RROGRAMMINGHIMANGUAGE'S

Design and Implementationen (Fourth edition)

%ﬁ*zlﬁ_“

— XTS5 EW (wam)

.., TERRENCE W.PRATT ..
(%) MARVIN V. zELKOWITZ T &

2 (15 »
L= 44 & & K #
WWW. SCiCnCCP.Conl

= B S
— %t 5L
(SZENhRD

Programming Languages
Design and Implementation
Fourth Edition

Terrence W. Pratt e
Marvin V. Zelkowitz

4 4 % K

b H

El=%: 01-2003-6692 &

" A& E N

APBRGHIRT WEES, B8 C. C++. Java M PERL % 11 HIES, AROEEBIESHS.
WIS, RIBETIEL. BEBA. BAKIAR, B K. RFEEH. FEPEE. faY
LI WS iy e

ABHEH LU EMEEE SRR, BERTHERGNERY. ABRNETE, E6%. SR
G A

English reprint copyright © 2003 by Science Press and Pearson Education Asia Limited.

Original English language title: Programming Languages: Design and Impletation,4™ Edition by Terrence
W. Pratt and Marvin V. Zelkowitz. , Copyright © 2001,1996,1984,1975

ISBN 0-13-027678-2

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Prentice-Hall, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macao SAR).

PR TH R ARIERERN CREHED EFE, BIIFNITBX AP EEERR) #ERIT.
AASEHHNGA Pearson Education(Bs £ H & UL R BB 5% . THREEAEHE.
EBER%E CIP) HiE

TWIRE S Wit 5 =Programming Languages: Design and Implementation/ (%) Pratt,
T W 35E. —ZHA. —Iba: FREmRAt, 2004

ISBN 7-03-012473-1

L. %4 1P L BFPES—EFPR—3EC V. TP3I12

T [E R A 104 CIP $i#E 4% 5 (2003) 3 099953 5

R BRI/ TERE: KRR
TP 4] SAR/HEIL: LHELFEEIE

% ko R
LR A SRR #1655
B H4: 100717
http:// www . sciencep.com

S ® T B
FlEHB AR AT F HUETAE 1IN

*

2004 1 A% - W FFA: 787X960 1/16
2004 4F 1 HEE—IKEIR Epik: 41 1/2
¥ 1—3 000 Y 664 000

Efft: 68.00 T
(O ENEE TR R, Fak S siiiie R

Preface

This fourth edition of Programming Languages: Design and Implementation contin-
ues the tradition developed in the earlier editions to describe programming language
design by means of the underlying software and hardware architecture that is re-
quired for execution of programs written in those languages. This provides the
programmer with the ability to develop software that is both correct and efficient
in execution. In this new edition, we continue this approach, as well as improve on
the presentation of the underlying theory and formal models that form the basis for
the decisions made in creating those languages.

Programming language design is still a very active pursuit in the computer
science community as languages are born, age, and eventually die. This fourth
edition represents the vital languages of the early 21%* century. Postscript, Java,
HTML, and Perl have been added to the languages discussed in the third edition
to reflect the growth of the World Wide Web as a programming domain. The
discussion of Pascal, FORTRAN, and Ada has been deemphasized in recognition of
these languages’ aging in anticipation of possibly dropping them in future editions
of this book.

At the University of Maryland, a course has been taught for the past 25 years
that conforms to ‘he structure of this book. For our junior-level course, we as-
sume the student already knows C, Java, or C++ from earlier courses. We then
emphasize Smalltalk, ML, Prolog, and LISP, as well as include further discussions
of the implementation aspects of C++. The study of C++ furthers the students’
knowledge of procedural languages with the addition of object-oriented classes, and
the inclusion of LISP, Prolog, and ML provides for discussions of different program-
ming paradigms. Replacement of one or two of these by FORTRAN, Ada, or Pascal
would also be appropriate.

It is assumed that the reader is familiar with at least one procedural language,
generally C, C++ | Java, or FORTRAN. For those institutions using this book at
a lower level, or for others wishing to review prerequisite material to provide a
framework for discussing programming language design issues, Chapters 1 and 2
provide a review of material needed to understand later chapters. Chapter 1 is a

i

ii Preface

general introduction to programming languages, while Chapter 2 is a brief overview
of the underlying hardware that will execute the given program.

