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Introduction

In this book, we are developing an algebraic fixed point theory for equivariant maps, that is

for maps with symmetry properties.

So, let E be a topological space with a continuous action of some topological group G, a
G-space in short, and let f be a partially defined G-transformation on £: l.e. the domain of
/f has to be a G-subspace of E and fis to respect the action of G. Maps are always under-
stood to be continuous.

More generally, we consider continuous G-families f={f,: V, > E,, be B} of such maps
where G may act non-trivially on the parameter space B: An element g € G transports the
fibre f; of fto the fibre over gb e B and for ve V,, f,(gv) equals g f(v). If we let E denote
the union of all £, be B, then G acts on E and p: E— B, p '(b):=E,, is a G-map.

V.= UbeBV‘" is a G-subspace of E over B and f becomes a vertical G-map
Vv _J E
A
B

with p f(v) = p(v), f(gv) = g f(¥), and p(gv) = gp(v). We call f a G-fixed point situation over
B if its fixed point set Fix(f):= {ve V, f(v) =v} lies properly over B, if V' is open in E,
and if p is a G-ENRy, in words a G-euclidian neighbourhood retract over B. So, there exist
a G-module M, ie. a linear representation of G in some euclidean space M =R", and a
vertical G-embedding of p into the projection B x M — B such that therein, p is a vertical
G-retract of some G-neighbourhood. We assume that the base B is paracompact and
compactly generated. Then the fixed point set of f lies properly over B if and only if it is
closed and fibrewise uniformly bounded as a subspace of B x M.

In [Dold 2], any non-equivariant fixed point situation f over B gets assigned a fixed point
index I(f) in the zeroth stable cohomotopy group = (B) of B constructed as follows: Each
fibre of fhas a Hopf index I( f;) € Z represented by a transformation i( ;) of the pointed
n-sphere, or of the pair (R", R" — 0), of degree I( f;). The family of all these transformations
i( f;) can be constructed so as to depend continuously on the parameter b e B. It then con-

stitutes a map

i(f):Bx(R",R"—0) - (R",R" - 0)
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which represents the fixed point index I(f) e n(B). When f is a G-fixed point situation

with G a compact (Lie) group, the analogous construction yields a G-map
ig(f):Bx(M,M—0)—>(M,M-0).

which will represent the G-fixed point index I f) in the zeroth stable G-cohomotopy group
no(B). The fixed point index of fin any other multiplicative G-cohomology theory h; is the
image of I;( /) under the degree map u: n;*(B) — A;*(B). The As;-index of the identity on a
proper G-ENR p will be called the hg-characteristic of p, denoted by yx, (p). Two G-fixed
point situations f; and f over B are said to be equivalent if they can be connected through a
G-fixed point situation f= { £} over B x [0, 1]. The equivalence classes form a ring with
unit element, the G-fixed point ring Fixy(B). By virtue of its basic properties, the fixed point

index in a multiplicative G-cohomology theory 4; defines a homomorphism of unitary rings
Iy : Fixg(B) = hg(B).

We show that [;:=1I, is an isomorphism. It will be indicated only how stable
G-cohomotopy classes of non-trivial degree « can be realized by G-fixed point situations of
degree a where « is an element of the real representation ring of G.

By interpreting maps between equivariant cohomotopy groups in terms of equivanant fixed
point theory, we attain a geometrical view of the equivariant group completion map and thus
of the mapping in the Segal conjecture. And by means of the fixed point transfer in
equivariant K-theory, we can describe what is meant by induced representations in the cate-

gory of compact Lie groups.

The swm formula in Chapter III, Section 5 is a crucial tool for calculating the equivariant
fixed point index over a point: The A;-index of a G-fixed point situation f decomposes into
an integral linear combination of the A;-charactenistics of the orbit types of G around its

fixed point set, that is

h(f) = Y mal ) 1a (GIH).

(H)

Xa, vanishes on all orbit types (G/H) whose G-automorphism group W(H)= N(H)/H 1s

not finite whereas otherwise, ny( f) 1s the Hopf index
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n(f) = (I = 1) 1w e z.

/" and f¥ denote the fixed point situations induced by f in the H-fixed point spaces
E":={(xeE, hx=xforall he H} and EE:=UK>H
then the Hopf index I(f) of fequals I( f*), and if G is a finite p-group, it is congruent to

E¥. For example, if S < G is a torus,

I(f°) modulo p. Therefore, the Hopf index of any odd transformation of a sphere is even.
This is the Borsuk-Ulam theorem. Generalizations follow at once by means of the sum
formula.

