Manuel Kolp
Paolo Bresciani

Brian Henderson-Sellers
Michael Winikoff (Eds.)

Agent-Oriented
Information System:s lli

7th International Bi-Conference Workshop, AOIS 2005
Utrecht, Netherlands, July 2005

and Klagenfurt, Austria, October 2005

Revised Selected Papers

LNAI 3529 °

@ Springer

- Manuel Kolp Paolo Bresciani
' > Brian Henderson-Sellers Michael Winikoff (Eds.)

Agent-Oriented
Information Systems III

7th International Bi-Conference Workshop, AOIS 2005
Utrecht, Netherlands, July 26, 2005

and Klagenfurt, Austria, October 27, 2005

Revised Selected Papers

\\\\a;\ \

~— -

& springer [||[[[1IN

E2007000001

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Manuel Kolp

Catholic University of Louvain (UCL)

School of Management (IAG), Information Systems Research Unit (ISYS)
1, Place des Doyens, 1348 Louvain-La-Neuve, Belgium

E-mail: kolp@isys.ucl.ac.be

Paolo Bresciani

European Commission

DG Information Society and Media, Unit D3: Software Technologies
Avenue de Beaulieu 29, level 4, office 49, 1049 Brussels, Belgium
E-mail: paolo.bresciani @ec.europa.eu

Brian Henderson-Sellers

University of Technology, Sydney

Faculty of Information Technology

P.O. Box 123, Broadway, NSW 2007, Australia
E-mail: brian@it.uts.edu.au

Michael Winikoff

RMIT University

School of Computer Science and Information Technology
Melbourne, VIC 3001, Australia

E-mail: winikoff@cs.rmit.edu.au

Library of Congress Control Number: 2006936083

CR Subject Classification (1998): 1.2.11, H.4, H.3, H.5.2-3, C.2.4, 1.2
LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-48291-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-48291-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11916291 06/3142 543210

Lecture Notes in Artificial Intelligence 3529
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence (LNAI)

Vol. 4293: A. Gelbukh, C.A. Reyes-Garcia (Eds.), MI-
CAI 2006: Advances in Artificial Intelligence. XXVIII,
1232 pages. 2006.

Vol. 4265: L. Todorovski, N. Lavra¢, K.P. Jantke (Eds.),
Discovery Science. XIV, 384 pages. 2006.

Vol. 4264: J L. Balcdzar, PM. Long, F. Stephan (Eds.),
Algorithmic Learning Theory. XIII, 393 pages. 2006.

Vol. 4259: S. Greco, Y. Hata, S. Hirano, M. Inuiguchi,
S. Miyamoto, H.S. Nguyen, Rt Stowiriski (Eds.), Rough
Sets and Current Trends in Computing. XXII, 951 pages.
2006.

Vol. 4253: B. Gabrys, RJ. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part IT1I. XXXII, 1301 pages. 2006.

Vol. 4252: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part II. XXXIII, 1335 pages. 2006.

Vol. 4251: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part I. LXVI, 1297 pages. 2006.

Vol. 4248: S. Staab, V. Svitek (Eds.), Managing Knowl-
edge in a World of Networks. XIV, 400 pages. 2006.

Vol. 4246: M. Hermann, A. Voronkov (Eds.), Logic
for Programming, Artificial Intelligence, and Reasoning.
XIII, 588 pages. 2006.

Vol. 4223: L. Wang, L. Jiao, G. Shi, X. Li, J. Liu (Eds.),
Fuzzy Systems and Knowledge Discovery. XXVIII,
1335 pages. 2006.

Vol. 4213: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Knowledge Discovery in Databases: PKDD
2006. XXII, 660 pages. 2006.

Vol. 4212: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Machine Learning: ECML 2006. XXIII, 851
pages. 2006.

Vol. 4211: P. Vogt, Y. Sugita, E. Tuci, C. Nehaniv (Eds.),
Symbol Grounding and Beyond. VIII, 237 pages. 2006.

Vol. 4203: F. Esposito, Z.W. Ras, D. Malerba, G. Semer-
aro (Eds.), Foundations of Intelligent Systems. XVIII,
767 pages. 2006.

Vol. 4201: Y. Sakakibara, S. Kobayashi, K. Sato, T.
Nishino, E. Tomita (Eds.), Grammatical Inference: Al-
gorithms and Applications. XII, 359 pages. 2006.

Vol. 4200: L.LE.C. Smith (Ed.), Intelligent Computing in
Engineering and Architecture. XIII, 692 pages. 2006.
Vol. 4198: O. Nasraoui, O. Zaiane, M. Spiliopoulou, B.
Mobasher, B. Masand, P. Yu (Eds.), Advances in Web
Minding and Web Usage Analysis. IX, 177 pages. 2006.
Vol. 4196: K. Fischer, 1.J. Timm, E. André, N. Zhong

(Eds.), Multiagent System Technologies. X, 185 pages.
2006.

