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Editorial Policy

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes” character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length, a bibliography, and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientifie text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated,;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Preface

These are lecture notes for a course given during the Fall of 1988 at
Brown University. The students were assumed to have had a previous
course on the theory of Riemann surfaces or algebraic curves. Chapter
One of these notes gives a review of most of the basic material needed
iater, but few proofs are given, and the reader is assumed to have some
previous acquaintance with the material. '

Besides giving the author's point of view and notational conventions,
the introduction gives a few proofs (or rather demonstrations) intended
to bridge the gap between the more analytic approach to the subject as
exemnplified by the books of Ahlfors-Sario [4], Farkas-Kra [11] or Forster
112] and the more algebraic approach as exemplified by Walker [26]. In
particular the proof of the genus formulas for a plane curve based on the
Riemann-Hurwitz formula and other materials in Section 1.3 were
inspired by a seminar given in the early '60's at Brown by S. Lefschetz.

Despite the recent appearance of several excellent books on the theory
of compact Riemann surfaces (which is, of course, basically the same as
the theory of algebraic curves over the complex numbers), most of the
material in these notes does not appear in these books. The two main
subjects treated here are exceptional points on Riemann surfaces
(Weierstrass points, higher-order Weierstrass points) and automorphisms
of Riemann surfaces. A foundational treatment of the theory of
automorphisms from the viewpoint of Galois coverings of Riemann
surfaces 1s given in Chapters Four and Five, following and expanding to
some extent the treatment of Ahlfors-Sario [4] and Seifert-Threlfall [25].
The treatment is technically different from that of A. M. Macbeath [19]
and his students, although fundamentally it is the same. In the
treatment here, no mention of Fuchsian groups occurs. Also a treatment
of the extremely useful inequality of Castelnuovo-Severi is included, a
treatment for which the author knows no reference. (It is difficult,
however, to believe that anything on this venerable subject can be really
new.)

The treatment of all subjects is basically elementary.

The author heartily thanks Natalie Ruth Johnson for an excellent job
in preparing this manuscript.
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Chapter 1. Review of some basic concepts
in the theory of Riemann surfaces.

1.1 Coverings. A surface X is a connected Hausdorff space which
satisfies the second axion of countability and has a basis for the open
sets of sets homeomorphic to open sets in €, the complex numbers. A

Riemann surface is a surface with an open cover {UO‘I o € A} , for
some index set A , and homeomorphisms {qla} 9 Uoc — C , where

AL '10‘ is biholomorphic wherever it is defined. A pair (U“ ,tp“) is

called a chart and theset {(U_,¢_)|o € A} is called an atlas. ¢_
will be called a local parameter. All Riemann surfaces are orientable.
A continuous function f: X — Y between Rieman surfaces will be
said to be holomorphic if it is holomorphic (analytic) when expressed in
local parameters. If f is holomorphic, injective, and surjective then f
is said to be biholomorphic and X and Y are said to be conformally
equivalent. A biholomorphic map of a Riemann surface onto itself will

be called an automorphism, and the group (under composition) of auto-
morphisms of a Riemann surface X will be denoted Aut(X). An

automorphism of period 2 will be called an involution.

A holomorphic (meromorphic) function on a Riemann surface X is
a holomorphic mapping of X into C (P 1 the projective line, or
Riemann sphere).

If {f:X =Y isanon-constant holomorphic mapping of Riemann
surfaces and x € X , then in suitable local coordinates at x and f(x),

f looks like z — z®, n a positive integer. We say f is equivalent to
z — z" at x. (In particular, f is an open mapping.) n is said to be

the multiplicity of f at x,and n -1 is said to be the branching or
ramification of f at x . denoted ram_ (f) . The ramified points x ,

where ram (f) > 0, are a discrete set 1n X.