We will further discuss the relation between the index of a G-fixed point situation f and
that of the map /G induced on orbit spaces - provided of course, the latter’s fixed point
set 1s compact. To illustrate the ideas developed, we denive three results of A. Weil, H.

Hopf, and D.H. Gottlieb which nowadays are folklore in the theory of compact Lie groups.

For the identity on a compact G-ENR E, the sum formula takes the form

15 (E) = D % Eary/ G) 15 (GIH)

(H)

where E c E is the G-subspace consisting of all points on orbits of type (G/H) and yx,
denotes the Euler-Poincaré characteristic in singular or Cech cohomology with compact

support. Thus the Euler-Poincaré characteristic of E decomposes as

x(E) = ZXC(E(H))'
(H)

Regarding again the sum formula for general f, the last result might suggest that the (H)"
term would be counting the fixed points of fin Ey,. This, however, is not correct as a fixed
point of fliving in EX with K> H may be counted by f* with a multiplicity different from
that counted by f*.

Interpreted in stable G-cohomotopy theory, the sum formula purports that every G-fixed
point situation over a point is equivalent to the identity on a suitable compact G-ENR.
The coefficient ring F(G):= Fixy(pt) of G-fixed point theory even coincides with the
Burnside ring A(G) of G and our isomorphism I,: F(G) — my(pt) provides a geometrical
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view of the tom Dieck isomorphism A(G) = =g(pt) [tom Dieck 2]. For, A(G) is defined as
the set of equivalence classes of compact G-ENRs under the equivalence relation £~ E' if
2WE™) = y(E'™) for all H<G; and f— (I(f")) induces an injective ring homomorphism
F(G) > T1,..Z. Indeed, using the sum formula, we see that already the corresponding

homomorphism
I*: G~ Z%?, [f1-(1(s ™)

is injective where ®(G) denotes the set of those orbit types of G whose G-automorphism
group is finite. By inverting the matrix of /* - as an abelian group, F(G) is free on ®(G) -
we can describe the image of F(G) in Z™? by relations and congruences: For every finite
subset # < ®(G), there exists a relation specifying in Z*? a free subgroup C, of rank
|»#| which contains the image of the subgroup of F(G) free on #, and further a set of
congruences determining this image in Cy,.

The inverse of [* is a three-dimensional matrix M over Z. We present an explicit recipe to
calculate its entries. For G finite, M reduces to a two-dimensional matrix. And if G is a
finite cyclic group generated by some some g, M provides us with congruences between the
Hopf indices of the iterates g* of g.

In the union of all C,,, we can describe the image of F(G) by a closed set of congruences -
even if G is not finite. It is denived from the following congruence holding for finite group

actions:

Y I(s% =0 mod |Gl.

geG

The superscript “g” stands for the subgroup of G generated by g. This relation, in turn, will
be deduced by several ways: First, it is an immediate consequence of the sum formula

which, for the identity on a compact G-ENR, reads

> X(EF) = 1(EIG) |G,

geCG

Second, we find an elementary approach by investigating local Hopf indices, and finally, we
will encounter it again in the last section when we are analyzing the fixed point index in

equivariant K-theory.
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For in equivariant K-theory, the index of a G-fixed point situation f over a point is an
element of the complex representation nng R(G) = K (pt) of G. Employing the sum

formula, we can calculate its character function as
I (f):G—Z, g I(f*).

In particular, the K;-characteristic of a compact G-ENR 1is the virtual representation

x(E) = ) (~1) H{(E; ©)

of G over C. For a finite G-set E, this is the permutation representation C(F) of G.
We end our discourse with a description of the K;-transfer in terms of Atiyah’s topological

index homomorphism t-ind and a final application of the Atiyah-Singer index formula.

These are the contents of Chapter III. For the sake of completeness, we have enclosed an

Appendix on proper maps.

The results from the theory of compact transformation groups used in this book are listed in
Chapter I. There we also prove a simplified version of the equivariant transversality

theorem required lateron when we will discuss local Hopf indices.

G-ENRgs are discussed in Chapter II. Throughout, G will be a compact group equipped
with a Lie-structure if necessary. In the results stated, B is assumed to be paracompact.