Vol. 4188: P. Sojka, 1. Kopetek, K. Pala (Eds.), Text,
Speech and Dialogue. XV, 721 pages. 2006.

Vol. 4183: J. Euzenat, J. Domingue (Eds.), Artificial
Intelligence: Methodology; Systems, and Applications.
X111, 291 pages. 2006.

Vol. 4180: M. Kohlhase, OMDoc — An Open Markup
Format for Mathematical Documents [version 1.2]. XIX,
428 pages. 2006.

Vol. 4177: R. Marin, E. Onaindia, A. Bugarin, J. Santos
(Eds.), Current Topics in Artificial Intelligence. X'V, 482
pages. 2006.

Vol. 4160: M. Fisher, W. van der Hoek, B. Konev, A.
Lisitsa (Eds.), Logics in Artificial Intelligence. XII, 516
pages. 2006.

Vol. 4155: O. Stock, M. Schaerf (Eds.), Reasoning, Ac-
tion and Interaction in Al Theories and Systems. XVIII,
343 pages. 2006.

Vol. 4149: M. Klusch, M. Rovatsos, T.R. Payne (Eds.),
Cooperative Information Agents X. XII, 477 pages.
2006.

Vol. 4140:].S. Sichman, H. Coelho, S.O. Rezende (Eds.);
Advances in Artificial Intelligence - IBERAMIA-SBIA
2006. XXIII, 635 pages. 2006.

Vol. 4139: T. Salakoski, F. Ginter, S. Pyysalo, T.
Pahikkala (Eds.), Advances in Natural Language Pro-
cessing. XVI, 771 pages. 2006.

Vol. 4133: J. Gratch, M. Young, R. Aylett, D. Ballin,
P. Olivier (Eds.), Intelligent Virtual Agents. XIV, 472
pages. 2006.

Vol. 4130: U. Furbach, N. Shankar (Eds.), Automated
Reasoning. XV, 680 pages. 2006.

Vol. 4120: J. Calmet, T. Ida, D. Wang (Eds.), Artificial In-
telligence and Symbolic Computation. XIII, 269 pages.
2006.

Vol. 4114: D.-S. Huang, K. Li, G.W. Irwin (Eds.), Com-

putational Intelligence, Part II. XXVII, 1337 pages.
2006.

Vol. 4108: J.M. Borwein, W.M. Farmer (Eds.), Mathe-
matical Knowledge Management. VIIIL, 295 pages. 2006.

Vol. 4106: T.R. Roth-Berghofer, M.H. Goker, H.A.
Giivenir (Eds.), Advances in Case-Based Reasoning.
X1V, 566 pages. 2006.

Vol. 4099: Q. Yang, G. Webb (Eds.), PRICAI 2006:
Trends in Artificial Intelligence. XXVIII, 1263 pages.
2006.

Vol. 4095: S. Nolfi, G. Baldassarre, R. Calabretta, J.C.T.
Hallam, D. Marocco, J.-A. Meyer, O. Miglino, D. Parisi
(Eds.), From Animals to Animats 9. XV, 869 pages. 2006.

Vol. 4093: X. Li, O.R. Zaiane, Z. Li (Eds.), Advanced
Data Mining and Applications. XXI, 1110 pages. 2006.

Vol. 4092: J. Lang, F. Lin, J. Wang (Eds.), Knowledge
Science, Engineering and Management. XV, 664 pages.
2006.

Vol. 4088: Z.-Z. Shi, R. Sadananda (Eds.), Agent Com-

puting and Multi-Agent Systems. XVII, 827 pages.
2006.

Vol. 4087: E. Schwenker, S. Marinai (Eds.), Artificial
Neural Networks in Pattern Recognition. IX, 299 pages.
2006.

Vol. 4068: H. Schiirfe, P. Hitzler, P. @hrstrom (Eds.),
Conceptual Structures: Inspiration and Application. XI,
455 pages. 2006.

Vol. 4065: P. Perner (Ed.), Advances in Data Mining. X1,
592 pages. 2006.

Vol. 4062: G. Wang, J.E. Peters, A. Skowron, Y. Yao
(Eds.), Rough Sets and Knowledge Technology. XX, 810
pages. 2006.

Vol. 4049: S. Parsons, N. Maudet, P. Moraitis, I. Rahwan
(Eds.), Argumentation in Multi-Agent Systems. XIV,
313 pages. 2006.