Theorem. Let f:X — Y be a non-constant holomorphic map between
compact Riemann surfaces. Then there exists a positive integer n so
that forany y € Y

n-= card{f_i(y)} + Z ramx(f).

f(x)=y
n will be called the number of sheets in the covering X = Y . If
Y = P! then f is a non-constant meromorphic function on X and
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n is called the order of f, denoted off) .
A non-constant holomorphic map of compact Riemann surfaces will

often be called a covering.
T i -Hurwitz Fo or _coveri

let f: X = Y be a non-constant n-sheeted holomorphic map
between compact Riemann surfaces. Let p and q be the genus of X

and Y respectively. Let ram(f) = Z ramx(f). Then
xeX
2p- 2 =n(2q-2) + ramf(f) .
Definition. If Xp is a compact Riemann surface, the subscript p will

always denote the genus of Xp .

Corollary. Let f: Xp - Xq be a non-constant n-sheeted holomorphic
mapping of compact Riemann surfaces where n = 2. Then p 2 q with
equality possibleonly if p=0 or 1.

1.2 Function Fields. If X is a Riemann surface let M(X) denote the
field of meromorphic functionson X . If f: X — Y is an n-sheeted

holomorphic map then {*: M(Y) = M(X) maps M(Y) onto a field
which is of index n in M(X). Conversely, if X is a compact Riemann
surface and K is a subfield of M(X) of index n . then there exists an
n-sheeted covering f:X — Y of compact Riemann surfaces and

i*(M(Y)) = K.
A rational function field is a field isomorphic to M (P 1) | that is, the

rational functions. A meromorphic function field on a Riemann surface

of genus 1 wil be called an elliptic function field. A Riemann surface
}-'.n . D 2 2, will be called hyperelliptic if M(Xp) admits a rational

subfield of index 2. This is equivalent to Xp admitting a 2-sheeted

covering Xp - P1. The interchange of the two sheets of this covering
15 an automorphism of Xp of order 2 called the hyperelliptic
involgtion. A hyperelliptic Riemann surface, Xp , 1s the Riemann
surface for a polynomial P(z,w) ¢ €[z,w] where

2p+2

P(z,w) = w2 - H (z - aj) where a;=ay.
j=1
A Riemann surface of genus greater than one will be called

elliptic-hyperelliptic if it admits a 2-sheeted covering of a Riemann
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surface of genus one; that is, its function field admits an elliptic
function field of index 2.

In general, if X is a compact Riemann surface then M(X) is
the Riemann surface for some (many) irreducible polynomial
P(z,w) € Clz,w].

1.3 Plane Curves[26]. Let f(x,y,z) be an irreducible homogeneous
polynomial of degree n . Let Cn = {(x,y,z) e P2(C) I f(x,y,x) = 0},
an irreducible plane curve. Suppose Cn is non-singular, that is,
fx(x,y,z) =0-= fy(x,y,z) = fz(x,y,z) implies (x,y,z) = (0,0,0) .

We show that as a Riemann surface, C, has genus (’1_—1)2(’"—2) .

Cr has only a finite number of inflection points (where the tangent line
has more than two intersections with Cn). Choose coordinate axes in
P2 so that none of the inflectional tangent lines pass through (0,1,0)

{(i.e. no inflectional tangent line is parallel to the y-axis). Then each
tangent line to Cn passing through (0,1,0) has only two intersections

where it 1s tangent. Such points occur where f = 0 and fY =0. At
such points the projection of Cn onto the x-axis is locally two-to-one;
that is, this projection ( a holomorphic map onto the x-axis (= P 1))

has ramification one at each of these points. The number of such points
is nin-1). y

ﬂ\

Using the Riemann-Hurwitz formula we have
2p-2=-2n+nin-1);2p-2=n(n-3)

or p= —nz_g‘”z .



4

We can use the same method if Cn has singularities. Suppose Cn

has an ordinary singularity of multiplicity k at (0,0,1) . Dehomo-
genizing fx,y,z) to f(x,y,1) we have

k
f= H (aix + Biy) + higher order terms
i=1
where the k tangents lines ozix + ﬁiy = 0 are all distinct. Thus
k-1
fy = H (b’ix + Siy) + higher order and so f = 0 and fy = 0 have
i=1

k{k - 1) intersections at (0,0,1) . Now assume Cn has s ordinary
singularities of multiplicities k ' ,...,ks . Then the total ramification

for the projection of Cn onto the x-axis is n(n-1) - Z k.i (kJ. -1) or

k-(k.-1)
P 2 2
Let us look more closely at singularities of multiplicity two at, say,
(0,0,1).