We confirm the properties of G-ENR,s well-known for the non-equivariant case. So, a
closed vertical G-subspace g of a G-ENR p is a G-ENR; if and only if the inclusion ¢ — p
is a G-cofibration over B. Proper G-ENR,s are G-fibrations. Arbitrary G-ENRgs,
however, only enjoy the G-beginning covering homotopy property G-BCHP: In general,
G-homotopies on the base can be G-lifted just a bit.

It turns out that a vertical G-space p: E — B over a G-ENR is a G-ENR, if and only if it
has the G-BCHP and F is a G-ENR. This allows us to confirm a conjecture proposed in
[Dold 3] for the non-equivariant case: Over a G-ENR B, a G-ENR}; is characterized as a
vertical G-space which has the G-BCHP and all of whose fibres are G-ENRs.
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A smooth manifold is an ENR and a submersion of smooth manifolds is a vertical ENR
since it comes with a family of local cross sections and hence is a C°-submersion. We for-
mulate this equivariantly in three versions of different strength and investigate how such
G-C°-submersions are related to spaces having the G-BCHP.

While the G-BCHP distinguishes vertical G-ENRs over a G-ENR, a vertical G-space
whose total space is a G-ENR, proves to be a G-ENR, if and if only it is a
G-C'-submersion. We will see however that in a G-ENR, p with surjective mappings p”
for all H < G, the base is already a G-ENR if - and hence only if - the total space is one.

To prove the last two results, we employ a vertical generalization of the Jaworowski crite-
rion for G-ENRs with a compact Lie group: A closed G-subspace p: E — B of a vertically
trivial G-ENR; B x M — B over a sufficiently nice base is a G-ENR; if and only if p” is a
vertical ENR over B” for each orbit type (H) on Bx M — E.

Examples of G-ENRs are provided by locally trivial fibre bundles with action of a compact
Lie group G. If such a fibre bundle is locally trivial in an equivariant sense, it proves to be
an extra strong G-C°-submersion and hence a G-fibration. This is the homotopy theorem
in [tom Dieck 1].

If pis a G-locally trivial bundle of finite type over a suitable base, we can specify
ENR-conditions for the non-equivariant fibre F which identify p as a G-ENR,. In G-vector
bundles, for instance, these conditions are satisfied. From this, we can derive an
ENR-condition for F sufficient to make p a G-ENR, even if p is not G-locally trivial.

For illustration, we study the projection of a G-ENR E onto its orbit space: It will be a
vertical G-ENR if and only if there is only one orbit type on F - locally at least.

We end the chapter with vanous examples. From an inductive cnterion, we deduce that
smooth G-manifolds of finite orbit structure are G-ENRs. Hence, a G-C™-submersion of
such manifolds is a vertical G-ENR, for it is a G-C’-submersion. Finally, with regard to
our sum formula, we show that the saturations p™:= G-p" and p*: = G-p¥ of the

H-fixed point spaces in a G-ENR; p are G-ENR ;s for themselves.

Further comments will be found in the extensive introductions preceding each chapter. We
use the symbol [0 to mark the end of a proof whereas the symbol I indicates that the

proof remains to be completed in a subsequent section.



CHAPTER |
Preliminaries on Group Actions

The first two sections establish the notational conventions and list some classical results on
compact transformation groups. For details, we refer the reader to the books [Bredon| and
[Palais 2]. In addition, we provide the following two results required in the subsequent
chapters.

Let G be a compact Lie group. The set of conjugacy classes of closed subgroups of G
comes with a natural partial ordering and we first show how it may be refined to a well-
ordering. Second, some useful sum formulae of R.S. Palais, relating the dimension of a
G-space to that of its orbit space, will be generalized from separable, metrizable G-spaces to

just metnizable and even to paracompact, perfectly normal ones.

The entire Section 3 has been devoted to denve a simplified version of the equivariant

transversality theorem following along the lines of [Hausschild 1].

In the final Section 4, we will sketch the local charactenization of G-cofibrations and

G-fibrations whereby G is merely a compact group.

1. Some Set Theory on Compact Lie Groups

1.1 Let G always denote a compact topological group. Continuous vector valued functions
on G can thus be integrated. If necessary, G comes with the structure of a Lie group.

A subgroup H < G is always to be a closed subspace of G. Hence, H as well as G is a
compact (Lie) group. Let (H) denote the conjugacy class of H in G. (H) < (K) means that
H is subconjugate to K. G/H stands for the set of left cosets gH of H in G. By W(H), we-
denote the Wepl group N(H)/H where N(H) is the normalizer of H in G. We write H< G
in case H is a normal subgroup of G. {(g) < G is the topological subgroup generated by
g € G. Its order is denoted by |g].