Vol. 4048: L. Goble, J.-J.C.. Meyer (Eds.), Deontic Logic
and Artificial Normative Systems. X, 273 pages. 2006.
Vol. 4045: D. Barker-Plummer, R. Cox, N. Swoboda
(Eds.), Diagrammatic Representation and Inference. XII,
301 pages. 2006.

Vol. 4031: M. Ali, R. Dapoigny (Eds.), Advances in Ap-
plied Artificial Intelligence. XXIII, 1353 pages. 2006.

Vol. 4029: L. Rutkowski, R. Tadeusiewicz, L.A. Zadeh,
J.M. Zurada (Eds.), Artificial Intelligence and Soft Com-
puting — ICAISC 2006. XXI, 1235 pages. 2006.

Vol. 4027: H.L.. Larsen, G. Pasi, D. Ortiz-Arroyo, T. An-
dreasen, H. Christiansen (Eds.), Flexible Query Answer-
ing Systems. XVIII, 714 pages. 2006.

Vol. 4021: E. André, L. Dybkjer, W. Minker, H. Neu-
mann, M. Weber (Eds.), Perception and Interactive Tech-
nologies. XI, 217 pages. 2006.

Vol. 4020: A. Bredenfeld, A. Jacoff, I. Noda, Y. Takahashi
(Eds.), RoboCup 2005: Robot Soccer World Cup IX.
XVII, 727 pages. 2006.

Vol. 4013: L. Lamontagne, M. Marchand (Eds.), Ad-
vances in Artificial Intelligence. XIII, 564 pages. 2006.

Vol. 4012: T. Washio, A. Sakurai, K. Nakajima, H.
Takeda, S. Tojo, M. Yokoo (Eds.), New Frontiers in Ar-
tificial Intelligence. XIII, 484 pages. 2006.

Vol. 4008: J.C. Augusto, C.D. Nugent (Eds.), Designing
Smart Homes. XI, 183 pages. 2006.

Vol. 4005: G. Lugosi, H.U. Simon (Eds.), Learning The-
ory. XI, 656 pages. 2006.

Vol. 3978: B. Hnich, M. Carlsson, F. Fages, F. Rossi
(Eds.), Recent Advances in Constraints. VIII, 179 pages.
2006.

Vol. 3963: O. Dikenelli, M.-P. Gleizes, A. Ricci (Eds.),
Engineering Societies in the Agents World VI. XII, 303
pages. 2006.

Vol. 3960: R. Vieira, P. Quaresma, M.d.G.V. Nunes, N.J.
Mamede, C. Oliveira, M.C. Dias (Eds.), Computational
Processing of the Portuguese Language. XII, 274 pages.
2006.

Vol. 3955: G. Antoniou, G. Potamias, C. Spyropoulos, D.
Plexousakis (Eds.), Advances in Artificial Intelligence.
XVII, 611 pages. 2006.

Vol. 3949: F.A. Savaci (Ed.), Artificial Intelligence and
Neural Networks. IX, 227 pages. 2006.

Vol. 3946: T.R. Roth-Berghofer, S. Schulz, D.B. Leake
(Eds.), Modeling and Retrieval of Context. XI, 149
pages. 2006.

Vol. 3944: J. Quiionero-Candela, I. Dagan, B. Magnini,
F. d’Alché-Buc (Eds.), Machine Learning Challenges.
XIII, 462 pages. 2006.

Vol. 3937: H. La Poutré, N.M. Sadeh, S. Janson (Eds.),
Agent-Mediated Electronic Commerce. X, 227 pages.
2006.

Vol. 3932: B. Mobasher, O. Nasraoui, B. Liu, B. Masand
(Eds.), Advances in Web Mining and Web Usage Anal-
ysis. X, 189 pages. 2006.

Vol. 3930: D.S. Yeung, Z.-Q. Liu, X.-Z. Wang, H. Yan
(Eds.), Advances in Machine Learning and Cybernetics.
XXI, 1110 pages. 2006.

Vol. 3918: W.-K. Ng, M. Kitsuregawa, J. Li, K. Chang
(Eds.), Advances in Knowledge Discovery and Data
Mining. XXIV, 879 pages. 2006.

Vol. 3913: O. Boissier, J. Padget, V. Dignum, G. Linde-
mann, E. Matson, S. Ossowski, J.S. Sichman, J. Vazquez-
Salceda (Eds.), Coordination, Organizations, Institu-
tions, and Norms in Multi-Agent Systems. XII, 259
pages. 2006.

Vol.3910: S.A. Brueckner, G.D.M. Serugendo, D. Hales,
F. Zambonelli (Eds.), Engineering Self-Organising Sys-
tems. XII, 245 pages. 2006.

