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Foreword

K-theory was introduced by A. Grothendieck in his formulation of the Riemann—
Roch theorem (cf. Borel and Serre [2]). For each projective algebraic variety,
Grothendieck constructed a group from the category of coherent algebraic sheaves,
and showed that it had many nice properties. Atiyah and Hirzebruch [3] con-
sidered a topological analog defined for any compact space X, a group K(X)
constructed from the category of vector bundles on X. It is this “‘topological
K-theory” that this book will study.

Topological K-theory has become an important tool in topology. Using K-
theory, Adams and Atiyah were able to give a simple proof that the only spheres
which can be provided with H-space structures are S', S* and S”. Moreover, it is -
possible to derive a substantial part of stable homotopy theory from K-theory
(cf. J. F. Adams [2]). Further applications to analysis and algebra are found in the
work of Atiyah-Singer [2], Bass [1], Quillen [1], and others. A key factor in these
applications is Bott periodicity (Bott [2]).

The purpose of this book is to provide advanced students and mathematicians
in other fields with the fundamental material in this subject. In addition, several
applications of the type described above are included. In general we have tried to
make this book self-contained, beginning with elementary concepts wherever
possible ; however, we assume that the reader is familiar with the basic definitions
of homotopy theory: homotopy classes of maps and hometopy groups (cf.
collection of spaces including projective spaces, flag bundles, and Grassmannians.
Hilton [1] or Hu [1] for instance). Ordinary cohomology theory is used, but not
until the end of Chapter V. Thus this book might be regarded as a fairly self-
contained introduction to a “‘generalized cohomology theory”.

The first two chapters (‘““Vector bundles” and ‘‘First notions in K-theory’) are
chiefly expository; for the reader who is familiar with this material, a brief glance
will serve to acquaint him with the notation and approach used. Chapter III is
devoted to proving the Bott periodicity theorems. We employ various techniques
following the proofs given by Atiyah and Bott [1], Wood [1] and the author [2],
using a combination of functional analysis and ““algebraic K-theory”.

Chapter IV deals with the computation of particular K-groups of a large
The version of the “"Thom isomorphism™ in Section IV.S is mainly due to Atiyah,
Bott and Shapiro [1] (in fact they were responsible for the introduction of Clifford
algebras in K-theory, one of the techniques which we employ in Chapter III).
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Chapter V describes some applications of K-theory to the question of H-space
structures on the sphere and the Hopf invariant (Adams and Atiyah [1]), and to
the solution of the vector field problem (Adams [1]). We also present a sketch of
the theory of characteristic classes, which we apply in the proof of the Atiyah—
Hirzebruch integrality theorems [1]. In the last section we use K-theory to make
some computations on the stable homotopy groups of spheres, via the groups J(X)
(cf. Adams [2], Atiyah [1], and Kervaire-Milnor [1]).

In spite of its relative length, this book is certainly not exhaustive in its coverage
of K-theory. We have omitted some important topics, particularly those which are
presented in detail in the literature. For instance, the Atiyah-Singer index theorem
is proved in Cartan-Schwartz [1], Palais [1], and Atiyah-Singer [2] (see also
appendix 3 in Hirzebruch [2] for the concepts involved). The relationship between
other cohomology theories and K-theory is only sketched in Sections V.3 and V 4.
A more complete treatment can be found in Conner-Floyd [1] and Hilton [2]
(Atiyah—Hirzebruch spectral sequence). Finally algebraic K-theory is a field which
is also growing very quickly at present. Some of the standard references at this time
are Bass’s book [1] and the Springer Lecture Notes in Mathematics, Vol. 341, 342,
and 343.

I would like to close this foreword with sincere thanks to Maria Klawe, who
greatly helped me in the translation of the original manuscript from French to
English.

Paris, Summer 1977
Max Karoubi



Remarks on Notation and Terminology

The following notation is used throughout the book: Z integers, @ rational
numbers, R real numbers, € complex numbers, H quaternions; GL,(4) denotes
the group of invertible n x n matrices with coefficients in the ring 4. The notation
*- - -x signifies an assertion in the text which is not a direct consequence of the
theorems proved in this book, but which may be found in the literature; these
assertions are not referred to again, except occasionally in exercises.

If € is a category, and if E and F are objects of €, then the symbol ¢ (E, F) or
Homy(E, F) means the set of morphisms from E to F.

More specific notation is listed at the end of the book.

A reference to another part of the book is usually given by two numbers (e.g.
5.21) if it'is in the same chapter, or by three numbers (e.g. IV.6.7) if it is in a
different chapter.
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Summary of the Book by Sections

Chapter I. Vector Bundles

1. Quasi-vector bundles. This section covers the general concepts and definitions
necessary to introduce Section 2. Theorem 1.12 is particularly important in the
sequel.

