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Preface

DGCI 2006, the 13th in a series of international conferences on Discrete Geom-
etry for Computer Imagery, was held in Szeged, Hungary, October 25-27, 2006.
DGCI 2006 attracted a large number of research contributions from academic
and research institutions in this field. In fact, 99 papers were submitted from
all around the world. After review, 55 contributions were accepted from which
28 were selected for oral and 27 for poster presentation. All accepted contri-
butions were scheduled in single-track sessions. The program was enriched by
three invited lectures, presented by internationally well-known speakers: Jean-
Marc Chassery (Domaine Universitaire Grenoble, France), T. Yung Kong (City
University of New York, USA), and Laszl6 Lovész (E6tvos Lorand University,
Budapest, Hungary).

We were pleased that DGCI got the sponsorship of the International Associ-
ation of Pattern Recognition (IAPR). DGCI 2006 is also a conference associated
with the IAPR Technical Committee on Discrete Geometry (TC18). Hereby, we
would like to thank all contributors, the invited speakers, all reviewers and mem-
bers of the Steering and Program Committees, and all supporting personnel who
made the conference happen. We are also grateful to the Institute of Informat-
ics, University of Szeged, for the financial and infrastructural help, which was
essential to the organization of a successful conference. Finally, we thank all the
participants and hope that they found interest in the scientific program and also
that they had a pleasant stay in Szeged.

October 2006 Attila Kuba
Laszlé G. Nyul
Kalméan Paldgyi
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Duality and Geometry
Straightness, Characterization and Envelope

Jean-Marc Chassery’, David Coeurjolly?, and Isabelle Sivignon?
! Laboratoire LIS
Domaine universitaire Grenoble - BP46
38402 St Martin d’Heres Cedex, France
jean-marc.chassery@lis.inpg.fr
2 Laboratoire LIRIS - Université Claude Bernard Lyon 1
Béatiment Nautibus - 8, boulevard Niels Bohr
69622 Villeurbanne cedex, France
{david.coeurjolly, isabelle.sivignon}@liris.cnrs.fr

Abstract. Duality applied to geometrical problems is widely used in
many applications in computer vision or computational geometry. A clas-
sical example is the Hough Transform to detect linear structures in im-
ages. In this paper, we focus on two kinds of duality/polarity applied to
geometrical problems: digital straightness detection and envelope com-
putation.

Introduction

In domain of geometry, notion of duality is often used to represent the same
structure in different domains like spatial domain or parametric one. The ob jec-
tive is to facilitate transformations like characterization, detection, recognition
or classical ones such as intersection or union. A first example is illustrated with
Voronoi partition in which polygonal regions are not homogenecous in terms of
number of vertices. Nevertheless, the corresponding dual mesh, called Delaunay
mesh, is composed of triangles. According to applications the choice of the alter-
native representations can be used on optimality criteria (computational cost,
database structure, ...).

Following this first example, we focus in this paper on dual transformations
illustrated by problems of digital straightness and envelope.

1 Example of the Hough Transform

The Hough transform (HT for short) is a very classical tool in image analysis
to detect geometric features in images. These features may be line segments,
circles, ellipses or any other parameterized curve. The HT, introduced in 1962 by
Hough [1], is a dual transformation that enables to find a set of global structures,

A. Kuba, L.G. Nyul, and K. Paldgyi (Eds.): DGCI 2006, LNCS 4245, pp. 1-16, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 J.-M. Chassery, D. Coeurjolly, and I. Sivignon

without any a priori knowledge on the number of structures to be found. Note
also that this method is robust to noise and disconnected features.

1.1 Definition of Hough Transform

The general idea of this transform is that every point of the image contributes to
the definition of the solution set for a given parameterized structure. Consider
for instance a point pg of coordinates (zg,yo) and the parameterization of lines
y = az + (. Then the set of lines going through py are the ones of parameters
(a, B8) fulfilling the equality yo = axo + (. This equality may be rewritten as
8 = —azo + yo, and if a new geometrical space (af3), called dual space, or
parameter space, is defined, this equation defines a line : in this dual space, each
point of this line represents a line of the (zy) space going through the point
po. An illustration of three points and the three corresponding lines in the dual
space (a3) are represented in Figure 1 (a)-(b): note that the three lines in (o)
space are concurrent in one point, the coordinates of which defines a line going
through the three points in (zy) space.

However, as noticed by Duda in [2], the linear parameterization of lines defined
by y = ax + [ is not the handiest one since the two parameters o and 3 are
unbounded. Thus, another transform consists in using the polar parameterization
of straight lines p = xcos@ + ysinf. Any point in the (zy) space defines a
sinusoidal curve in the (0p) space, where only the parameter p has unbounded
values (see Figure 1(c) for an illustration).

General properties fulfilled by these two representations, and suitable for
straight line detection in images were expressed by Duda [2]:

Property 1

A point in the (zy) space matches up with one curve in the dual space;

A point in the dual space matches up with a straight line in the (zy) space;
Points lying on a same line in the (zy) space match up with concurrent curves
in the dual space;

Points on a same curve in the dual space match up with concurrent straight
lines in the (zy) space.