Vol. 3904: M. Baldoni, U. Endriss, A. Omicini, P. Torroni
(Eds.), Declarative Agent Languages and Technologies
II1. XTI, 245 pages. 2006.

Vol. 3900: F. Toni, P. Torroni (Eds.), Computational
Logic in Multi-Agent Systems. XVII, 427 pages. 2006.
Vol. 3899: S. Frintrop, VOCUS: A Visual Atténtion Sys-
tem for Object Detection and Goal-Directed Search.
X1V, 216 pages. 2006.

Vol. 3898: K. Tuyls, PJ. ’t Hoen, K.‘Verbeeck, S. Sen
(Eds.), Learning and Adaption in Multi-Agent Systems.
X, 217 pages. 2006.

Vol.3891:J.S. Sichman, L. Antunes (Eds.), Multi-Agent-
Based Simulation VI. X, 191 pages. 2006.

Vol. 3890: S.G. Thompson, R. Ghanea-Hercock (Eds.),
Defence Applications of Multi-Agent Systems. XII, 141
pages. 2006.

Vol. 3885: V. Torra, Y. Narukawa, A. Valls, J. Domingo-

Ferrer (Eds.), Modeling Decisions for Artificial Intelli-
gence. XII, 374 pages. 2006.

Vol. 3881: S. Gibet, N. Courty, J.-F. Kamp (Eds.), Ges-
ture in Human-Computer Interaction and Simulation.
XI1II, 344 pages. 2006.

Vol. 3874: R. Missaoui, J. Schmidt (Eds.), Formal Con-
cept Analysis. X, 309 pages. 2006.

X0 003 >

Preface

Information systems underpin today’s business and entertainment. The means by
which these information systems have been developed has changed over the years.
Although the current paradigm is to use object-oriented concepts, a new set of
concepts, focussed on agent technology, is starting to be evaluated. Agents offer
higher level abstractions (than objects) for the conceptualization, design and
implementation of information systems. Agents have autonomy, can reason and can
coordinate within societies of agents.

The AOIS series of workshops explores the potential for facilitating the increased
usage of agent technology in the creation of information systems in the widest sense.
In 2005, two AOIS workshops were held internationally. The first was affiliated with
the AAMAS 2005 meeting in July in Utrecht in The Netherlands and chaired by
Henderson-Sellers and Winikoff and the second with ER 2005 in November in
Klagenfurt in Austria and chaired by Kolp and Bresciani. The best papers from these
meetings were identified and authors invited to revise and possibly extend their papers
in the light of reviewers’ comments and feedback at the workshop.

We have grouped these papers loosely under four headings: Agent behavior,
communications and reasoning; Methodologies and ontologies; Agent-oriented
software engineering; and Applications. These categories fairly represent the breadth
of current AOIS research as well as encompassing the papers presented at the two
AOIS workshops. We trust you will find the content of these selected and revised
papers to be of interest and utility.

Since the papers presented at the Utrecht workshop were not formally published,
some of the authors chose not to make any significant extension to their papers. On
the other hand, the Klagenfurt workshop papers were published by Springer as part of
the ER proceedings and thus have been significantly extended before acceptance for
this volume. All invited papers for this volume were re-reviewed (in their extended
forms) by three members of the Program Committee prior to acceptance. We wish to
thank all authors for undertaking the necessary revisions and meeting the editorial
deadlines.

September 2006 Manuel Kolp

Paolo Bresciani
Brian Henderson-Sellers
Michael Winikoff

Organization

Workshop Co-chairs

Manuel Kolp (Catholic University of Louvain, Belgium)

Paolo Bresciani (IRST-ITC, Italy)

Brian Henderson-Sellers (University of Technology, Sydney, Australia)
Michael Winikoff (RMIT, Australia)

Steering Committee

Yves Lesperance (York University, Canada)

Gerd Wagner (Eindhoven University of Technology, Netherlands)
Eric Yu (University of Toronto, Canada)

Paolo Giorgini (University of Trento, Italy)

Program Committee

Carole Bernon (University Paul Sabatier, Toulouse, France)

Brian Blake (Georgetown University, Washington DC, USA)

Paolo Bresciani (ITC-IRST, Italy)

Jaelson Castro (Federal University of Pernambuco, Brazil)

Luca Cernuzzi (Universidad Catdlica Nuestra Sefiora de la Asuncion, Paraguay)
Massimo Cossentino (ICAR-CNR, Palermo, Italy)

Luiz Cysneiros (York University, Toronto)

John Debenham (University of Technology, Sydney)

Scott DeLoach (Kansas State University, USA)

