice,

e other formulations have been compared to it, and
e corollaries have been hypothesized and tested.

From the results of these validation procedures, I have confirmed a
high degree of correlation between the formulation and current practice.
On the basis of the formulation, we have designed a hybrid performance
analyser, which we have used in performance evaluation, in system
optimization, in program execution monitoring, when debugging
software, and for finding software related hardware faults. A number of
future research areas, which flow out of the formulation, are proposed.
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viii PREFACE

This book commences with an introduction to the field of
performance measurement and an overview of various aspects of it.
Then, the formulation of performance measurement is described in
detail. Other formulations proposed by researchers in the performance
evaluation field are discussed, and the underlying conceptual models of
program execution are compared. Following this, measurement tools
and techniques are reviewed. Next comes the design of a hybrid
performance analyser, which is built around a logic state analyser, and is
based on a philosophy of hybridization derived from the formulation of
performance measurement. Finally, the design of computer systems for
performance measurement is discussed. In the last two chapters, the
formulation is extended to cover parallel processors, and measurement in
a number of other applications.

Case studies are included to illustrate performance measurement
methods and software debugging techniques. I have used these case
studies to demonstrate the practicality and power of a performance
measurement methodology based on the formulation of performance
measurement.
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Chapter 1
Introduction

1.1 Performance measurement

Techniques used to evaluate the performance of computer systems can be
grouped into four overlapping areas: measurement of system
parameters, evaluation of collected data, modelling of system behaviour,
and modifications to improve performance. In this work, I concentrate
on the measurement of system parameters. Measurement is discussed in
the context of the whole field when other areas of performance
evaluation determine and constrain the parameters to be measured.

In the early days of computing, a programmer’s main goal was to
get a working program with little thought about its efficiency; however,
there were some exceptions. Von Neumann (1946) compared the speed
with which a number of early computers, including ENIAC, performed
multiplications when computing ballistic trajectories. Herbst et al. (1955)
measured the instruction mix of programs running on the Maniac
computer.

In the early sixties, performance measurement was commenced in
earnest. As computers became readily available, users sought ways to
increase the productivity of both the computer and the programmer and
hence to reduce the cost of computing. Computer throughput was
increased by using operating systems to handle resource sharing:
initially, simple batch systems; more recently, time sharing and
multiprogramming. Program development time has been shortened
through the use of high-level languages, structured programming, and
other software engineering techniques.

Concurrent with these developments, and spurred on by the high cost
of computing, has been a desire to evaluate how well systems are
performing, and to find ways of improving that performance. During
the sixties, performance measurement studies were carried out on many
installations. By 1967, the field had grown to the point where Calingaert
(1967) was able to publish a survey of the then common techniques, and
a few years later Miller (1972) published a bibliography of over 250
papers. The early seventies saw a burst of measurement activity, which
diminished to a mere trickle of papers by the mid-seventies as researchers
turned to modelling techniques.



2 PERFORMANCE MEASUREMENT OF COMPUTER SYSTEMS

Measurement is a fundamental technique in any science (Curtis,
1980). The fact that little work has been reported on the measurement
of computer systems in the last few years has been seen by some as an
indication that all the work has been done. This is not true - computer
performance measurement remains a collection of techniques with no
unified body of knowledge. Research effort dwindled, not because all
the problems were solved, but because of a number of other factors:

® Measurement ideas were several years ahead of the available
technology. It is interesting to read papers from the heyday of
measurement, and see the gradual transition from what we have
done, to what we are doing, to what we think we might be able to
do when we finish developing the tool. Consequently, most of the
ideas are not new, but the technology of the early seventies was not
cheap enough for the development of powerful, general-purpose
tools.

® The complexity of computer systems increased rapidly, making
measurement more difficult.

® Researchers were attracted by the mathematical tractability of
modelling techniques, particularly analytical queuing models.
Modelling provided a rich source of research ideas at a time when
measurement was being frustrated by the increasing complexity of
computer systems. The lack of tools powerful enough to handle this
complexity made measurement too hard.

¢ The literature of the time consisted of descriptions of measurement
techniques and their results. No unified body of knowledge had
been established and no theoretical basis for measurement had been
developed. Hence, there was no framework within which to tackle
the measurement problems posed by the new, more complex systems.

During the last decade, advances in technology have made computing
power so cheap that all new test instruments include microprocessors.
One new instrument, the logic state analyser, is more powerful than any
of the hardware measurement tools of a decade ago. As a result of these
advances, technology is no longer a limitation in measurement. The
growing use of microcomputers increases dramatically the need for
effective performance measurement tools. However, the design of these
tools must be grounded in a unified formulation of measurement if
lasting results are to be achieved. Such a formulation is developed in the
next chapter. In subsequent chapters, current measurement techniques
are evaluated in the light of this formulation, and some of the
implications of the formulation for future measurement techniques and
tools are investigated. The result is a unified body of performance
measurement knowledge.
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1.2 Measurement categories

To develop a unified formulation of measurement we must gather all the
independent measurement categories together under one umbrella. Then
common principles can be extracted. The differences between
measurement situations are differences in the application of theory and
tools, not conceptual differences in either theory or tools. In the
following paragraphs, the major applications of performance
measurement are briefly discussed. As many of these areas overlap, the
discussion is aimed at showing the breadth of performance measurement.

Human engineering is the design of computer systems for use by
people. It includes measuring the interactions between the user and the
system. Users influence the performance of a system by producing
inputs: requests for program execution, data, system commands, new
programs, etc. The response of the system to these inputs is important,
particularly on an interactive system (Figure 1.1) where the user expects
fast response to commands which are input at highly irregular intervals.
If the response is too slow, the user gets frustrated and will use another
system. If a terminal is poorly designed, people may refuse to use it.
Ease of use can be partially evaluated by measuring human and system
response times (Figure 1.2).

Lack of feedback to the user may result in the user executing
additional commands to check if the previous command worked,
significantly increasing the workload. The classic example of this
occurred in 1963 when a major American airline was trying

|e-—————Interaction cycle———
Response Response
begins completed
Response Output
time time L
. . } Time :
System portion Terminal portion
(‘think time’)
User Command User
input processing input
completed completed completed
(Program requires
new input)

Figure 1.1 User-computer interaction cycle (Ferrari, 1978).



4 PERFORMANCE MEASUREMENT OF COMPUTER SYSTEMS

unsuccessfully to go on line nationwide with its new computerized

reservation system (Warner, 1974). Everything went well until they tried
to bring the last and busiest region, New York City, on line. The system

crashed, hopelessly overloaded. When the system was measured, they
found that before New York was brought on line the existing load was
90%, not 40% as predicted by simulation. Each operator, after keying
in a reservation, would immediately enquire to see if the system had the
data. The solution: the ball on the typewriter was wiggled to let the
operator know the data was in.

6 i .
Joystick
(rate)

5 —

é il Joystick

§ Grafacon ~ (absolute)

2 3

E

=

Figure 1.2 Comparison of average times taken by inexperienced users to locate
a cursor at a character using a variety of graphics input devices
(English et al., 1967; copyright © 1967 IEEE).

Selecting new computing equipment for a company often involves
the running of benchmarks on comparative systems in an effort to
measure workload characteristics such as: capacity, throughput, batch
turnround time, number of interactive users, response time of high usage
programs, etc. Benchmarks range from the execution of typical
application programs, for example a floating point number cruncher in a
scientific application, to complex job control scripts, for example the
reproduction of the workload from a typical day on an existing system.

Capacity planning includes measuring how the available resources are
used by the system. With this data, management can schedule the
workload and plan for growth. Workload can change unpredictably over



