- e NN T S ey + - e, M
2

8862562

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

A g,
P
>~ : Ty

"/l

190

o T

M.W. Alford J.P. Ansart G. Hommel
L. Lamport B. Liskov G.P. Mullery
F.B. Schneider -

Distributed Systems

Methods and Tools for Specification
An Advanced Course

Edited by M. Paul and H.J. Siegert

TP3! 862562 .
AZEq Lecture Notes In

Computer Science +

Edited by G. Goos and J. Hartmanis

190

M.W. Alford J.P. Ansart G. Hommel
L. Lamport B. Liskov G.P. Mullery
F. B. Schneider |

E8862562

Distributed Systems

Methods and Tools for Specification
An Advanced Course

Edited by M. Paul and H.J. Siegert .

Sprmger~VerIag
Berlin Heldelberg New York Tokyo

¥

'
.l

Editorial Board
D. Barstow W.Brauer P. Brinch Hansen D. Gries D. Luckham

““C.Moler A.Pnueli G.Seegmiiller J. Stoer N. Wirth

Editors

M. Paul

H.J. Siegert

Institut fiir informatik, Technische Universitét Miinchen
Arcisstr. 21, D-8000 Miinchen 2, FRG

* CR Subject Classification (1982): C.1.2, C.2, D.1.3,D.2, D.3,D.4

ISBN 3-540-152164 Springer-Verlag Berlin Heidelberg New York Tokyb
ISBN 0-387-15216-4 Springer-Verlag New York Heidelberg Berlin Tokyo

- This wark is subject to copyright. All rights are reserved, whether the whole or;-tw

is concerned, specifically those of translation, reprinting, re-use of Hlustsations,
reproduction by photocopying machine or similar means, and storage in data banks. Under
§ 54 of the German Copyright Law where capies are made for ather thas private uee, a fee is

. payable to “Verwertungsgesellschaft Wort”, Munich.

© by Springer-Verlag Berlin Heidelberg 1985

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210 g '

.

Preface - ,

4 o

The papers comprising this volume were prepared for and presented
during the Advanced Course on Distributed Systems - Methods and Tools for
Specification. The course was held “from April 3 to April 12, 1984 at the
Technische Universitit Minchen. Due to its success it was repeated from

‘April 16 to April 25, 1985. The organization lay in the hédnds of the Institut ftir

Informatik, and it was jointly financed by the Ministry for Research and
Technology of the Federal Republic of Germany. and the Comrmuion of the
European Communitles :

Research on distributed systems is in progress within universities as well
as in industry and governmental organizations. Networks, particularly high
speed local area networks, are often the spur to build distributed systems. In
the past a certain agreement on some basic models has been achieved, e.g. on
‘the ISO-0SI-Reference Model, on lower level: protocols, and on some
synchronization problems. However, concepts and pnogramming paradigms
pertinent to higher level protocol layers, to overall concepts for distributed
systems, to design choices, and to higher level language support are still
important research areas. A discussion and presentation concemlng these
issues can be found in [Lampson 81b]. _

" Another important research area aimed at improving software quality

and reducing softwere production costs is the sui»port of the specification ,
and design phades within the software life cycle. This problem has received -

more and more attention during the last decade. Looking at the relative cost
or manpower for different phases in the life cycle of software one could see a
definite shift of importance from the coding and jmplementation phase to
the specification and design phase. A typical figure is, that about 40% of the
total development costs are spent for specification and design. Again we have
not yet an agreement on the direction or on the methods and tools to be used
for specifying even simple systems . , -

For a successful specification of distributed systems one has to combine

-

L

v

general specification methods and tools as well as architectural knowledge,
modulerisation concepts and programming paradigms for distributed
systéems. A muuﬁon:'d these topics was the major aim of the course. As
#aid before, all aspects involved are still in a research stage to a very high
de.m‘ Therefore it is impoesible to give a complete picture of all ideas,
concepts, methods, and tools. Instead we have tried to show and discuss the
' range of possible nluﬂonl by presenting a speeificauon system used by a
" commercial company, ,,_un_d in contrast, examples and basic principles for
formal specification and vcritlc.uon It is important of courge to have an
‘understanding of programming concepls and paradigms for distributed
systems when specifying and designing ‘them. ‘Important concepts and
paradigm are presented in chapter 4. As an example for a language for
programming distributed systems we have selected the Argus language.