= ax? + bxy + cy2 + higher order.
fv = bx + 2cy + higher order.

Local parametric equations for fy =0 are
X = 2ct+c2t2 + e
y = -bt + bztz + coe

Thus f(x,y) = a(4c®t2+...) + b(-2bct? + «+2) + c(B?t2 + -+2) + 0(3)
cldac - b2)t2 + o(t3) .
If 4ac-b%=0 ,f=0 and fy have two intersections (node).

if 4dac-b%=0 .f=0 and fy = 0 have at least three intersections

{cusp).
If f=(ax+by)+(ax+by)Q(x,y) + 4P degree terms and higher
order, then f =0 and fv = 0 have 4 intersections (tacnode).

Nodes add nothing to the ramification of the propection map.
Cusps add one to this ramification and tacnodes add nothing.
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If 6= * of nodes, k = ¥ of simple cusps, n = ¥ of simple tacnodes for
Cn and there are no further singularities then
2p-2=-2n+n{n-1)-28-3k-4n+«
p= (n‘i)z(n‘Z) -8-k-2n.

For a general plane curve of degree n we have
_n-1)(n-2) _
p= 2 8
where § will be called the S-invariant (sometimes called the number
of nodes suitable counted).
Ordinary k-fold singularities add Mkz;il to the S-invariant .

Simple cusps add 1 to the &-invariant .
Simple tacnodes add 2 to the §-invariant .

1.4 Divisors on Riemann surfaces. A divisor D on a Riemann surface

X is a singular zero-chain , written D = z nz for n, € Z and

z; € X. The degree of D, deg D,isZni,aninteger. If
n 2 0 for all i then D is said to be positive (or integral) and we write

D > 0. The zerc divisor is positive.

if D= z nz and D'= z n',z; aretwo divisors then by the
greatest common divisor of D and D', written (D,D') , we mean

the divisor z min(ni,n‘i)zi . Thus to write (E,z) = 0 is to say

that the coefficient of z in E is zero. If (E,F) = E we will write

EQF.
If f is a meromorphic function on X, the divisor of f is written

{f) where (f) = (zeros of f) - (poles of f)
= (f) - (f)
0 P
Note that deg(f) =
Two divisors D,E are said to be (linearly) equivalent if there exist
an f € M(X) and (f) = D - E (an equivalence relation).
Notation: D=E.
Definition. If D is a divisor, L(D) = {f ¢ M(X)| () + D2 0} .
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Theorem. If X is compact then L(D) is a finite dimensional vector

space over €.
Definition. .1If D adivisor on X, £(D) = dim¢L(D) , the affine

dimension of L(D). r(D) = 8(D) - 1, the projective dimension of
L(D) .
A meromorphic (or abelian) differential w is a one-form that
locally can be written
w = f(z)dz
where f is meromorphic. The value of a meromorphic differential at a
point of X is not well defined; however, zeros and poles are well defined
so we can consider the divisor of w ,
(w) = (zeros of w) - (poles of w) .

If w , and o.)z are two meromorphic differentials then 1 / wz is a

well defined meromorphic function on X . Since deg(w 1/ 002)= 0 we
see that deg(o.)i) = deg(ooz) .
Theorem. If w is a meromorphic differential on Xp then

deg(w) =2p- 2.

Definition. If D is a divisor

Q) = {meromorphic differentials w|(w)-D 2 0}

i(D) = dimension of Q(D) as a vector space over C.

Lemma. If K is the divisor of a meromorphic differential then

i(D)=20(K-D).

Now we list some of the basic theorems concerning compact Riemann
surfaces.
Riemann-Roch theorem. If D is a divisor on a compact Riemann
surface of genus p, then

r(D) = degD - p +i(D) .