Frank Dignum (University of Utrecht, Netherlands)

Paolo Donzelli (University of Maryland, College Park, USA)
Bernard Espinasse (Domaine Universitaire de Saint-Jérdme, France)
Stéphane Faulkner (University of Namur, Belgium)

Behrouz Homayoun Far (University of Calgary, Canada)

Innes Ferguson (B2B Machines, USA)

Alessandro Garcia (PUC Rio)

Chiara Ghidini (ITC-IRST, Italy)

Aditya Ghose (University of Wollongong, Australia)

Marie-Paule Gleizes (University Paul Sabatier, Toulouse, France)
Cesar Gonzalez-Perez (University of Technology, Sydney, Australia)
Giancarlo Guizzardi (University of Twente, Netherlands)

Igor Hawryszkiewycz (University of Technology, Sydney, Australia)
Brian Henderson-Sellers (University of Technology, Sydney, Australia)
Carlos Iglesias (Technical University of Madrid, Spain)

VIII Organization

Manuel Kolp (Catholic University of Louvain, Belgium)
Daniel E. O'Leary (University of Southern California, USA)
Carlos Lucena (PUC Rio, Brazil)

Graham Low (UNSW, Australia)

Philippe Massonet (CETIC, Belgium)

Haris Mouratidis (University of East London, UK)

Jorg Mueller (Siemens, Germany)

Juan Pavén (Universidad Complutense Madrid, Spain)
Omer F. Rana (Cardiff University, UK)

Onn Shehory (IBM Haifa Labs, Israel)

Nick Szirbik (Technische Universiteit Eindhoven, Netherlands)
Kuldar Taveter (University of Melbourne, Australia)
Quynh-Nhu Numi Tran (UNSW, Australia)

Viviane Torres da Silva (PUC Rio, Brazil)

Michael Winikoff (RMIT, Australia)

Carson Woo (University of British Columbia, Canada)

Bin Yu (North Carolina State University, USA)

Amir Zeid (American University of Cairo, Egypt)

Zili Zhang (Deakin University, Australia)

Table of Contents

Agent Behavior, Communications and Reasoning

Automated Interpretation of Agent Behaviour 1
Dung N. Lam, K. Suzanne Barber

A Semantic and Pragmatic Framework for the Specification of Agent
Communication Languages: Motivational Attitudes and Norms 16
Rodrigo Agerri, Eduardo Alonso

Broadening the Semantic Coverage of Agent Communicative Acts 32
Hong Jiang, Michael N. Huhns

Requirements Analysis of an Agent’s Reasoning Capability 48
Tibor Bosse, Catholijn M. Jonker, Jan Treur

On the Cost of Agent-Awareness for Negotiation Services 64
Andrea Giovannucci, Juan A. Rodriguez-Aguilar

OWL-P: A Methodology for Business Process Development 79

Nirmit Desai, Ashok U. Mallya, Amit K. Chopra,
Munindar P. Singh

Methodologies and Ontologies

Identification of Reusable Method Fragments from the PASSI

Agent-Oriented Methodology 95
Brian Henderson-Sellers, John Debenham, Quynh-Nhu Numi Tran,
Massimo Cossentino, Graham Low

Foundations of Ontology-Based MAS Methodologies................... 111
Ghassan Beydoun, Quynh-Nhu Numi Tran, Graham Low,
Brian Henderson-Sellers

An Ontology-Driven Technique for the Architectural and Detailed
Design of Multi-agent Frameworks 124
Rosario Girardi, Alisson Neres Lindoso

An Ontology Support for Semantic Aware Agents 140
Michele Tomaiuolo, Paola Turci, Federico Bergenti,
Agostino Poggi

X Table of Contents

Agent-Oriented Software Engineering

AOSE and Organic Computing - How Can They Benefit from Each
Other? . 154

Bernhard Bauer, Holger Kasinger

An Agent-Oriented Model of a Dynamic Engineering Design Process 168
Vadim Ermolayev, Eyck Jentzsch, Oleg Karsayev, Natalya Keberle,
Wolf-Ekkehard Matzke, Viadimir Samoylov, Richard Sohnius

Formalizing Agent-Oriented Enterprise Models. 184
Ivan Jureta, Stéphane Faulkner, Manuel Kolp

Fragmented Workflows Supported by an Agent Based Architecture 200
Christine Reese, Jan Ortmann, Sven Offermann, Daniel Moldt,
Kolja Markwardt, T. Carl

Applications

An Agent-Based Meta-level Architecture for Strategic Reasoning in

Naval Planning 216
Mark Hoogendoorn, Catholijn M. Jonker, Peter-Paul van Maanen,
Jan Treur

