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PREFACE

The exposition-in the following pages is based on lectures I
gave to second year mathematics gr@’uate students at Wesleyan Univer-
sity during the academic years 1970 - 71 and 1971 - 72. The intent

‘of the lectures was to provide the student with an introduction to
functional analysis that not only presented the basic notions, theo-
rems, and techniques of the subject, but also gave a modest sampling
of the applications of functional analysis. This remains the goal
of the present book. The choice of the topics and applications is
clearly idiosyncratic, and' I make no claim to a balanced, iet alone
definitive, treatment. I will consider the book a success if it
but convinces the reader of the beauty; power, and utility of func-
tional analysis. ' )

An intelligent reading of the book presupposes at most “the usual
mathematical equipment possessed by second year mathematics graduate
students.. The main items required are some knowledge of point set
topology, linear algebra, and elementary complex analysis, together
with a good background in measure and integration theory, say, for
example, as in Royden's book 'Real Anal¥sis" [Ry]. Results with
which it is assumed the reader is familiar are frequently cited with-
out further elaboration. However, in almost all such instances an
appropriate reference is given.

The last section in each chapter consists of problems that hope-
fully are do-able with the material developed up to that point. An .
asterisk before a problem generally indicates that the problem may
be of a more substantial nature or, in some cases, that i£~contains
a result of particular importance. Most of the results in the body
of the text that are formally stated without proof appear again in
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the problem sections and such problems are cross referenced accord-

ingly.

The conclusion of proofs is indicated by the symbol [0 at the
right hand margin.

I would like to thank all of the graduate students at Wesleyan
who passed through my course while this book was evolving for their
comments and suggestions. In particular, I would like to thank
David DeGeorge, Hans Engenes, Polly Moore Hemstead, and Michael Paul
for their often perspicacious observations and questions that more
than once kept me from foolish error. Those errors that remain,

foolish or otherwise, are of course my own responsibility.

I am especially grateful to Polly Moore Hemstead, who not only
passed through the course but also provided mé with valuable editorial
assistance and collected and organized the problem sets at the end
of each chapter. Her efforts have greatly enhanced the final form
of the book.

I would also like to thank Helen Diehl, who typed all of the

original manuscript and a good deal of the final one.

Finally, thanks are due to the editors and staff of Marcel
Dekker for their cheerful and expert cooperation during the produc-

tion of the book.

Middletown, Connecticut

January, 1973
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CHAPTER 1

SEMINORMED AND NORMED LINEAR SPACES

1.0. Introduction. In this chapter we develop some of the
basic concepts and results concerning seminormed and normed linear
spaces. We begir with the fundamental definitions and some elementary
theorems about the construction of new normed linear spaces from given
normed linear spaces. This is followed by a collection of examples,
by no means exhaustive, of seminormed and normed linear spaces. The
verifications are left to the reader and are, in some cases, nontri-

vial. References are cited at the end of the section.

Section 1.3 contains a discussion of finite-dimensional normed
linear spaces in which it is shown that all such spaces are topolo-
gically ismorphic and that a normed linear space is finite-dimen-
sional if and only if closed bounded sets are compact. In the next
two sections we discuss the concept of the gauge of a convex “balanced
absorbing set, the relationship between gauges and seminorms, and the

introduction of a topology into a seminormed linear space.

1.1. Basic Definitions. We begin with several fundamental defi-

nitions. Throughout, ¢ will denote either the real-number field or
the complex-number field, R and C will stand for the real and com-
plex fields, respectively, and Z will always denote the integers.

-

Definition 1.1.1. A linear space V over a field & is a‘cdm-

mutative group under a binary operation +, together with an opera-
tion of scalar multiplication from & x V to V, denoted by juxta-

position, such that



2 1. Seminormed and Jormed Linear Spaces

(i) a(x +y) = ax + ay,
(ii) (a + b)x = ax + bx,
(iii) a(bx) = (ab)x,
(iv) 1x = x (a,b € &; x,y € V).

Of course, 1 denotes the multiplicative identity in ¢, and
the operations of addition and multiplication in & have been indi-
cated in the usual manner; 0 will be used to denote the additive
identity in both V and ¢&. The context will make clear which is

meant.

Definition 1.1.2. Let V be a linear spacé{;ver . Given
ECé; a€é; ALBCV; and xOEV, we set

A+B={x+y| x€A, y€B},
noeve ey lyesl,

EA = {ax | a € E, x € A},

aA = {ax | x € A}.