Brill-Noether formulation of the Riemann-Roch theorem. If D and
D' are two divisors so that D + D' = (w) where w is a meromorphic
differential, then degD - 2r(D) = degD' - 2r(D') .

Notice that the divisors in the Brill-Noether theorem need not be
positive.
Definition. A meromorphic differential without poles is called
holomorphic (or analytic, or regular, or an abelian differential of the
first kind).
Definition. If D20 and i(D) >0 then D is said to be special and i(D)
is often called the index (of speciality) of D .
Clifford's theorem. If D is special then degD - 2r(D) 2 0.
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Definition. If D is a divisor, the Qlifford index of D, denoted <¢(D) , is:
c(D) = degD - 2r(D) = p- r(D) - i(D) .

Strong form of Clifford's theorem. If Xp admits a special divisor D where
degD = 0 ,degD = 2p -2 and ¢(D) = 0, then Xp is hyperelliptic.
Definition. Q (Xp) = {holomorphic differentials on Xp} .

Corollary. dimgQ(X ) =p. If @€ Q(X) then i{(w)) =1 '.
15 lLinear serjes. Let D be a divisor on Xp . Then the complete linear
series determinant by D, denoted IDI, is

DI - {02 0|D'= D} .
IDI can be empty. If D> 0 then ID| is a set of divisors parametrized
by the projectification of L(D) .

D= {D|0-D= 0,1 LD}
Let S be a linear subspace of L(D) of dimension r+1,r < r(D). The
set of divisors parametried by S

(0|0 -D-®,fes)
is called a linear series and denoted grn where n=deg and r +1 = dimS.

If r<r(D), g', issaid to be incomplete.

Example: K = divisors of holomorphic differentials = gp'lz 5 K is
p-

the unique linear series of dimension p-1 and degree 2p - 2.
Alinear series g¥ can have base (or fixed) points, that is, a divisor
n

commuon to all divisors in g"n . If F of degree f issuch a divisor
then grn -F-= grn_f stands for the linear series without base points
obtained by subtracting F from each divisor in g* 0

Let g’ . be a linear series without base points. Then we can map

X into P¥ as follows. Suppose
g"n={D'ID‘-D=(f),ch},SCL(D).
Let f,-+,f_bea basis for S. If x¢X let

B8(x) = (f,(x),--+,f_(®)) € PT(C).

If we pick a local parameter z at x

0 z(xo) = 0 then
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n
f=z 1gi(z) where g (0) = 0.
Locally z is mapped by © into (---,znigi(z),---) € Pr.

n.-n

8
Let n= min{ni}. Then 2z ('--,z gi(z),-u) and so

8 ni-n
X = (---,z gi(z) I ,* ) and at least one component is
z2=0

non-zero. That is, ©® is well defined on all of X .
Let C=08(X) C P* be the image of X under © . Then the
hyperplane sections of C pull back via 6 to the divisors of g¥ N For

r
if Zaiyi = 0 is a hyperplane H in P* then
i=0

Bx)edHnCe Zaifi(x) =0 & x is a zero of Zaifi I
fr = 1 then D is the pull back of the hyperphane (at <) ¥, * 0.

If the map © is one-to-one in general, then g¥ o is said to be simple.

In this case X is (conformally equivalent to) the Riemann surface (or
normalization) of C. (C can, of course, have singularities.) Each

hyperplane in P" cuts C in n points (counting multiplicities) so we
write Cn for C,acurve of degree n in PF.

If the map © is not one-to-one in general then g¥ is said to
be composite . Then X is a t-sheeted covering (t 2 2n) of (the
normalization of) C and C has degree n/t, since g¥ has no base
points. (Thus a linear series of dimension r = 2 of primle1 degree
greater than r without base points is simple.) In this case, if Yq is

the normalization of C then Yq admits a grn - I

m:X — Y isthe t-sheeted covering then gT on Y liftsto g¥
q n/t q n

on X . The fibers of this map m are called an involution of genus g

b