The theme of this book is language design and implementation issues. Chapter
3, and 5 through 12 provide the basis for this course by describing the underlying
grammatical model for programming languages and their compilers (Chapter 3),
elementary data types (Chapter 5), data structures and encapsulation (Chapter 6),
inheritance (Chapter 7), statements (Chapter 8), procedure invocation (Chapter 9),
storage management (Chapter 10), distributed processing (Chapter 11) and network
programming (Chapter 12), which form the central concerns in language design.

Chapter 4 is a more advanced chapter on language semantics that includes an
introduction to program verification, denotational semantics, and the lambda cal-
culus. It may be skipped in the typical sophomore- or junior-level course. As with
the previous editions of this book, we include a comprehensive appendix that is a
brief summary of the features in the 12 languages covered in some detail in this
book.

The topics in this book cover the 12 knowledge units recommended by the 1991
ACM/IEEE Computer Society Joint Curriculum Task Force for the programming
languages subject area [TUCKER et al. 1991).

Although compiler writing was at one time a central course in the computer
science curriculum, there is increasing belief that not every computer science student
needs to be able to develop a compiler; such technology should be left to the compiler
specialist, and the hole in the schedule produced by deleting such a course might be
better utilized with courses such as software engineering, database engineering, or
other practical use of computer science technology. However, we believe that aspects
of compiler design should be part of the background for all good programmers.
Therefore, a focus of this book is how various language structures are compiled,
and Chapter 3 provides a fairly complete summary of parsing issues.

The 12 chapters emphasize programming language examples in FORTRAN,
Ada, C, Java, Pascal, ML, LISP, Perl, Postscript, Prolog, C++, and Smalltalk. Ad-
ditional examples are given in HTML, PL/I, SNOBOL4, APL, BASIC, and COBOL
as the need arises. The goal is to give examples from a wide variety of languages and
let the instructor decide which languages to use as programming examples during
the course.

Although discussing all of the languages briefly during the semester is appropri-
ate, we do not suggest that the programming parts of this course consist of problems
in each of these languages. We think that would be too superficial in one course.
Ten programs, each written in a different language, would be quite a chore and
would provide the student with little in-depth knowledge of any of these languages.
We assume that each instructor will choose three or four languages and emphasize
those.

All examples in this book, except for the most trivial, were tested on an appro-
priate translator; however, as we clearly point out in Section 1.3.3, correct execution
on our local system is no guarantee that the translator is processing programs ac-
cording to the language standard. We are sure that Mr. Murphy is at work here,

Preface ifi

and some of the trivial examples may have errors. If so, we apologize for any
problems that may cause.

To summarize, our goals in producing this fourth edition were as follows:

e Provide an overview of the key paradigms used in developing modern pro-
gramming languages;

e Highlight several languages, which provide those features, in sufficient detail
to permit programs to be written in each language demonstrating those features;

o Explore the implementation of each language in sufficient detail to provide the
programmer with an understanding of the relationship between a source program
and its execution behavior;

e Provide sufficient formal theory to show where programming language design
fits-within the general computer science research agenda;

e Provide a sufficient set of problems and alternative references to allow stu-
dents the opportunity to extend their knowledge of this important topic.

We gratefully acknowledge the valuable comments received from the users of the
third edition of this text and from the hundreds of students of CMSC 330 at the Uni-

versity of Maryland who provided valuable feedback on improving the presentation
contained in this book.

Changes to the Fourth Edition. TFor users familiar with the third edition, the
fourth edition has the following changes:

1. A chapter was added (Chapter 12) on the World Wide Web. Java was added
as a major programming language, and an overview of HTML and Postscript were
added to move the book away from the classical “FORTRAN number-crunching”
view of compilers.

2. The material on object-oriented design was moved earlier in the text to
indicate its major importance in software design today. In addition, numerous
other changes were made by moving minor sections around to better organize the
material into a more consistent presentation.

3. We have found that the detailed discussions of languages in Part II of the
third edition were not as useful as we expected. A short history of each of the 12
languages was added to the chapter that best represents the major features of that
language, and the language summaries in Part II of the third edition were shortened
as the appendix. Despite these additions, the size of the book has not increased
because we deleted some obsolete material.

Terry Pratt, Howardsville, Virginia

Marv Zelkowitz, College Park, Maryland

Preface

1 Language Design Issues

2

1.1
1.2

1.3

1.4

1.5
1.6
1.7

Why Study Programming Languages?