Definition 1.1.3. Let V be a linear space over ¢ and let
Wc V. Then W is a linear subspace of V if W+ WC W and
¢W < W. Furthermore, W is convex if ax + (1 - a)y € W whenever
x,y €W and a €8, 0<agl; W is symmetric if -1N = -W = W;
and W is balanced if aWC W, a € &, |a| < 1.

Clearly every balanced set is symmetric, but the converse need
not be true. Moreover, a nonempty balanced set contains the origin.

It should be remarked that the terminology with regard to
balanced sets is not universally the same. Many authors call a
balanced set "circled" (for example, see [K, p. 176; KeNa, p. 14]),
whereas others use the term 'balanced" [Bb, p. 8; EI’ p. 50; T, p. 123;
Wl, pP. 22; Y, p. 24].

Definition 1.1.4. Let V be a linear space over & and sup-

pose that p : V=R. Then p is a seminorm on V if
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(i) p(x+y) <px) +p)
(ii) p(ax) = |a|p(x) (x,y €V; a € §).

Property (i) of p is known as the triangle inequality, for
obvious reasons. It is also referred to as the subadditivity of p.

We shall shortly see some examples of seminorms. First, however,

we wish to prove the following proposition:

Proposition 1.1.1. Let V be a linear space over ¢ and let

p be a seminorm on V. Then

(i) p(0) = 0,
(ii) p(x) >0,
(iii) p(x - y) > |px) - p(Y)| (x,y € V).

Proof. p(0) = p(0x) = |0|p(x) =0, x €V, and part (i) follows.
Clearly part (ii) is a consequence of part (iii). But, for any
x,y € V, the subadditivity of p reveals that

P(x) =p(x -y + .") <plx -y) +p(y),

and hence p(x) - p(y) < p(x - y). However, from the homogeneity
property of p we deduce that

p(x - y) =p[-(y - x)] =ply - x) >p(y) - px),

and so p(x - y) > |p(x) - piV)|. =

We could, of course, have included the results of Proposition
1.1.1 as part of the definition of a seminorm, and this is done by

some writers.

, Definition 1.1.5. Let V be a linear space over ¢ and let

p be a seminorm on- V. If p(x) = 0 implies x = 0, then p is

said to be a norm on V.
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Definition 1.1.6. Let V be a linear space over &. Then

V is said to be a seminormed linear space if there exists a family

P = {pB | B € A} of seminorms on V such that pe(x) =0, B €A,

implies x = 0. If V is a seminormed linea: space and P = {p},

that is, P 1is a singleton set, then V is said to be a normed
- linear space.

Evidently the condition on the family of seminorms
P = {pB | B €A} required fory V to be a seminormed linear space
is a replacement for the positive definiteness displayed by a norm.
It will become clear in the sequel how this property of {ps} ig

utilized.

i In the case that V is a normed linear space, we shall generally
call p(x), the norm of x and write p(x) = [[x||. It is then easily
seen that the equation p(x,y) = [|x - y||, x,y € V, defines a metric
p on V  and that a net {x }] €V converges in this metric topology
to x €V if and only if limu“xa - x|| = 0. The details of these
assertions are left to the reader. We shall generally refer to this
metric topology as the norm topology. The next definition now clearly

makes sense.

Definition 1.1.7. A normed linear space V over & is said

to be a Banach space if it is a complete metric space with the metric

p(x,y) = |lx - y|l, x,y € V.

Since there may be many families of semincrms under which a given
linear space is a seminormed linear space, we shall write. these spaces
as pairs (V,P), where P is the relevant fami{y of seminorms. When
P = {p}, that is, V is a normed linear space, we shall generally
write (V,||[D- )

Before we turn to some examples, we wish to state two theorems
concerning normed linear spaces. The proofs are straightforward and

are left to the reader.
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Theorem 1.1.1. Let (V,||:]]) be a normed linear space over §.

(i) If WcV is a linear subspace, then the closure of W
in V is a linear subspace of V.

(ii) If WcV is a linear subspace, then (W,[:|) is a
normed linear space. If (V,|:]]) is a Banach space and W is a
clesed linear subspace, then (W,||*||) is a Banach space.