Finally we want to express our gratitude and appreciation

to the lecturers, who have spent considerable time discussing the
course contents during the preparation period and preparing the
excelient lecture notes, and

‘ _tocnmembéuofourmﬂ foremost Mrs. U. Weber and Dr. H.
Halfer, who have helped with organizing this course and editing
the lecture notes.

The authors and editors are confident, that both the couﬁe participants
-and the nﬁ.ﬂ of these lecture notes will find an in-depth study of the
s ppaterial cm herein rewarding for their own work.

M. Paul
H.J. Siegert

Contents~

Introduction. .. oot e 1
Giinter Hommel, TU Miinchen

Basic Conceptscciiiiiiiiiiiiiiiiiiiiiiii e 7
Mack W. Alford; TRW (2.1) ' .

Leslie Lamport, Stanford Research Institute (2.2)

Geoff P. Mullery, Impactchoice Ltd. (2.3)

2.1 Introduction to Models................... wese e wnas Tt 7
2.2 Togical Poundation....................... 14 o e T S TS SR T 19
2.3 OVOrview......cccvvevvennnneennnnn. A, TR L P RTP .31
Acquisition - Environment T 45
Geoff P. Mullery, Impactchoice Ltid.

LT 1T 1 46
3.2 Information GAthOring.............eeevieenenenennenenenensnnnn. 62
3.3 Data Structuring, ... 76
3.4 Action Structuring (TSo1ated)..............ooomeemmeemnoonnn, 87
3.3 - Action Structuring (Combined)...............eeeeeenvnennnnnn. 103
3.6 Completion............. AP 1e. S S L. S SI 117
A Graph Model Based Approach to Specifications13
Mack W. Alford, TRW

4.1 The Graph Model of DecompoSition........v.eeeeeununenennnnn.. 132
4.2 System Requirements Definition........... P T . 144
4.3 Software Requirements Decomposition and Analysis............. 155
4.4 Overview of the Problems of Distributed Design............... 169
4.5 Transition to Design...........oeevvuunn... 54 46 e e, o wsurd ve im i 179
4.6 Summary...... s s 5% 1% wi sk s i a8 BN st T v st e w e s s 201

Formal Foundation for Specification and Verification..203
Leslie Lamport, Stanford Research Institute (5.1, 5.4, 5.5)
Fred B. Schneider, Cornell University (5.2, 5.3)

5.1 An BXample:....ccccciiniciiinanenennannsss Foataddnsuios ommnams 203
5.2 Proving Safety Properties................c.eeiivenennnonnnn.. 221
5.3 Proof Rules for Message Passing............. AR 234
5.4 Proving Liveness Properties...............eee.eeieunnson.on.. 254
9.0 BPecfACAbION. . uunurcnaionernaiornoneeionneTee s ono 270

10.

Vi

Language Constructs for Distributed Programs..... — 287

Giinter Hommel, TU Minchen

6.1 Modularity Concepts............c.ccccuenn T T %
6.2 Concurrency Concepts.........ccceececirracncacnccnnccnce
6.3 Communication Concepts..........cceccceccccccancnnccacnns
6.4 Exception Handling..........cccccerenccrannccacccnccanes
6.5 Real-Time Concepts..........cceeeieeecacncccaccncanccens
6.6 Configuration Description............cccecececcccccecnss
6.7 Case Study for a Real-Time Distributed System...........
The Argus Language and System.........................
Barbara Liskov, Massachusetts Institute of Technology

7.1 Concepts and I8SUGS........cooceeeecaccaccascancccacanes
7.2 Argus Features............cceveeevcecccccccccacaccncnces
7.3 EXAMDLO. .o oienseoeinnions e s s SIS SR A
7.4 Subsystems.............ccccceiiiiiiiiitairtieeiiaaaaenans
7.5 Implememtation.......c.ccieivniieniieiieiiciiiiaionaaans
7.6 User-Defined Atomic Data 'l'ypes
7.7 Discussion..... T P T

Paradigms for Distributed Programs

Fred B. Schneider, Cornell University (8.1, 8.2, 8.4)
Leslie Lamport, Stanford Research Institute (8.3)

8.1 A, B, C's of Agreement and Commitment...................
8.2 The State Machine Approach...........ccciieeeacnannanaes
8.3 Computing Global States........... ST oS SR TS S &S Sumn B
8.4 Other ParadigmB.......cccccceurenccccancacsacsscansasscs
Issues and Tools for Protocol Specification.......