If G is a compact Lie group, then, up to conjugation, the number of subgroups H < G is
countable ([Palais 2|). In this case, therefore, the partial ordering ” < “ on the set of
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conjugacy classes in G can readily be refined to a total ordering - simply by a numeration
with real numbers:

One enumerates the conjugacy classes (H) with natural numbers and places (H,) at the
origin, say. If (f,) and (H,) are incomparable, we assign to (f,) any real number different
from zero. Otherwise, (H,) gets a positive real number in case (H,) > (H,) and a negative
one else. We then place (H,) at a suitable point and continue.

Of course, we will not get a well-ordening that way. But as indicated, we can show:

1.2 Theorem. Let G be a compact Lie group. The partial ordering "<” on the set of
conjugacy classes {(H), H < G } in G can be refined to a well-ordering "<".

PROOF. Let # be any non-empty set of conjugacy classes in G and select some (H,) € 5.
If (H,) is not minimal with respect to the partial ordering “<” on 5#, then there exists a
subgroup H, < H, with (H,) € 5. If (H,) neither is minimal in 5, we find some (/) in #
such that H, < H, < H,. This chain will cease eventually since, as a proper submanifold, H,,,
has less components or a smaller dimension than H, Hence, there is a minimal element in
H.

In other words, the set of conjugacy classes in G satisfies the descending chain condition.

The assertion now follows from the next lemma. O

1.3 Lemma. Let (X, w) be a non-empty, partially ordered set. The ordering w can be refined

to a well-ordering on X if and only if w satisfies the descending chain condition.

PRrOOF. The descending chain condition on w is necessary because a totally ordered set is
well-ordered if and only if it satisfies the descending chain condition.

Conversely, we consider the set W of all well-orderings w, refining » which are defined on
subsets 4 ¢ X with the property that a € 4 implies x € 4 for all w-predecessors of a.

By calling w, smaller than wy if w, is an initial segment in w;, we equip W with an induc-
tive ordering: For, any chain {w,} in W defines, on the union of all its domains 4, a well-
ordering belonging to W which yields an upper bound for the chain. Clearly, W is
non-empty - the empty set for instance belongs to W. Hence, Zom’s Lemma provides a
maximal element w,, in W.

If X — M were non-empty, then, because of the descending chain condition, we could find
therein an element x minimal with respect to w. Putting x behind all of M, we would
define a well-ordering in W strictly geater than w,,: For, all w-predecessors of x were in M
because of the minimum choice of x while, by definition, none of the w-successors of x
could belong to M. O
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2. On the Topology of Spaces with Group Action

2.1 Throughout the section, let G be a compact group.

By a G-space, we understand a topological space X equipped with a continuous action of G
from the left, i.e. with a continuous multiplication (—+—):G x X —» X. An equivariant
mapping of X - a G-map in short - is a continuous map f from X to some other G-space
respecting the group action: f(gx)=gf(x). By a G-transformation of X, we mean an
equivanant self mapping of X.

G/H for example is a G-space for any H < G. The set of its G-transformations is the Weyl
group W(H)= N(H)/H.

2.2 For any G-subspace 4 c X the closure A, the interior /f and the complement X — A4
are G-subspaces of X. If 4 is the zero-set of some function 7: X — [0, 1], we may assume
that 7 is a G-function. For otherwise, we integrate = over G.

The orbit of a point x € X is denoted by Gx and the isotropy subgroup of G at x by G,.
Since G is compact, the natural map G/G, — Gx, gG, — gx is a G-homeomorphism.

Every neighbourhood of an orbit in X contains a G-neighbourhood since G is compact. If
X is a Hausdorff space, the closed G-neighbourhoods constitute neighbourhood bases

around the orbits of G, for the action of a compact group is a closed map.

2.3 The orbit space of X will be denoted by X/G. The projection X — X/G is proper,
hence in particular closed, and open. Therefore, X/G is a Hausdorff, a (completely) regular,
or a (perfectly) normal space, just as X is. Furthermore, X/G will be (locally) compact,
Lindel6f-compact, or compactly generated if and only if X is so. In particular, when X is
separable and metrizable, then so is X/G. According to a theorem of E. Michael, X/G is
paracompact exactly if X is. All these results are detailed in the book [Engelking].