A Short History of Programming Languages
1.2.1 Development of Early Languages
1.2.2 Evolution of Software Architectures
1.2.3 Application Domains

Role of Programming Languages

1.3.1 What Makes a Good Language?
1.3.2 Language Paradigms

1.3.3 Language Standardization

1.3.4 Internationalization

Programming Environments

1.4.1 Effects on Language Design

1.4.2 Enpvironment Frameworks

1.4.3 Job Control and Process Languages
C Overview

Suggestions for Further Reading

Problems

Impact of Machine Architectures

2.1

The Operation of a Computer

2.1.1 Computer Hardware

2.1.2 Firmware Computers

2.1.3 Translators and Virtual Architectures

Contents

~N ke =

14
17
19
25
29
33
34
34
37
38
39
41
42

45
45
47
51
53

vi

Contents

2.2 Virtual Computers and Binding Times 57
2.2.1 Virtual Computers and Language Implementations 58
2.2.2 Hierarchies of Virtual Machines 59
2.2.3 Binding and Binding Time 61
2.2.4 Java Overview 65

2.3 Suggestions for Further Reading 67
2.4 Problems 67
3 Language Translation Issues 69
3.1 Programming Language Syntax 69
3.1.1 General Syntactic Criteria 70
3.1.2 Syntactic Elements of a Language 74
3.1.3 Overall Program-Subprogram Structure 77

3.2 Stages in Translation 80
3.2.1 Analysis of the Source Program 81
3.2.2 Synthesis of the Object Program 85

3.3 Formal Translation Models 87
3.3.1 BNF Grammars 88
3.3.2 Finite-State Automata 97
3.3.3 Perl Overview 100
3.3.4 Pushdown Automata 103
3.3.5 General Parsing Algorithms 104

3.4 Recursive Descent Parsing 105
3.5 Pascal Overview 107
3.6 Suggestions for Further Reading 110
3.7 Problems 110
4 Modeling Language Properties 113
4.1 Formal Properties of Languages 114
4.1.1 Chomsky Hierarchy 115
4.1.2 Undecidability 118

4.1.3 Algorithm Complexity 123

4.2 Language Semantics 125
4.2.1 Attribute Grammars 128
4.2.2 Denotational Semantics 130
4.2.3 ML Overview 138
4.2.4 Program Verification 139

4.2.5 Algebraic Data Types 143

CONTENTS

6.3 Encapsulation by Subprograms

vii

4.3 Suggestions for Further Reading 146
4.4 Problems 147
5 Elementary Data Types 150
5.1 Properties of Types and Objects 150
5.1.1 Data Objects, Variables, and Constants 150
5.1.2 Data Types 155
5.1.3 Declarations 161

5.1.4 Type Checking and Type Conversion 163
5.1.5 Assignment and Initialization 168

5.2 Scalar Data Types 171
5.2.1 Numeric Data Types 172
5.2.2 Enumerations 179
5.2.3 Booleans 180
5.2.4 Characters 182

5.3 Composite Data Types 182
5.3.1 Character Strings 183
5.3.2 Pointers and Programmer-Constructed Data Objects 186
5.3.3 Files and Input—Output 189

5.4 FORTRAN Overview 194
5.5 Suggestions for Further Reading 196
5.6 Problems 196
Encapsulation 200
6.1 Structured Data Types 201
6.1.1 Structured Data Objects and Data Types 202
6.1.2 Specification of Data Structure Types 202
6.1.3 Implementation of Data Structure Types 204
6.1.4 Declarations and Type Checking for Data Structures 208
6.1.5 Vectors and Arrays 209
6.1.6 Records 220