Jean-Pierre Ansart, Agence de 1'Informatique Projet Rhin

..... 426

0.0 DWSIWEIEL i sc o us s won i siw i o i s 1 mom i o i e s Boww e 0 483
9.2 Toward a Telecommunication Software Factory............. 493
9.3 Example: The OSI Transport Protocol.............cccevene 518
9.4 Protocol GameS.......c.ccctceacosscsccccccccsascsasasncas 525
CONCLUBLON . . c.oospueoniivomansamaniiesesagessn seshsnsesssnss 539
Geoff P. Mullery, Ilpnctcboico Lid.
101 INtroduction..........ececn... A0 eerreieneieneaeeeses.539
10.2 Distributed Systems............ccccceiceccccacanes IR SR 540
10.3 Methods.......... 1818, R B A SRR B8 1 S 1 S SRS R e e A 8 542
10.4 TOOIS.....ccccececcecaccaascncasscnascscacsnascsanans T 543
10.5 Practical Use.........cccicccenrcacccccascccccacsncsncs 544
ROLOIONOOS ...coooveciieeecaceeeniorecncasansnsnsncosansns vee..548
IRMAON 1o 55 55 510ss v eaies o smarenis arw i wismasofosiioiareiiio, 78 o S N 565

Chapter 1 °

Introduction

Production of software for distributed systems, as'any other production

. of industrial goods, requires-different activities to be performed. Scanning

the literature on software engineering we can find an enormous variety of
models for the production of software uging different notions for the
activities in the production process. In spite of this variety of models and

notions we try to filter out the essential activities:

Acquiszition and Analysis
Gathering, structuring, and analysing informations on thg feasxblhty
of a project.

Requirements Specification

. Specification and analysis what the software system should do.

De=zign of System Architecture

Specification and analysis how the logical structure of the system’
should be and what each mo,dule_ should do.

Design of Components

Specification how each module should be realized.

Implementation

Specification of the whole system in an executable programming*
language.

Integration and Installation
Yake the system run.

An ordering of those activities in time with additional revision cycles is
often called a software life-cycle model or a phase model.

Rapid prototyping means to pro:duee“ a quick implementation of essential
imrts of the system in order to show important properties of the system to
the user as early as possible. It is e:peclnlly nsctul to agree upon
" requirements on the man-machine interface of a tyslem and is therefore
regarded to be a part of requirements engineering.

During all these activities a lot of specifications are produced. Our goal is
to produce better quality software and to rationalize the software production
- process. This can be achieved if we try to find errors in those specifications
as soon as possible. The cost for correcting an error made in some activity
grows exponentially in time of error detection as can be seen from Figure
1.1. -

4 Relative cost for
error correction
1000 ==

100 =~

Time of error detection

2 1 ' B

1
1 T .. ! 1 | B—
Requirements Design Implementation Integration
Specification and N -
Installation

Figure 1.1: Cost for error detection

The extent of how many errors can be detected by analytical tools
depends on the degree of formality of a specification. As Figure 1.2 shows, the
‘production of software would ideally start with a complete formal
specification of the requirements.' By formal specification we understand a
specification formalized in syntax and semantics. In this case we could come

- peen

to an implementation by using sémantics—-preserving transformations.

Requirements T Ideal Stading Point
Specification (
Design of System Possible
Architecture Today
Design of
Components
Conventional J

Implementation

Goal

Formal Formatted Inf orma! Idea

Figure 1.2: Process of software production

Conventionally the specification of requirements, of the system
architecture, and of components exists only as a vague idea in the head of
the programmer who is starting with coding immediately.

Tools available today allow to go the third realistic way using also
informal and formatted specifications. Informal specifications consist of
natural language and arbitrary graphs. In formatted specifications there is a
well-defined syntactical frame with some informal semantics ih it.