2.4 By the type of an orbit we mean its equivariant topological type. The set of orbit types
on X comes with a partial ordering, namely type(Gx) < type(Gy) if there is a G-map from
Gx to Gy. This in turn holds if and only if the isotropy group G, is subconjugate to G, i.e.
if (G,) < (G,).

Without any harm, we may therefore identify the orbit type of Gx with the conjugacy class
of G,.
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2.5 For H<G, let X" denote the H-fixed point set of X, ie. the set of all points in X
whose isotropy group contains H. X carries an obvious action of N(H) or W(H). We
write X for the G-saturation GX". It consists of all points in X whose isotropy group H
is subconjugate to.

By X,, we denote the set of all points on orbits of type (G/H), and by X, c X, the sub-
space of all points whose isotropy group is exactly H. The complement X of Xyyin X “h
consists of all those points whose isotropy group is of type strictly greater than (H).

2.6 A G-map f: X — Y induces maps f7: X" - v . x" L y® and & x@ _, y&
since for every x € X, we have G, < G ,,.

Observe however that f maps the pair (X, Xy) to (Y, Yy) only if G;,, equals G, for all
points x on orbits of type (G/H). Thus 1s the case if and only if f1s injective on each such
orbit Gx, i.e. if Gx gets mapped homeomorphically onto G f(x). If this holds at all points

in X, we say that fis isovariant.

2.7 By a G-module M, we mean a real vector space of finite dimension equipped with a
linear G-action from the left. Thus, M is a linear representation of G over R. We will
emphasize specifically, when M is to be a complex G-module.

As G is a compact group, we can integrate over G. Therefore, any linear representation of
G is equivalent to an orthogonal or a unitary one. More generally, we can equip any
metrizable G-space X with a G-invariant metric which in turm induces a metric on X/G

generating the identification topology.

2.8 The Tietze-Gleason theorem is the equivanant version of the Tietze extension theorem:
If X is a normal G-space, then any G-map f from a closed G-subspace A< X to a
G-module M can be extended to a G-map F: X — M.

In other words, a G-module is an equivariant absolute extensor, a G-AE in short, for the

class of normal G-spaces.

If the G-map f given on A takes its values in some real interval [ with tnivial G-action, then,
of course, we can arrange that its G-extension F remains in [/ as well.
Or, if 4, and 4, are disjoint closed G-subspaces of X, then there exists a G-function
1: X > [0, 1] separating 4, and 4,, i.e. such that 7(4,) = ifor i=0, 1.

29 We show that paracompact G-spaces are G-numerable, that is numerable in an

equivariant sense.
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Proposition. Let X be a G-space with G a compact group. If U is a numerable covering of X
by G-subspaces, then U is numerable by G-functions.

PrROOF. Let {¥, Ue U}, be a partition of unity subordinate to U. By integrating over G,
we make the functions u G-functions u%: X — [0, 1]. The support of 4 is contained in U
since U is a G-subspace of X. It remains to show that the familiy {x°} is a locally finite
partition of unity.

{u} is a locally finite family and therefore, keeping x € X fixed, we find, for every ge G, a
neighbourhood of gx in which only a finite number of the functions u does not vanish
identically. I.e. for every g e G, there are neighbourhoods V,c G of g and W, c X of x
such that w(V,+W,) = 0 holds for all « up to a finite number of exceptions, say ue U — U,.
Now, take a finite subset of {¥,} which covers G. Let W be the intersection of the corre-
sponding subset of {W,} and U, that of {U,} Then W is a neighbourhood of x, U — U, is a
finite set, and for each U € U,, we have w(GW) = 0. On W, therefore, 1 vanishes for every

U e U,. Hence, the family {«°} is locally finite. And at each point x € X, it sums up to

D uy = | ) uen = | D ulew
¢ 24—,

u-u U
G =

= —=x

whichis 1. O
2.10 For the rest of the section, let G be a compact Lie group.

A G-space X now enjoys a nice local structure provided only, it is completely regular. For
then, any point x € X lies on a G -slice. This is the slice theorem of J.L. Koszul ([Koszul]).

Remember that for H < G, an H-slice in X is an H-subspace S < X for which the multipli-
cation G x,;S —» GS < X is an open G-embedding. We call S an H-kernel if we do not care

about whether GS is open in X or not.

2.11 Among the various consequences of the slice theorem, we are particularly interested in

the following results:

In a completely regular G-space X, with G a compact Lie group, every orbit is a

G-neighbourhood retract. In particular, every point x € X has a neighbourhood in which all