2. Vector bundles. The “*vector bundles” considered here are locally trivial vector
bundles whose fibers are finite dimensional vector spaces over IR or €. To be
mentioned: Proposition 2.7 and Examples 2.3 and 2.4 will be referred to in the
sequel.

3. Clutching theorems. This technical section is necessary to-provide a bridge
between the theory of vector bundles and the theory of “*coordinate bundles™ of
N. Steenrod [1]. The clutching theorems are useful in the construction of the
tangent bundle of a differentiable manifold (3.18) and in the description of vector
bundles over spheres (3.9; see also 1.7.6).

4. Operations on vector bundles. Certain “continuous’ operations on finite dimen-
sional vector spaces: direct sum, tensor product, duality, exterior powers, etc. . . .
can be also defined on the category of vector bundles.

5. Sections of vector bundles. Only continuous sections are considered here. The
major topic concerns the solution of problems involving extensions of sections over
paracompact spaces.

6. Algebraic properties of the category of vector bundles. In this section we prove
that the category & (X)) of vector bundles over a compact space X, is a “‘pseudo-
abelian additive” category. Essentially this means that one has direct sums of
vector bundles (the *“Whitney sum™), and that every projection operator has an
image. From this categorical description (6.13), we deduce the theorem of Serre
and Swan (6.18): The category &(X) is equivalent to the category #(A4), where 4
is the ring of continuous functions on X, and Q’(A) is the category of finitely
generated projective modules over A.

7. Homotopy and representability theorems. This section is essential for the
following chapters. We prove that the problem of classification of vector bundles
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with compact base X depends only on the homotopy type of X (7.2). We also prove
that ®*(X) (the set of isomorphism classes of k-vector bundles, over X of rank n
for k=IR or C), considered as a functor of X, is a direct limit of representable
functors. This takes the concreie form of Theorems 7.10 and 7.14.

8. Metrics and forms on vector bundles. It is sometimes important to have some
additional structure on vector bundles, such as bilinear forms, Hermitian forms,
etc. With the exception of Theorem 8.7, this section is not used in the following
chapters (except in the exercises).

Chapter II. First Notions of K-Theory

1. The Grothendieck group of an additive category. The group K(X). Starting with
the simple notion of symmetrization of an abelian monoid, we define the group
K(%) of an additive category using the monoid of isomorphism classes of objects
of . Considering the case where % is £(X) and X is compact, we obtain the group
K(X) (actually Kg(X) or Ko(X) according to which theory of vector bundles is
considered). We prove that Kg(X)~[X, Z x BO] and K (X)~[X,Z x BU] (1.33).

2. The Grothendieck group of an additive functor. The group K(X, Y). In order to
obtain a *reasonable’ definition of the Grothendieck group K(¢) for an additive
functor ¢:% — €’, which generalizes the definition of K(4¢) when %'=0, we
assume some topological conditions on the categories ¥ and ¥’ and on the
functor ¢ (2.6). Since these conditions are satisfied by the “restriction” functor
&(X)—-8(Y) where Y is closed in X, we then define the “‘relative group” K(X, Y)
to be the K-group of this functor. In fact, K(X, Y)~K(X/Y) (2.35). This iso-
morphism shows that essentially we do not obtain a new group; however, the
groups K(¢) and K(X, Y) will be important technical tools later on.

3. The group K~ ' of a Banach category. The group K~ *(X). This section represents
the first step towards the construction of a cohomology theory #* where the term
h° is the group K(X, Y) (also denoted by K°(X, Y)) considered in I1.2. The group
K~ '(¥), where € is a Banach category, is obtained from the automorphisms of
objects of ¥. Again, if we consider the case where % is £(X), we obtain the group
called K~ '(X). We prove that if Yisa closéd subspace of X then the sequence

K '(X)—» K Y(Y)> KX, Y)— K(X)— K(Y) is exact.
We also prove that Kz '(X)=~[X, 0] and K¢ '(X)~[X, U] (3.19).

4. The groups K~ "(X')and K™ "(X, Y). The aim of this section is to define the groups
K™"(X, Y) for n=2 and to establish the exact sequence

K=" (X) = K" H(Y) = K~"(X, ¥) > K"(X)— K~"(Y), forn>1
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One possible definition is K~ "(X, Y) = K(S"(X/Y)) (4.12). We prove some "‘Mayer—
Vietoris exact sequences’ (4.18 and 4.19) which will be very useful later on.