Tools can be classified using the following criteria:

o Activities which are supported by a tool. Mostly a tool is applicable
only for one or few activities.

e Underlying theoretical models. Those are typical the entity-
relationship model, Petri net theory, the finite state machine, etc.

e Form of representation, either graphical orin a linear notation.

e Guidelines for the way .t.o succeed. Some tools even claim not to
restrict the user at all and support any way the user wants to take
without giving any recommendation. ‘

° Degree of formalizat.ion

o Degree of computer support Some tools even do without any

' computer support. '
e Availability and cost of tools.
e Scope of intended ap;)lication.

If we do not have the necessary methods and experience to design a
' system we cannot blame our todls for that. The most important methods used
in software production are the reduction of complexity by decomposition and
abstraction. In decomposing systems we try to identify well-known patterns,
* often called paradigms. Such paradigms may be algorithms (as for example
sorting and searching algorithms in sequential programming) or high level
language constructs. Successful application of methods is a mental,
intuition—-guided u.ctivlty- that can not be automized and needs a lot of
exercise and experience. ‘

After discussing methods and tools for specification we will take a look at
the aspect of distribution. There are different reasons for using distributed
systems: ' ‘

e lLoad sharing to better exploit available processmg capacity.

: e Resource sharing to use expensive resources or scarcely used special
equipment v -

e .Data sharing to access dxstnbuted dpmbqspp

e The geographictl structupp h)&y be inherently digtributed. The

bandwidth of the comrmunication lines or },he weakness of analogue

signals may force their processing in loco.

‘e The logical structure may be simpler e. g if each parallel process is
" located in a separate processor.
" ® The reliabdility of a system can be enhanced by tailoring un
appropriate structure.
e The flexibility of ‘a system is increased having the possibility t.o add
and delete single processors.

Let us have a closer look at the aspect of reliability. Reliability can be
defined as the degree of suitability to perform well under specific operating
conditions during a specific time. A probabilistic measure for reliability is
the availability of a system. The mean value of the availability A of a systei’n
is uaually' defined as A = MTBF / (MTBF + MTTR), with MTBF meaning the'
meantims between failures and MTTR meaning the meantime to repair

Reliability

I L

Fault tolerance Perfection

Redundaney

i] i

Static Dyna’mié
I Reconfiguration
n out of m system I
2<=n<m I]
Passive ‘ Active
stand-by . graceful degradation

Figure 1.3: Reliability of a system

-

Figure 1.3 shows that reliability can either be achieved by perfection,
that means constructing perfect hardware and software, or by fault
tolerance. Fault tolerance can be achieved by redundancy which may either
be static (n out of m system) or dynamic, requiring reconfiguration.
Reconfiguration can be done either using passive stand-by processors or
using already active processors giving up some of the less important -
functions of the system (graceful degradation).

 The course material has been selected such that not only some methods
and tools are presented for all activities of the software production process
but. also fundamentals to understand those methods and tools.

" We also tried to present currently known thinking patterns in t.he field of
distributed systems as to alleviate the decomposition process. We are shure
that this course does not provide a closed theory or fool-proof recipes how
to produce software for distributed systems and that a lot of research and

development remains to be done.

Chapter 2

. Basic Concepts

2.1. Introduction to Models

This section presents 'an overview of the models commonly used as the
foundation for specifying properties of a distributed systems. This will
of necessity only review a few selected models -- an review of all of the
models used by different specification techniqueé is beyond the time and
space limitations for this course.

Before examinihg individual models, it is useful to consider why one
should be interested in the subject of models for specifications. The
major motivation can be derived from the following observation: a model
is used to precisely define desired characteristics of a system -- what is
not specified cannot be verified, and what is not verified may be in
error. The purpose of a model is to precisely define specific properties
or characteristics of a system under consideration to be built or
analyzed, and provides the foundation for verifying those properties.
Different models are used to specify different properties; alternatively,
to express a specific property o% a system, one must select from a class
of modéls which represent that property.

The kinds of properties necesshry for the development of distributed
systems include the following: sets, sedquences, and structures of data;
transformations of one data set into another, and tﬁe implied input/output
relationships between the transformations and the data sets; sequences and

concurrency of data séts whigh arrive or are generated at 'different points
of time; transformations of one time sequence into another; sequences of
transformations; data flow between transformation$; concurrency of trans-
_formations; conjrol of interactions - between concurrent transformations;
time to perform a transformation; and reliability/ availability of perfor-
ning a transformation in an environment of faults.