(Ti,9i) B8 =—zia+y; p = x;cosh + y;sinb
10 T T g T | T | ——
8 - - : ]
(i ! ‘. — —
Yy 4+ . 4 B oy
2~ . — N
o
ok : -
D) 1 L 1 1 | | !
2 0 2 4 6 8 I 3 ¥ oo
z a ]
(a) (b) (c)

Fig. 1. (a) Three points in the (zy) space; (b) Dual representation in the («f) space;
(c¢) Dual representation in the (8p) space
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1.2 Recognition of Parameterized Structures

Line segment detection in images does not consist in finding the pixels lined
up according to the Euclidean straight line definition, but a relaxation of this
definition has to be used. To do so, the method generally used consists of, first,
decomposing, or quantifying the dual space along the two axis, and second, defin-
ing a counter for each cell of the dual space. Algorithm 1 describes the general
algorithm for finding parameterized curves in an image using HT. The quantiza-
tion step is a trade-off between precision on one part, and memory /computation
cost on the other hand. Moreover, a good quantization should provide constant
densities for equally probable line parameters. An illustration of Algorithm 1 is
proposed in Figure 2.

Algorithm 1. Hough transform for parameterized curve detection

Input: Set of pixels P
Quantify the dual space of the parameterized curve;
Set all the cell counters to zero;
for every pizel p of P do
Compute HT(p) and digitize it according to the quantization grid;
Add one to the counters of HT'(p) digitization;
end
Look for local maxima among the cells counters: each maximum matches with
the parameters of a curve found in P.

2 Duality in Discrete Geometry

During a HT, the discrete nature of the data processed is taken into account
with a quantization of the dual space. On the contrary, we see in this section
that the classical notion of dual space used in discrete geometry introduces the
discrete nature of the data in the definition of the dual representation of a point.

2.1 Definition of the Dual Space

In digital geometry, pixels are said to be lined up if they belong to a digital
straight line, which is the digitization of a straight line. In a general way, a digital
straight line of parameters (a, b, u) and bounds p(a,b) and w(a,b) is the set of
pixels (z, y) such that p(a,b) < az —by+p < w(a,b). Without loss of generality,
we suppose that |b| > |a|, and b > 0 in the following. With these conditions, the
previous definition may be rewritten as p'(a, 3) < ax —y+ < w'(a, ). Given a
point po of coordinates (o, yo), the digital lines containing are the ones for which
(20, yo) fulfills the inequalities. Thus, we can once again define a dual space (a3)
to represent the space of line parameters, but contrary to HT, a given point po
of coordinates (zg,yo) matches up with the intersection of two linear constraints
defined by ET : 8 > —azo + yo + p'(a, 8) and E™ : f < —axo + yo +w'(a, B).
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p = xicosl + y;sinld

8
6 el
4"/
2

4 -2 S
-4 '.\\
2 s,
-6
.. 0 I 2 5 7T
0 2 4 6 x 0
(a) (b)
y
1 6
4
2
—6 s [ 3
0 T 3 T T 0 2 4 6 X
(c) (d)

Fig. 2. Detection of a line segment with HT: (a) the four pixels of the set P; (b)
dual representation in the quantified dual space; (c) result of the digitization of the
sinusoidal curves; (d) straight line computed from the local maximum found

Definition 1. Let P be a set of pizels. The preimage of P denoted by P(P) is
defined as follows: P(P) = {(a, ), |a| <1 |V(z,y) € P, p'(a, ) < ax—y+8 <
W'(e, B)}. (See Figure 3).

As we can see, in digital geometry, the linear parameterization of lines is used in
order to define the dual space. Nevertheless, we pointed out that for the Hough
transform, using a polar parameterization is more convenient in order to handle
bounded parameters. Actually, the polar parameterization is not appropriate
for preimage definition since intersection of sinusoidal curves would be involved.
Thus, the handling of unbounded domains has to be tackled. First, the parameter
B takes its values in an unbounded domain since it represents all the possible
translation of a line. This problem is easy to solve, operating a translation of the
set of pixels studied such that one particular pixel of the set is set to the origin.
Next, the slope a of the lines also have unbounded values. The idea here is to
use two dual spaces instead of one :
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(0,0)

(a) (b)

Fig. 3. Illustration of the preimage of a set of pixels (digitization process fixed): each
point matches up with two linear constraints, and the preimage is the intersection of
these constraints

Definition 2. The dual space Py is defined as the space where one point («, 3),
la| < 1 stands for the line ax —y + 3 = 0. In the same way, a point (a, f3),
|a| < 1 of the dual space denoted P, stands for the line ay —x + 3 = 0.

2.2 Preimages of Digital Lines and Line Segments

The definition of preimage depends on the values of p(«, ) and w'(a, 8)}, and in
most applications, these values are defined according to the digitization process
considered during the definition of the digital straight line. In this section, firstly
we give some examples of preimages of digital straight lines in respect to the dig-
itization process considered, and secondly, we emphasize on particular properties
of the preimage of digital straight line segments (DSS for short) for one digiti-
zation process.

Digitization and Preimage. Let us first consider the OBQ (object boundary
quantization) digitization scheme: given a straight line of equation ax — by + p =
0, its OBQ digitization is the set of pixels such that 0 < axz —by +p < b
(see conditions over a and b previously defined). Since the OBQ digitization is
based on the definition of the inside and this outside of an object, this definition
assumes that the line ax — by + pu = 0 is part of the boundary of an object the
inside of which is given by the direction of the normal vector (a, —b).

From this definition, we derive a characterization of the preimage of an infinite
digital line according to the OBQ digitization process [3]:

Property 2. Let L be a digital straight line defined by 0 < az — by + 1 < b, with
0 < a < b. Then the preimage of L according to the OBQ digitization process

is the vertical segment [(¢, &), (&, &),