6.1.7 Lists 227
6.1.8 Sets 231
6.1.9 Executable Data Objects 234

6.2 Abstract Data Types 234
6.2.1 Evolution of the Data Type Concept 235
6.2.2 Information Hiding 235

238

viii

Contents

6.3.1 Subprograms as Abstract Operations 238
6.3.2 Subprogram Definition and Invocation 240
6.3.3 Subprogram Definitions as Data Objects 246
6.4 Type Definitions 246
6.4.1 Type Equivalence 249
6.4.2 Type Definitions with Parameters 252
6.5 C++ Overview 254
6.6 Suggestions for Further Reading 256
6.7 Problems 257
Inheritance 264
7.1 Abstract Data Types Revisited 264
7.2 Inheritance 272
7.2.1 Derived Classes 273
7.2.2 Methods 277
7.2.3 Abstract Classes 279
7.2.4 Smalltalk Overview 280
7.2.5 Objects and Messages 282
7.2.6 Abstraction Concepts 286
7.3 Polymorphism 288
7.4 Suggestions for Further Reading 291
7.5 Problems 291
Sequence Control 293
8.1 Implicit and Explicit Sequence Control 293
8.2 Sequencing with Arithmetic Expressions 294
8.2.1 Tree-Structure Representation 295
8.2.2 Execution-Time Representation 302
8.3 Sequence Control Between Statements 308
8.3.1 Basic Statements 308
8.3.2 Structured Sequence Control 314
8.3.3 Prime Programs 323
8.4 Sequencing with Nonarithmetic Expressions 327
8.4.1 Prolog Overview 327
8.4.2 Pattern Matching 329
8.4.3 Unification 333
8.4.4 Backtracking 339

8.4.5 Resolution 340

CONTENTS

ix

8.5 Suggestions for Further Reading 342
8.6 Problems 342
9 Subprogram Control 345
9.1 Subprogram Sequence Control 345
9.1.1 Simple Call-Return Subprograms 347
9.1.2 Recursive Subprograms 353
9.1.3 The Pascal Forward Declaration 355

9.2 Attributes of Data Control 357
9.2.1 Names and Referencing Environments 358
9.2.2 Static and Dynamic Scope 363
9.2.3 Block Structure 366
9.2.4 Local Data and Local Referencing Environments 368

9.3 Parameter Transmission 374
9.3.1 Actual and Formal Parameters 375
9.3.2 Methods for Transmitting Parameters 377
9.3.3 Transmission Semantics 380
9.3.4 Implementation of Parameter Transmission 382

9.4 Explicit Common Environments 393
9.4.1 Dynamic Scope 396
9.4.2 Static Scope and Block Structure 400

9.5 Suggestions for Further Reading 408
9.6 Problems 408
10 Storage Management 415
10.1 Elements Requiring Storage 416
10.2 Programmer- and System-Controlled Storage 417
10.3 Static Storage Management 419
10.4 Heap Storage Management 419
10.4.1 LISP Overview 420
10.4.2 Fixed-Size Elements 422
10.4.3 Variable-Size Elements 430

10.5 Suggestions for Further Reading 432
10.6 Problems 432
11 Distributed Processing 436
11.1 Variations on Subprogram Control 436

11.1.1 Exceptions and Exception Handlers

437

Contents

11.1.2 Coroutines 441
11.1.3 Scheduled Subprograms 443

11.2 Parallel Programming 445
11.2.1 Concurrent Execution 447
11.2.2 Guarded Commands 448
11.2.3 Ada Overview 450
11.2.4 Tasks 453
11.2.5 Synchronization of Tasks 455

11.3 Hardware Developments 465
11.3.1 Processor Design 467
11.3.2 System Design 470

11.4 Software Architecture 472
11.4.1 Persistent Data and Transaction Systems 472
11.4.2 Networks and Client—Server Computing 474

11.5 Suggestions for Further Reading 475
11.6 Problems 476
12 Network Programming 479
12.1 Desktop Publishing 481
12.1.1 IATEX Document Preparation 481
12.1.2 WYSIWYG Editors 484
12.1.3 Postscript 484
12.1.4 Postscript Virtual Machine 485

12.2 The World Wide Web 490
12.2.1 The Internet 491
12.2.2 CGI Scripts 502
12.2.3 Java Applets 505
12.2.4 XML 507

12.3 Suggestions for Further Reading 508
12.4 Problems 509
A Language Summaries 510
Al Ada 510
A.1.1 Data Objects 513
A.1.2 Sequence Control 520

A2 C 528
A.2.1 Data Objects 530

A.2.2 Sequence Control 534

CONTENTS

xi

A3 C++

A.3.1 Data Objects

A.3.2 Sequence Control
A.4 FORTRAN

A.4.1 Data Objects

A.4.2 Sequence Control
A5 Java

A.5.1 Data Objects

A.5.2 Sequence Control
A.6 LISP

A.6.1 Data Objects

A.6.2 Sequence Control
A7 ML

A.7.1 Data Objects

A.7.2 Sequence Control
A.8 Pascal

A .81 Data Objects

A.8.2 Sequence Control
A.9 Perl

A.9.1 Data Objects

A.9.2 Sequence Control
A.10 Postscript

A.10.1 Data Objects

A.10.2 Painting Commands
A.11 Prolog

A.11.1 Data Objects

A.11.2 Sequence Control
A.12 Smalltalk

A.12.1 Data Objects

A.12.2 Sequence Control
A.13 Suggestions for Further Reading

References

Index

539
541
546
550
552
556
560
562
563
565
567
569
574
576
580
587
589
594
598
598
600
601
601
605
606
608
609
612
615
617
622