If we .compare the properties of a flow chart or pseudo code to this
11st of desired characteristics, we see that' a flow chart or pseudo-code
(structured or otherwise) usually expresses sequence, selection, and iter-
ation of processing’ steps; the characteristics of data flow, concurrency,
and performance are not present. A program structure chet;'for a serial
program usually identifies all subprograms CALLED by a subprogram, flow of
control, and flow of data; but no concurrency would be represented.

Whether one thinks these representations to be sufficient for repre-
senting serial programs, clearly.they are insufficient for addressing the
problems of concurrent distributed software. To represent these proper-
ties, we will examine the followihg models: mathematical function; finite
state machine; functional hierarchy; Petri Net; and graph model of compu-
tation. ' i
2.1.1 Mathematical Function

To define a mathematical function, one must specify three things: an
input domain (e.g., a set of input variables); an output domain (e.g., a
set of output variables); and a rule for transforming the inputs into the
outputs. For the transformation to be a function, it must always produce
the same outputs for the same input data set.

There are) several relevent aspects of mathematical function which
affect its applicabilty as a model for specifying distributed systenms.
First, a mathematical:function is not an algorithm -- a function can be
specified by providing an algorithm, but it is a design issue to construct
an algorithm which performs a transformation within a-specified accuracy.

For example, one can specify a transformation by
y = sin(x)

but any one of at least three algorithms can be used to accomplish it:

1) y = x (for small values of x) "

~2) y = polynomial in x (different polynomials for different
desired accuracy); or :
3) y = Taylor series (calculated iteratively).

A second reievent aspect of a mathematical function is that it can be
»decomposed”, i.e. specified by a combination of logic and lower 1level
functions. For example, one can define the absolute value funétion by
ABS(g(x)) = x Af g(x)>0

= -x if g(x)<0 ’
This has the effeci of specifying a function in terms of a structure of
" functions, and thus specifying an algorithm approach. The structure can
be described in terms decision tables, pre-conditions and post-conditions,
or flow-charts. Since one would like to specify a transformation and not
an algorithm in order to separaté requirements from design, use of a
mﬁtheméticai function appears to be very desirable. 9,
' The HOS specification approach tHamilton 77] provides techniques for"
decomposing any arbitrary function in terms of logical operators JOIN,
INCLUDE, and OR together with lower level functions, and repeating the
decomposition until the lowest level arithmetic operators are encountered.
This process decomposes both control flow and data flow simultaneously,
and provides tools to check that the two are consistent.

However, a this approach is 1imited because a mathematical function
inherently has no memory -- given an input, it pfoduces an output but
saves no data. This means that a collection of mathematical functions
cannot be used to specify the rquired data contents of distributed
computer systems. Attempts to use recursion (i.e., a function invoking
another copy of itself to process a subsequent input) to overcome- the lack
of memory results drives the comblexity of the function description
exponentially.

_' In view of this limitation, 1t appears that a mathematical function is
a necessary ingredient but not 5 sufficient model for specification of a
distributed system. By itself, jt can only be used to specify functions
_ which require no memory; the model must be _adgmented to address the

10
problems for which distributed systems are most widely used.

2.1.2 Finite State Machine
The concept of a Finite State Machine (FSM) seems to be tailor made
for the specification of processing for a data proceSsor. Essentially. an
FSM is composed of a set of inputs X, a set of outputs Y, a set of states
S, an initial state So, and a pair of functions which are used to specify
the outpufs and state transitions which occur as a result of an input.
The transformation function spécifies the outputs which result from an
input when the FSM is in any of its pbssib]e states; and the state tran-
sition funttfon specifies the next state which results from an input for
each possible state. In other words,
" X is the set [Xi] of inputs
Y is the set [Yi] of outputs
S is the set [Sj] of states
So is initial state
F maps Xi and Sj onfb Yi
G maps Xi and Sj onto Sj+1, the next étate.
Figure 2.1 provides an {1lustration of such a model.

INPUT TRANSFOQRMATION OUTPUT
) I ‘

STATE TRANSITION

STATE

Figure 2.1: Finite State Machine Model