5. Multiplicative structures. The tensor product of vector bundles provides the
group K(X) with a ring structure. It is more difficult to define a “‘cup-product™

KX, Y)xKX',Y)> KXxX, XxY'UuYxX")
or more generally
K7"X, Y)xK "X, Y)» K T""XxX, XxYUuYxX

when Y and Y’ are non-empty. This is accomplished in a theoretical sense in
proposition 5.6; however, in applications it is often useful to have more explicit
formulas. For this we introduce another definition of the group K(X, Y) by putting
metrics on the vector bundles involved (5.16). This will not be used before Chapter
IV. The existence of such cup-products shows that there is a direct splitting
K(X)~H°(X;Z) @® K'(X) where K'(X) is a nil ideal (cf. 5.9; note that K'(X)=x
K(X) if X is connected).

Chapter I1I. Bott Periodicity

1. Periodicity in complex K-theory. In this section we define an isomorphism
KX, Y)~K:" %(X, Y). The method (due to Atiyah, Bott, and Wood) is to
reduce this isomorphism for general n, to a theorem on Banach algebras (1.11): If
A i1s a complex Banach algebra, the group K(A4) (defined as K(#(A)) is naturally iso-
morphic to 7,(GL(4)) where GL(A4)=inj limGL,(A4). This theorem is proved
using the Fourier series of a continuous function with values in a complex Banach
space, and some classical results in Algebraic K-theory on Laurent polynomials.
The original theorem follows when we let 4 be the ring of complex continuous
functions on a compact space.

2. First applications of Bott periodicity theorem in the complex case. As a first appli-
cation we obtain the classical theorem of Bott: for n>i/2, we have n,(U(n)=Z if
i is odd and m;(u(n))=0 for i even. We also prove that real K-theory is periodic of
period 4 mod. 2-torsion: Kg"(X, Y) ®zZ'~Kg" *(X,Y) ®,Z', where Z'=
Z[1]. This theorem will be strengthened in I11.5.

3. Clifford algebras. These algebras play an important role in real K-theory and
will be used in Chapter IV in both real and complex K-theory. This section is
purely algebraic. The essential result is Theorem 3.21, which establishes a kind of
periodicity for Clifford algebras. This “‘algebraic’ periodicity will be effectively
used in IIL.5 to prove the “‘topological” periodicity of real K-theory and at the
same time give another proof of the periodicity of complex K-theory.
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4. The functors KP-%(%) and K7 9(X ). The idea of this section is to use the Clifford
algebras C'™ 9 to algebraicly define new functors K"(X)= K" X)forn=p—qgeZ.
We prove that these functors are by definition periodic, of period 8 in the real case,
and of period 2 in the complex case, and that K°(X) and K~ '(X) are indeed the
functors defined in Chapter II. Bott periodicity will then be proved if we show that
the two definitions of K"(X) agree for negative values of n. This is done in the next
two sections.

5. The functors KP4 X, Y) and the isomorphism t. Periodicity in real K-theory. After
some prehminaries introducing the relative groups K#9(X, ¥') we present the
- fundamental theorem of this chapter: The groups K7 4* (X, Y) and K" %X x B',
X xS°0UY x B') are isomorphic. Assuming this theorem (the proof follows in
Section I11.6), we prove that Ky "(X, Y)x~Kg" (X, Y) with the definitions of
Chapter 1. At the same time we prove the periodicity in complex K-theory
(5.17) once more. Moreover, using Propositions 4.29 and 4.30 we prove the
existence of weak Fomotopy equivalences between the iterated loop spaces Q7(0)
and certain homogeneous spaces (5.22). We also compute the homotopy groups
7,(0(n)) for n>i+1(5.19) with the help of Clifford algebras.

6. Proof of the fundamental theorem. The pattern of this section is analogous to
that of Section 1.1, since the main theorem is likewise a consequence of a general
theorem on Banach algebras (6.12). Moreover the proof of this gencral theorem
uses the same ideas as the proof of Theorem 1.11.

Chapter 1V. Computations of Some K-Groups

1. The Thom isomorphism in complex K-theory for complex vector bundles. The
purpose of this section is to compute the complex K-theory of the Thom space of a
complex vector bundle (1.9). In this computation a key role is played by bundles of
exterior algebras. Theorem 1.3. is particularly important in the sequel.

2. Complex K-theory of complex projective spaces and complex projective bundles.
In this section (classical in style), we construct a method which may also be used for
ordinary cohomology (see V.3). Using the technical Proposition 2.4 we are able to
compute the K-theory of P,=P(C"*"') and more generally of P(}') where Vis a
complex vector bundle (2.13). The “splitting principle™ (2.15) 1s used frequently
later on. With this principle we are able to make the multiplicative structure of
K*(P(1)) explicit (2.16).