Coordination Efficiency in Rational Choice Theory, Norm and Rights
Based Multi-agent Systems.............ooiiiiiiiiiiiii i, 231
Peter Kristoffersson, Eduardo Alonso

Adapted Information Retrieval in Web Information Systems Using

PUM A 243
Angela Carrillo-Ramos, Jérome Gensel, Marléne Villanova-Oliver,
Hervé Martin

Design Options for Subscription Managers 259
Aloys Mbala, Lin Padgham, Michael Winikoff

Supporting Program Indexing and Querying in Source Code Digital

Libraries 275
Yuhanis Yusof, Omer F. Rana

Author Index

Automated Interpretation of Agent Behaviour

D.N. Lam and K.S. Barber

The University of Texas at Austin
The Laboratory for Intelligent Processes and Systems
dnlam@lips.utexas.edu, barber@lips.utexas.edu

Abstract. Software comprehension, which is essential for debugging
and maintaining software systems, has lacked attention in the agent
community. Comprehension has been a manual process, involving the
analysis and interpretation of log files that record agent behaviour in
the implemented system. This paper describes an approach and tool to
automate creating interpretations of agent behaviour from observations
of the implementation execution, thus helping users (i.e. designers, devel-
opers, and end-users) to understand the motivations of agent actions. By
explicitly modelling the user’s comprehension of the implemented system
as background knowledge for the tool, feedback can be provided as to
whether the user’s comprehension accurately represents the implementa-
tion’s behaviour and, if not, how it can be corrected. Additionally, with
the aid of the Tracer Tool, many of the manual tasks are automated, such
as verifying that agents are behaving as expected, identifying unexpected
behaviour and generating explanations for any particular observation.

1 Introduction

Agents are distributed software entities that are capable of autonomous decision-
making. Besides being motivated by its own goals, an agent’s behaviour is
influenced by interactions with other agents (i.e. their goals, beliefs and inten-
tions), by events that have occurred in the past and by the current situation.
With so many factors that can influence an agent’s decision, end-users may
not trust the agent’s decision, and developers may have difficulty debugging
the implementation. Software designers, developers and end-users often need to
comprehend why an agent acted in a particular way when situated in its oper-
ating environment, which itself can be unpredictable and uncertain. Currently,
the process of comprehending agent behaviour is done manually by interpreting
the observations from the implementation executions to create a connected,
comprehensive view of what the software is doing. The interpretation process
links (usually with a causal link) actual observations together using the user’s
comprehension (or background knowledge of expected behaviour). In essence,
an interpretation compares the actual implementation behaviour with expected
behaviour, which may have been created by the user from the software design,
previous experience, intuition etc.

Considering the complexities of agent software (e.g. autonomous decision-
making and a high degree of interaction) and the usual disparity between

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 1-15, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 D.N. Lam and K.S. Barber

software design and implementation, software comprehension is a difficult, time-
consuming and tedious process. To alleviate these issues, this research aims to
automate the comprehension process as much as possible. This paper describes
(1) how the Tracer Tool can be used to help build and verify a model of the user’s
comprehension of the implemented agent system’s behaviour (i.e. background
knowledge) and (2) how an interpretation of agent behaviour can be automati-
cally generated from the background knowledge and recorded observations.

Sophisticated software such as an agent-based system presents obstacles that
are difficult to overcome using current software comprehension and verification
tools. In general, traditional software comprehension (or reverse engineering)
tools are limited by their low abstraction level, their dependence on analyzing
source code, their lack of automation to help decipher tremendous amounts of
collected data and their lack of a model for how much the user understands.
Taking the formal approach to modelling systems, model-checking facilitates
comprehension by verifying properties of systems but is limited by its demand
for expert knowledge of the model-checking process, its high computational
complexity, and the translation gap between the model being checked and the
actual system.

To remedy limitations of current comprehension techniques, this research
offers a novel approach to computer-aided software comprehension that involves:
(1) modelling the user’s comprehension of the system as background knowledge
usable by tools, (2) ensuring that the user’s comprehension accurately reflects the
actual system and (3) generating interpretations and explanations as evidence
of comprehension.

This paper describes an approach and tool that builds on the ideas from
reverse engineering and model-checking to better assist the human user (of
various skill levels) in comprehending agent-based software. Section 2 reviews
limitations of existing work and highlights advantages that are used in this
research. Section 3 presents the formulation of the problem and the approach
employed to automate building the interpretation of agent behaviour. Section 4
describes how the Tracer Tool implements the approach. Section 5 demonstrates
how the interpretation can be used to generate explanations. Finally, Section 6
summarizes the contributions of this research.