(iii) if Wc V is a closed linear subspace, then the quotient

space V/W is a normed linear space with the norm

lEx + Wil = inf [lx + v (x € V).
yew

If (V,[|-]]) is a Banach space and W is a closed linear subspace,
the (V/W,||| *|ll) ‘is a Banach space.
(iv) There exists a Banach space (VI,H'“I) over ¢ and a

mapping ¢ : .V — V1 such that

(a) ¢ 1is am isomorphism.
(b) @(V) 1is dense in (vl,“-ul).
©) lletlly = lixl . (x €V).

Moreover, if (V,,[[-||,) 1is another Banach space that satisfies pro-
perties (a), (b), and (c), then there exists a mapping 'v = V1 - V2
that is a surjective isomorphism such that [y (x)fi, = [Ixll;, x € V,.

The space (VI’H'“l) described in Theorem 1.1.1(iv) is, of
course, called the completion of V. Clearly Theorem 1.1.1(i) also
remains valid for any seminormed linear space .(V,P).

Theorem 1.1.2.. Let (VI,H'“I),(VZH-HZ),...,(Vn,“-“n) be
normed linear spaces over ¢ and let V denote the topological

product V. x V. x*:°x Vn of the topological spaces Vl,Vz,...,V

>
with the rlspeciive norm topologies and with linear space additi02
and scalar multiplication defined componentwise. Then (V,[|:|[) is
a normed linear space over ¢ such that the norm topology is equiv-
alent to:the product topology if ||-|| is defined as any of the

following:
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@ =l " T llx, Il »
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) n
G Il <[ 2 ltllxkllk)p]”" L<p<w,

where x- (xl,xz,..-.x ) 1f (vl’ " " ) (V2’“ Ilz),"’l(v " " )
are Banach spaces, then so is (V,[[:|]).

It should be noted that the top&logicaﬂ product of infinitely
many normed linear spaces cannot be provided with a no;n'for which
the norm topology is equivalent with the product topology (see, for
example, [K, p. 150]).

1.2, Examples of Seminormed Linear Spaces. In this section we

give a number of examples of seminormed and normed linear spaces.

No proofs are provided for the various assertions. Some proofs will
appear in later chapters, whereas others are left for the reader to
establish.

Example 1.2.1. Let X be a Hausdorff topological space. By
c(x), Co(x), and CC(X) we denote, respectively, the linear spaces
over C of all continuous complex-valued functions on X that are
bounded, vanish at infinity, or have compact support. The linear
space operations are the usual ones of pointwise addition and scalar
multiplication. If f is an element of any of these spaces, then

we set

el = liEll, = sup [£C0)].
tex

Then (C(X),]|||)) and (Co(x),"-"m) are Banach spaces, whereas
(CC(X),H-"Q) is a normed linear space. Clearly if X is compact,
then C(X) = C (X) = C_(X), and (C_(X),[l-||)) is a Banach space

only in this case.

If X is noncompact, then we denote by C'(X) all continuous
complex-valued functions on X. Then clearly ||-||  no longer
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defines a norm on C'(X). However, if for each compact set K c X

we set

pe(f) = sup [£(t)] (f €C'(M),
t€K

then P = [pK | K< X, K compact} is a family of seminorms on

C'(X) for which (C'(X),P) is'a seminormed linear space. Moreover,
it can be shown that C'(X) is never a normed linear space when X
is noncompact.

We shall denote by CR(X), C:(X), and Cz(x) the real parts
of the functions in C(X), Co(x), and Cc(X), respectively.
Obviously these are linear spaces over IR with the same properties
as the analogous spaces of complex functions. They are equivalently
the spaces of continuous real-valued functions on X that are

bounded, vanish at infinity, or have compact support.

Example 1.2.2. Let X be any set. We denote by B(X) the
linear space under pointwise operations of all bounded complex-valued
functions defined on X. The linear space B(X) is a Banach space

with the norm
£l = sup |£(0)] (f € B(X)).
tex
If X is a locally compact Hausdorff topological space, then it is
evident that C(X) is a linear subspace of B(X).

Example 1.2.3. Let a<b and let n be a nonnegative integer.
We denote by Cn([a,b]) the linear space of n-times continuously
differentiable real-valued functions on [a,b]. If we define

n
Iell, = 2 0llf“"ll.,, (£ € C"([a,b])),

where £() denotes the kth derivative of £, then (C"([a.b]),"-ﬂn)
is a Banach space over RR.-

Furthermore, set C“([a,b]) = n:;oc“([a,b]). Then ‘C’([a.b])