3. Complex K-theory of flag bundles and Grassmann bundles. K-theory of a product.
This section is also classical in style, but is not essential to the sequel. We
explicitly compute K*(F(V')) where F(V) is the flag bundle of a complex vector
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bundle V. We also compute K*(G,(V)) where G (V) is the fiber bundle of p-
subspaces in V (3.12). These results are used to compute ¥ (BU(n))=projlim
K(G (€™ (3.22), and the K-theory of a product (3.27).

4. Complements in Clifford algebras. The concept of “*spinors’ was not introduced
in Section III.3, since it is not essential in proving Bott periodicity. However we
now need this concept to prove the analog of Thom’s theorem in K-theory (for real
or complex vector bundles). After some algebraic preliminaries we study the
possibilities of lifting the structural group of a real vector bundle to the spinorial
group Spin(n) or Spin‘(n). Theorem 4.22 is particularly important for our purpose.

5. The Thom isomorphism in real and complex K-theory for real vector bundles. As
in I'V.1, the purpose of this section is to compute the K-theory of the Thom space
of a vector bundle, but now the vector bundle is real, and the K-theory used is real
or complex. With an additional spinorial hypothesis, we prove that K(V)~ K~ "(X)
if n is the rank of V. If the base is compact and n is a multiple of 8 (of 2 in complex
K-theory), we prove that K(V) is a K(X)-module of rank one generated by the
“Thom class™ T, . Finally, if /- X > Y is a proper continuous map between
differentiable manifolds and if Dim(Y)— Dim(X')=0 mod & (mod 2 in the complex
case), wedefine, with an additional spinorial hypothesis, a “Gysin homomorphism™
Jfy: K(X)— K(Y) which is analogous to the Gysin homomorphism in ordinary
cohomology. This homomorphism is only used in V 4.

6. Real and complex K-theory of real projective spaces and real projective bundles.
This section is much more technical than the others (the results are only used in
V.2). After some easy but tedious lemmas making systematic use of Clifford
algebras, we are able to compute (up to extension) the real and complex K-theory
of a real projective bundle (6.40 and 6.42). In the case of real projective spaces, the
K-theory is completely determined (6.46 and 6.47).

7. Operations in K-theory. One of the charms of K-theory is that we are able to
define some very nice operations. For example, there are the exterior power
operations A* (due to Grothendieck). By a method due to Atiyah we determine all
the operations in complex K-theory. With this method we show that the “Adams
operations™ y* are the only ring operations in complex K-theory (7.13). They will
be very useful in applications.

The operations A* and y* may also be defined in real K-theory. However, their
properties are more difficult to prove. We must refer to Adams [3] or Exercise 8.5
for a complete proof. From the operations y* we obtain the operations p*,
which will be very useful in V.2 and V.5.

Chapter V. Some Applications of K-Theory

1. H-space structures on spheres and the Hopf invariant. Using the Adams opera-
tions in complex K-theory, we prove that the only spheres which admit an /H-space
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structure are S*, S, and S™. Ir fact, we prove more: if f: $2"~! — S" is a map of
odd Hopf invariant, then n must be 2, 4 or 8.

2. The solution of the vector field problem on the sphere. Let us write every integer ¢
in the form (2a—1)-2#, for f=7y+ 49 with 0<y <3, and define p(r)=27+85. Then
the maximum number of independent vector fields on the sphere S~ ! is exactly
p(1)—1 (2.10). The proof of this classical theorem is *‘elementary” (in the context
of this book) and uses essentially the operations p* in the real K-theory of real
projective spaces.

3. Characteristic classes and the Chern character. For each complex vector bundle
V, we define “*Chern classes™ ¢,(V) e H*(X; Z) in an axiomatic way (3.15). The
construction of these classes is analogous to the construction of classes done in
Section 1V.3. By means of these classes, we construct a fundamental homomor-
phism, the “"Chern character”, from Kq(X) to H**(X; Q). The Chern character
induces an isomorphism between K{X) ®,Q and H**"(X; Q) for every com-
pact X.