624

633

Chapter 1

Language Design Issues

Any notation for the description of algorithms and data structures may be termed a
programming language; however, in this book we are mostly interested in those that
are implemented on a computer. The sense in which a language may be implemented
is considered in the next two chapters. In the remainder of this book, the design and
implementation of the various components of a language are considered in detail.
The goal is to look at language features, independent of any particular language,
and give examples from a wide class of commonly used languages.

Throughout the book, we illustrate the application of these concepts in the
design of 12 major programming languages and their dialects: Ada, C, C++,
FORTRAN, Java, LISP, ML, Pascal, Perl, Postscript, Prolog, and Smalltalk. In
addition, we also give brief summaries about other languages that have made an
impact on the field. This list includes APL, BASIC, COBOL, Forth, PL/I, and
SNOBOLA4. Before approaching the general study of programming languages, how-

ever, it is worth understanding why there is value in such a study to a computer
programimer.

1.1 WHY STUDY PROGRAMMING LANGUAGES?

Hundreds of different programming languages have been designed and implemented.
Even in 1969, Sammet [SAMMET 1969) listed 120 that were fairly widely used, and
many others have been developed since then. Most programmers, however, never
venture to use more than a few languages, and many confine their programming
entirely to one or two. In fact, practicing programmers often work at computer
installations where use of a particular language such as Java, C, or Ada is required.

What is to be gained, then, by study of a variety of different languages that one is
unlikely ever to use?

There are excellent reasons for such a study, provided that you go beneath the

superficial consideration of the “features” of languages and delve into the underlying

design concepts and their effect on language implementation. Six primary reasons
come immediately to mind:

Language Design Issues Ch. 1

1. To improve your ability to develop effective algorithms. Many languages pro-
vide features, that when used properly, are of benefit to the programmer but,
when used improperly, may waste large amounts of computer time or lead the
programmer into time-consuming logical errors. Even a programmer who has
used a language for years may not understand all of its features. A typical ex-
ample is recursion—a handy programming feature that, when properly used,
allows the direct implementation of elegant and efficient algorithms. When
used improperly, it may cause an astronomical increase in execution time. The
programmer who knows nothing of the design questions and implementation
difficulties that recursion implies is likely to shy away from this somewhat
mysterious construct. However, a basic knowledge of its principles and im-
plementation techniques allows the programmer to understand the relative
cost of recursion in a particular language and from this understanding to de-
termine whether its use is warranted in a particular programming situation.
New programming methods are constantly being introduced in the literature.
The best use of concepts like object-oriented programming, logic program-
ming, or concurrent programming, for example, requires an understanding of
languages that implement these concepts. New technology, such as the In-
ternet and World Wide Web, change the nature of programming. How best

to develop techniques applicable in these new environments depends on an
understanding of languages.

2. To improve your use of your existing programming language. By understand-
ing how features in your language are implemented, you greatly increase your
ability to write efficient programs. For example, understanding how data such
as arrays, strings, lists, or records are created and manipulated by your lan-
guage, knowing the implementation details of recursion, or understanding how

object classes are built allows you to build more efficient programs consisting
of such components.

-

3. To increase your vocabulary of useful programming constructs. Language
serves both as an aid and a constraint to thinking. People use language
to express thoughts, but language also serves to structure how one thinks, to
the extent that it is difficult to think in ways that allow no direct expression
in words. Familiarity with a single programming language tends to have a
similar constraining effect. In searching for data and program structures suit-
able to the solution of a problem, one tends to think only of structures that
are immediately expressible in the languages with which one is familiar. By
studying the constructs provided by a wide range of languages, a programmer
increases his programming vocabulary. The understanding of implementation
techniques is particularly important because, to use a construct while pro-
gramming in a language that does not provide it directly, the programmer
must provide an implementation of the construct in terms of the primitive
elements actually provided by the language. For example, the subprogram
control structure known as a coroutine is useful in many programs, but few

Sec. 1.1. Why Study Programming Languages? 3

languages provide a coroutine feature directly. A C or FORTRAN program-
mer, however, may readily design a program to use a coroutine structure
and then implement it as a C or a FORTRAN program if familiar with the
coroutine concept and its implementation.