2 Background

Agent concepts (i.e. beliefs, goals, intentions, actions, events and messages) are
abstractions of low-level implementation constructs (e.g. data structures, classes
and variables) that make designing and communicating the design easier. Though
agent concepts help in designing software for sophisticated and distributed do-
mains, there has been little research in leveraging them for the expensive main-
tenance phase of software engineering. Since software designs use agent concepts
to describe agent structure (e.g. an agent encapsulates localized beliefs, goals,
and intentions) and behaviour (e.g. an agent performs an action when it believes
an event occurred), agent concepts should be leveraged for comprehending the

Automated Interpretation of Agent Behaviour 3

software. If the same concepts and models are used in forward and reverse
engineering, tools would be able to better support re-engineering, round-trip
engineering, maintenance and reuse [1]. In this research, agent concepts are used
to take advantage of the user’s intuitive knowledge of agent-based systems to
comprehend agent behaviour in the implementation. The set of concepts can
be extended or replaced by practically any set of concepts that are relevant in
understanding the behaviour of a software system and influential factors that
affect those behaviours.

Software comprehension, which historically has been associated with program
comprehension and reverse engineering, involves extracting and representing
the structural and behavioural aspects of the implementation in an attempt
to recreate the intended design of the software. Software comprehension is mo-
tivated by the fact that the software may need to be (1) verified to ensure that
the implementation is behaving as it was designed to behave; (2) maintained
to fix bugs or make modifications; or (3) redesigned and evolved to improve
performance, reusability or extensibility (among other reasons). In order to
perform these tasks, an understanding of the current implementation is required
and is attained using reverse engineering (RE) tools and techniques.

RE tools (e.g. Rigi [2] and PBS [3]) analyse the implementation at a very
low abstraction level (i.e. at the source code level) and, thus, are inappropriate
for agent software because they produce models of the implementation that
are too detailed (e.g. component dependence and class inheritance models).
Besides being limited to supported programming languages, these tools do not
provide abstracted views of the implementation as a whole in terms of high-
level agent concepts (e.g. beliefs, tasks, goals and communication messages).
Wooldridge states that as software systems become more complex, more powerful
abstractions and metaphors are needed to explain their operation because “low
level explanations become impractical” [4]. To attain an understanding of agent
behaviour, the models resulting from the comprehension process must be at the
abstraction level at which agent concepts are the elemental or base concepts.

In addition to static analysis of the source code, dynamic analysis tools (e.g.
SCED [5] and Hindsight [6]) can create flowcharts, control-low and state dia-
grams. However, these tools also face the same problem of detailed representation
of programmatic concepts such as process threads, remote procedure calls and
data structures, rather than agent-oriented models of goals, plans and inter-
action protocols. Dynamic analysis is particularly important for agent systems
that operate in the presence of environmental dynamics and uncertainty. This
research leverages agent concepts to build abstract representations of the agents’
run-time behaviour (i.e. relational graphs), which can be quickly understood by
the user and can also be used for automated reasoning to further assist the user.

To deal with the large amount of data resulting from source code or execution
analysis, some RE tools (e.g. SoftSpec [7]) allow users to query a relational
database of gathered data. However, most RE tools leave it up to the user to
parse, interpret and digest the data. The research described in this paper deals
with the large amount of data by automating data interpretation for the user.

4 D.N. Lam and K.S. Barber

Instead of a list of unconnected, detailed data that the user must relate manually,
the presented solution automatically relates run-time observations together in
a causal graph. This is similar to the GUPRO toolset [8], where source code
is transformed into graphs, except that the graphs nodes are in terms of agent
concepts.

As described, RE tools only produce representations of the implementation and
have no model of the user’s comprehension. It is the user’s responsibility to digest
the RE results (e.g. diagrams, charts and databases). RE tools do not reflect how
much the user understands and, thus, cannot provide feedback to the user about
the user’s comprehension. However, in model-checking, the user expresses their
understanding of the implementation as a “model”, which can be automatically
checked for specified properties. Thus, model-checking tools have a representation
of the user’s comprehension of the system. Though useful due to the exhaustive
state-space search, model-checking techniques in general do not verify the accu-
racy of the “model” with respect to the actual system (often referred to as the
translation gap problem). Hence, any checked properties may not apply to the
actual implementation. Additionally, the model must be made simple enough such
that the model-checker can search the entire state-space. By combining model-
checking with reverse engineering, this research maintains a model of the user’s
comprehension (as the user is learning about the implemented agent system) and
also ensures that the model accurately represents the actual system.