4. The Riemann—Roch theorem and integrality theorems. To each complex stable
vector bundle (resp. °spinorial real stable bundle) we associate an important
characteristic class t(}V), called the Todd class (resp. A(V), called the Atiyah—
Hirzebruch class). These classes play an important role in the ‘‘differentiable
Riemann—Roch theorem™: For each suitably continuous map f: X — Y and for
each element x of K(X), we have the formula ch( fX(x))=f(A(v,)- ch(x)) where
A(v,;) denotes the Atiyah-Hirzebruch class of the stable bundle /*(TY)—TX
(assuming that Dim(Y)=Dim(X) mod 2 and that there is a stable “spinorial struc-
ture on v,). From this theorem we obtain integral theorems for characteristic
classes (4.21) and the homotopy invariance of certain characteristic classes (4.24).

5. ‘Applications of K-theory to stable homotopy. In this section we explain how
K-theory may be applied to obtain some interesting information about the stable
homotopy groups of spheres. We only include those partial results which can be
obtained from the material in this book. More complete results are found in the
series of J. F. Adams on the groups J(X) [2], and in Husemoller’s book [1].
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Chapter I .
Vector Bundles

1. Quasi-Vector Bundles

1.1. Let & be the field of real numbers or complex numbers'’, and let X be a topo-
logical space.

1.2. Definition. A quasi-vector bundle with base X is given by

1) a finite dimensional k-vector space E_ for every point x of X,

2) a topology on the disjoint union E= | | E, which induces the natural
topology on each E_, such that the obvious projection n: E-- X is continuous.

1.3. Example. Let X be the sphere S"={xe R""' | ||x||=1}. For every point x of
S"we choose E . to be the vector space orthogonal to x. Then E= | | E_is naturally
a subspace of S” x R"*! and may be provided with the induced topology.

1.4. Example. Starting from the preceding example, let us arbitrarily choose a
vector space F, — E_for each x € §”; then if F is given the induced topology again
we have a quasi-vector bundle on X.

More examples are given in the following sections.

LS. A quasi-vector bundle is denoted by £=(E, n, X') or simply by E if there is
no risk of confusion. The space E is the total space of £ and E_ is the fiber of &
at the point x.

1.6. Let {=(E, n, X) and {'=(E', o', X') be quasi-vector bundles. A general
morphism from ¢ to &' is given by a pair (f, g) of continuous maps /- X — X’ and
g: E-— E’ such that

1) the diagram

E-45FE

d
x-Lox
is commutative.

n

U In general, these are the most interesting cases; however, sometimes we will use the field of
quaternions H.
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2) Themapy,: E, - E;,, induced by g is k-linear.

General morphisms can be composed in an obvious way. In this way we con-
struct a category whose objects are quasi-vector bundles and whose arrows are
general morphisms.

1.7. If { and &' have the same base X'= X', a morphism between £ and &' is a general
morphism ( f, g) such that f'=1Id,. Such a morphism will be simply called g in the
sequel. The quasi-vector bundles with the same base X are the objects of a sub-
category, whose arrows are the morphisms we have just defined.

1.8. Example. Let us return to Example 1.3, and let n=1. Let {'=(E', n', X')
where X=X'=S"' and E'=S" x R with the product topology. If we identify IR?
with the complex numbers as usual, we can define a continuous map g: E-— E’
by the formula g(x, z)=(x, iz/x) (this is well defined because x is orthogonal to z
in R?=0). In fact g is an isomorphism between E and E’ in the category described
in1.7.

1.9. Example. Let £ be the quotient of E'=S" x R by the equivalence relation
(x,)~(y,u)if y=ex and u=¢t with e= + 1. Then E” is the total space of a quasi-
vector bundle over P, (R) called the infinite Moebius band. By identifying P,(R)
with S' by the map z+ z?, we see easily that E” is also the quotient of 7 x R by
the equivalence relation which identifies (0, %) with (1, —u). If we restrict u to
have norm less than 1, we obtain the classical Moebius band.

We claim that the bundles E' and E” over S' are not isomorphic. Suppose
there exists an isomorphismg: £’ --» E”; then we must have E'— X" homeomorphic
to E"— X" where X’ (and X") denote the set of points of the form (x,0) with
xe S' (note that X"~ X"’). But E"— X" is connected and E'— X" is not.

1.10. Let I be a finite dimensional vector space (as always over k). The preceding
examples show the importance of quasi-vector bundles of the form E=X x V, as
models. To be more precise, E_=V and the total space may be identified with
X x V provided with the product topology. Such bundles are called trivial quasi-
vector bundles or simply trivial vector bundles.

1.11. Let E=Xx Vand E'= X x V' be trivial vector bundles with base X. We want

to explicitly describe the morphisms from E to E’ (again in the category defined
in 1.7). Since the diagram

AXXV— Xx V'

N/
X

1s commutative, for each point x of X, g induces a linear map g,.: V' — V', Let
g: X - LV, V') be the map defined by j(x)=g, .