4. To allow a better choice of programming language. A knowledge of a variety
of languages may allow the choice of just the right language for a particular
project, thereby reducing the required coding effort. Applications requiring
numerical calculations can be easily designed in languages like C, FORTRAN,
or Ada. Developing applications useful in decision making, such as in artificial-
intelligence applications, would be more easily written in LISP, ML, or Prolog.
Internet applications are more readily designed using Perl and Java. Knowl-
edge of the basic features of each language’s strengths and weaknesses gives
the programmer a broader choice of alternatives.

5. To make it easier to learn a new language. A linguist, through a deep un-
derstanding of the underlying structure of natural languages, often can learn
a new foreign language more quickly and easily than struggling novices who
understand little of the structure even of their native tongue. Similarly, a
thorough knowledge of a variety of programming language constructs and im-
plementation techniques allows the programmer to learn a new programming
language more easily when the need arises.

6. To make 1t easier to design a new language. Few programmers ever think of
themselves as language designers, yet many applications are really a form of
programming language. A designer of a user interface for a large program
such as a text editor, an operating system, or a graphics package must be
concerned with many of the same issues that are present in the design of a
general-purpose programming language. Many new languages are based on
C or Pascal as implementation models. This aspect of program design is
often simplified if the programmer is familiar with a variety of constructs and
implementation methods from ordinary programming languages.

There is much more to the study of programming languages than simply a cur-
sory look at their features. In fact, many similarities in features are deceiving. The
same feature in two different languages may be implemented in two very different
ways, and thus the two versions may differ greatly in the cost of use. For example,
almost every language provides an addition operation as a primitive, but the cost

of performing an addition in C, COBOL, or Smalltalk may vary by an order of
magnitude.

In this book, numerous language constructs are discussed, accompanied in al-
most every case by one or more designs for the implementation of the construct on
a conventional computer. However, no attempt has been made to be comprehensive
in covering all possible implementation methods. The same language or construct,

4 Language Design Issues Ch. 1

if implemented on the reader’s local computer, may differ radically in cost or de-
tail of structure when different implementation techniques have been used or when

the underlying computer hardware differs from the simple conventional structure
assumed here.

1.2 A SHORT HISTORY OF PROGRAMMING LANGUAGES

Programming language designs and implementation methods have evolved contin-
uously since the earliest high-level languages appeared in the 1950s. Of the 12
languages described in some detail, the first versions of FORTRAN and LISP were
designed during the 1950s; Ada, C, Pascal, Prolog, and Smalltalk date from the
1970s; C++, ML, Perl, and Postscript date from the 1980s; and Java dates from
the 1990s. In the 1960s and 1970s, new languages were often developed as part of
major software development projects. When the U.S. Department of Defense did
a survey as part of its background efforts in developing Ada in the 1970s, it found
that over 500 languages were being used on various defense projects.

1.2.1 Development of Early Languages

We briefly summarize language development during the early days of computing,
generally from the mid-1950s to the early 1970s. Later developments are covered in
more detail as each new language is introduced later in this book.

Numerically based languages. Computer technology dates from the era just be-
fore World War II through the early 1940s. Determining ballistics trajectories by
solving the differential equations of motion was the major role for computers during
World War II, which led to them being called electronic calculators.

In the early 1950s, symbolic notations started to appear. Grace Hopper led a
group at Univac to develop the A-0 language, and John Backus developed Speedcod-
ing for the IBM 701. Both were designed to compile simple arithmetic expressions
into executable machine language.

The real breakthrough occurred in 1957 when Backus managed a team to develop
FORTRAN, or FORmula TRANslator. As with the earlier efforts, FORTRAN
data were oriented around numerical calculations, but the goal was a full-fledged
programming language including control structures, conditionals, and input and
output statements. Because few believed that the resulting language could compete
with hand-coded assembly language, every effort was put into efficient execution,
and various statements were designed specifically for the IBM 704. Concepts like
the three-way arithmetic branch of FORTRAN came directly from the hardware of
the 704, and statements like READ INPUT TAPE seem quaint today. It wasn’t
very elegant, but in those days, little was known about elegant programming, and
the language was fast for the given hardware.

FORTRAN was extremely successful and was the dominant language through