3 Building the Interpretation

When a user tries to comprehend agent behaviour in the implemented system,
the user is essentially building an interpretation by observing and examining
agent actions, communicated messages, environmental events and any other
run-time data that can be acquired from the implementation. As shown in
Fig. 1, background knowledge about the expected behaviour of the implemented
system is required to relate the otherwise unconnected observations together.
Background knowledge K represents the user’s comprehension of the system,
which is commonly derived from many sources, such as specifications of the
design, experience with the implementation and intuition from presentations. In
model-checking, K is a model that is to be checked and it is manually specified
by the user.

In this research, K is modelled using a semantic network (i.e. directed graph)
of agent concepts that are interconnected by causal relations. The current set
of agent concepts includes goal, belief, intention, action, event and message —
the set can be extended to include other concepts that may be of interest to the
user. For example, in Fig. 1, the background knowledge for an agent’s behaviour
denotes an intention that is influenced by two different beliefs (denoted by a
circle and square). The intention causes an action to occur, which in turn affects
one of the beliefs.

This research takes advantage of agent concepts to create interpretations of
agent behaviour in the implemented system. Note that K represents a

Automated Interpretation of Agent Behaviour 5

background knowledge
O—D—(

observations
DB La b bl a

interpretation

Oy O OR O O
o |

Fig.1. An interpretation for an agent, given the background knowledge K and
observations OsSS

behavioural pattern and, thus, can have cycles in the graph. However, the in-
terpretation, which consists of actual observations and their relationships, does
not have cycles.

To build an interpretation, observations are mapped to agent concepts in K
and are linked together using relations defined in K. For example, observations
by and b; are mapped to agent concept B because the observations are beliefs
about a target’s state; b5 and by are mapped to B’ because the observations are
beliefs about the target’s location; ¢3 and i; are mapped to I; etc. Since I is
causally related to B and B’, directed edges are added between the appropriate
nodes (e.g. from by and by to i3) to relate the observations together. In other
words, since the user expects beliefs about a target’s state B to influence the
agent’s intention I, the user will create an interpretation where the corresponding
observations for that agent are causally linked.

Background knowledge K is constructed by the user and describes how the
agents are expected to behave in terms of the agent concepts. As shown in Fig. 2,
the manual procedure for building comprehension can be expressed as

K, = Updatemanual(K,Dvlv OS) (1)

where K is the previous background knowledge, D denotes the design models
and documentation, I is the implementation expressed in source code, and O
is a set of observations resulting from executing the implementation I in some
scenario s:

Os = observe(execute(I, s)) (2)

Note that since comprehension is an iterative process, construction of K’ involves
modifying and updating the previous background knowledge K. To build up com-
prehension, the user has the tedious task of gathering, organizing and relating the
data from the design D, the implementation I and the observations Og.

6 D.N. Lam and K.S. Barber

background
D ——. s O\ knowledge
/ design models " o \

i and L \
_documentation /

-/

| implementation ————@xecute
i (source code) |

Fig. 2. Manual software comprehension

representative?

|
/
/

=

Due to human error or outdated design specifications, system behaviour de-
scribed by K may be erroneous or inaccurate with respect to the actual behaviour
of the system, particularly as the implementation is updated and maintained
over time. To generate accurate interpretations, X must accurately reflect the
implementation’s actual behaviour. Using empirical techniques, the user must
manually verify that the expected behaviour expressed as K is representative
of the actual behaviour from the implementation. Due to complexities and
uncertainties of some systems, agent behaviours cannot always be predicted from
only the design specification in general [9]. Thus, the construction of K must
incorporate empirical studies of the implementation.

The overall approach of this research is to build up the background knowledge
K using observations from the actual implementation’s executions, rather than
relying on design specifications as it is in model-checking. As a result, everything
in K is based directly on the actual implementation (similar to the RE approach).
Modifications to K (e.g. addition of relations between agent concepts) are au-
tomatically suggested by the Tracer Tool. However, unlike RE, where detailed
models are automatically created for the user to digest, this approach demands
that the user confirms all modifications to K so that K also reflects what the user
comprehends. In other words, since the user is building K, there is nothing in K
that the user does not already comprehend or at least has seen. Consequently,
the user does not have to digest all interpretations. Any new or inconsistent
behaviours are automatically detected and brought to the attention of the user.
Additionally, automatically generated suggestions and explanations can help the
user deal with the anomalous behaviour.

The following describes the overall approach taken by this research to ensure
the representativeness of the background knowledge. Functions begin with a
lowercase letter (e.g. interpret(K, O,)), while predicates begin with an uppercase
letter (e.g. Consistent(K, Ny)).

As seen in Fig. 3, the reverse engineering approach helps the user by analyz-
ing Oy to produce interpretations Ny, which consists of models derived from
observations Oy resulting from actual system behaviour:

