::::::;::::::::::::::::::::::YQur:s:omp]eter.efer.enc.e::::::

...

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..
..
...
...
...
...
...
...
...
...
...
...
...
...
...

...

INSTRUCTION
HANDBOOK

NAT WADSWORTH

H

HAYDEN BOOK COMPANY, INC.

Hasbrouck Heights, New Jersey

Copyright © 1978 by Scelbi Computer Consulting, Inc. All rights reserved. No part
of this book may be reprinted, or reproduced, or utilized in any form or by any
electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying and recording, or in any information storage and retrieval sys-
tem, without permission in writing from the Publisher.

The information in this publication has been carefully reviewed and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies or for
the success or failure of various applications to which the information contained
herein might be applied.

Printed in the United States of America

4 5 6 7 8 9 PRINTING

83 84 85 86 87 88 89 90 YEAR

Preface

Some years ago when I described the instructior set for what has
now often been classifiec as the first true microcomputer — the 8008
by Intel Corporation — I wrote that its irst *~*ion set of about 170
instructions was ‘‘quite comprehensive.”’

Well ‘t was — in those days it was revolutionary! But time does
not stand still. And now, just a few short years later, I find myself
describing the instruction set for a CPU-on-a-chip that has “quite a
comprehensive” instruction set that numbers in the vicinity of 700
(yes, seven hundred) instructions. And I know as I write thic that in
a few more years, 700 instructions won’t be considered anywhere
near ‘‘comprehensive’” for the soon to be available 16-bit micro-
processors.

If one stops to soberly consider the present state of affairs in this
field, it soon becomes apparent that the profusion of microproces-
sor products is rapidly outstripping our ability to utilize them at any-
where near their full potential. It seems that long before the average
programmer has become comfortably familiar with the instruction
capabilities of one CPU, there is another device on the scene beckon-
ing with higher speeds and greater capabilities. I sometimes seriously
question the merits of this process. However, the forces at work in
our society seem to inexorably move us in that direction. Since that
is the case it seems that the user of these marvelous devices must
find ways of rapidly learning the instructional capabilities of a
device. The motivation for this may be professional, such as when
one must design programs for a particular machine. Or academic,
such as when one Txerely wants to know a general capability.

The purpose of this publication is to explain, in easily understood
terms, the capabilities of the instruction set of the Z80 CPU (pro-
duced by Zilog Corporation and other second source manufacturers).
This handbook serves as a practical reference to the industry stan-
dard mnemonics, machine code, and usage for each type of instruc-
tion provided in the Z80 CPU. It is meant to serve as a practical
guide for the novice, intermediate, or professional programmer who
has a requirement to work at the machine or assembler language
level with a Z80 based microprocessor.

To gain an overview of the Z80’s instruction set I would sug-
gest that the user first lightly skim the material as a text. To use the
book as a programming and program assembly aid, please take note
of the alphabetically organized index provided in Appendix A.

THE Z80 CPU INSTRUCTION SET

The Z80 CPU has a comprehensive instruction set that consists
of some 245 basic instructions. When the possible permutations are
considered, the total number of valid instruction codes numbers
approximately seven hundred

The Z80 instruction set includes as a subset the entire instruction
set of 'ts precursor CPU — the 8080. Indeed, the subset of 8080
instructions (with the exception of a few directives involving the
Parity Fla) s identical at the machine code level. Unfortunately,
the industry standard mnemonics promulgated by the originator
of the Z80; a corporation based in California using the trade name
Zilog, Incorporated; are not at all similar to those in use by 8080
users. Hence, while it is possible in most cases to load programs in
machine code previously developed for 8080 systems and have them
execute without modification on a Z80 system, at the assembly
language level the 8080 programmer must learn an entirely new set
of mnemonics when working with the Z80 instruction set. To avoid
confusing those who may not be familiar with 8080 mnemonics this
book will utilize Z80 mnemonics as promulgated by the CPU’s
developer. Users who have 8080 assembly language experience and
who may desire a mnemonic cross reference between Z80 and 8080
instructions might be advised to see Adam Osborne’s An Introduction
to Microcomputers, Volume II. Chapter 7 of the June, 1977 revised
edition contains such a cross-referenced table. Additionally that
publication contains extensive hardware information on the Z80
CPU. That is a subject that will not be covered in this publication,
but which may be of interest to many readers. Also, that publication
provides many comparisons of the Z80 to the 8080/8085 which may
be highly beneficial to 8080 users who are changing over to the Z80.

The Z80 instruction set enables the programmer to direct the
operation of the CPU to transfer and perform mathematical and
logical operations on the data stored in the various memory and
register elements that make up the computer. These software related
elements are the memory, the program counter (PC), the stack
pointer (SP), two index registers (designated IX and 1Y), an interrupt
vector register (IV), a refresh register (R), two banks of independent
and interchangeable ‘‘working registers” consisting of a flag status
register (F'), an accumulator (A), and six general registers (B, C, D,
E, H, L); and the input and output ports. Within each ‘bank” of

1-1

Z80 INSTRUCTION SET

working registers the accumulator and its associated flag status
register can independently be activated or deactivated. Thus there
are four possible arrangements of the working registers, of which one
may be selected at any given time.

1.) All the registers in Bank Zero.

2.) All the registers in Bank One.

3.) The accumulator and flags of Bank Zero
operating with registers B — L of Bank One.

4.) The accumulator and flags of Bank One

operating with registers B — L of Bank Zero.

MEMORY
N
,
F ! A oA
B | C BANK BANK B
D | E ZERO ONE b ®
H 1 L / \ TN
-l Il
X
Y
sP
PC
T
R | IV Z80 CPU
INPUT OUTPUT
PORTS PORTS

780 INSTRUCTION SET

The memory is the program storage element for the CPU. When a
program is to be executed, its instructions must first be stored in the
proper locations in memory. The memory is also used to store data
which the program will require during its execution. For the Z80,
up to 65,536 eight-bit bytes of memory can be directly accessed by
the CPU.

The program counter is a sixteen bit register used to control the
flow of a program from one instruction to the next. When a program
is started, the program counter is set to the address in memory
of the first instruction to be executed. Unless directed otherwise by
the instruction just executed, the program counter will automatically
increment to the address of the next instruction in sequence and
execute it. When an instruction that directs the program to an
address other than the next sequential location is executed, the new
address is placed in the program counter and program execution is
continued with the instruction at the new address.

The next group of CPU registers to be described have been
assigned letters so that they may be referred to symbolically. The
accumulator register is denoted by the letter A. Six general registers
are referred to as the B and C, D and E, and H and L registers. These
six registers may serve as individual eight-bit storage registers capable
of holding data and performing limited manipulations such as incre-
menting or decrementing their contents. Alternatively, they may be
coupled together as indicated by their grouping to serve as 16-bit
registers capable of performing limited operations such as pointing
to locations in memory for classes of memory reference instructions,
or serving as double-precision counters, etc. When coupled to form
16-bit registers, those designated B, D and H form the most signifi-
cant half with the remaining C, E and L registers forming the corres-
ponding least significant halves of the two-byte values.

The accumulator is an eight-bit register. It is the workhorse of the
780 in that most major mathematical and logical functions can only
be performed with the accumulator.

The register referred to by the letter F serves as a flag status

register. It will be described in further detail shortly. In the block
diagram showing the CPU registers it is shown residing next to the

1-3

Z80 INSTRUCTION SET

accumulator register. This was done only because the contents of
the F register may be transferred using selected ‘‘stack” directives
in parallel with the contents of the accumulator as the consequence
of a single directive. This apparently was a design convenience
because all Z80 stack operations transfer two bytes of data at a time.
It was thus operationally convenient to group the one-byte flag
status register with the single-byte accumulator when making such
stack transfers. Other than this consideration the flag and accumu-
lator registers should be considered as separate entities (though the
condition of various bits within the flag status register are influenced
by the contents of the accumulator among other cegisters as will
become apparent soon).

As indicated previously and illustrated in the block diagram of
the available CPU registers, there are two sets or “banks” of the
registers. Each bank is further subdivided in regards to the accumu-
lator versus the remaining “working registers.” While the registers
in only one group (accumulator/working registers in Bank 0/Bank 1)
can be activated at any given time, the information in the remaining
“inactive” registers will be retained as long as power is applied to the
CPU. Thus, registers in the inactive mode may serve as storage
locations for data that can quickly be brought “on-line.” Just a
single instruction is required to designate which bank of general
registers (or accumulator) is to be in the active mode at any instant.

The two index registers symbolically referred to as IX and IY are
provided to allow indexed addressing. A 16-bit value in either register
may be added to a one-byte offset value (included as part of all
instructions when using the indexed addressing mode) to form an
effective address. The effective address so formed points to the
location in memory that will be acted upon by the instruction. The
availability of two independent 16-bit index registers is a great boon
when developing programs that must shift data between various
sections in memory. One register can point to a data source area in
memory while the other services a data destination region, etc.

The memory pointer register used to designate a section of
memory in which to store the return addresses of subroutines and
for temporary storage of other data is called the “stack pointer.”
The stack pointer is a 16-bit register that may point to any location

1-4

Z80 INSTRUCTION SET

In memory that is to be used as a program “‘stack.” A “‘stack” in this
context refers to a section of memory in which subroutine return
addresses are automatically stored by the CPU or in which other data
may be saved in a push-down/pop-up manner by transferring the
contents of various CPU registers to/from memory locations desig-
nated by the contents of the stack . »inter.

A major function of almost every computer program is to receive
or transmit data between the computer and one or more peripheral
devices. In the Z80 this is accomplished through the use of input
and output ports. There can be up to 256 input and 256 separate
output ports in a Z80 system. Each input port and output port
provides eight parallel data lines for communicating with external
devices.

In addition to the traditional microcomputer capability whick
provides for transferring information between an input/output (I/0)
port and an accumulator register, the Z80 has instructions which
allow such transfers to take place directly between I/O ports and
instruction-designated CPU working registers. Or, such transfers can
be directed between memory locations and I/O ports. What’s more,
block I/O transfers may be executed so that multiple-byte transfers
can take place between memory locations and an I/O device. Such
transfers can be initiated with just a single Z80 instruction.

CPU FLAGS

The Z80 CPU has a number of special flip-flops which are referred
to as ‘““flags.” These flip-flops are set or cleared as the result of
specific operations. They are important because they may be tested
by a group of ‘“conditional” instructions provided for the Z80. The
ultimate action such a conditional instruction takes will be dictated
by the status of a corresponding flag at the time the instruction is
actually executed. These instructions endow the computer with the
ability to make ‘‘decisions.” The Z80 CPU is provided with six basic
“flags.” The operation of these flags and their symbolic names are
described next.

The carry (C) flag refers to the status of a one-bit cell representing

1-5

Z80 INSTRUCTION SET

the overflow or underflow from the accumulator. It can also be set
to a desired condition by certain types of instructions. This is impor-
tant to remember when developing programs. Since many types of
instructions affect the status of the carry bit, it may be difficult to
predict the status of the carry bit after a series of instructions has
been executed. However, when a program reaches a point where the
status of the carry bit must be relied upon, an appropriate directive
may be used to set the flag to a specific condition.

The half (H) carry flag refers to the “half carry” bit status. The
half carry is a one unit register (flip-flop) that is used to indicate
when an overflow or underflow from bit B3 occurs. (This publica-
tion will reference bit BO as the least significant bit in a register. Thus
bit B3 designates the fourth bit in a register — B0 being the first.)
The H flag is affected by addition, subtraction, increment, decre-
ment, and compare instructions. It may be altered by other types of
directives as pointed out elsewhere in this manual. Unlike most of
the other status flags, it cannot be tested by other instructions. Its
only function is to internally serve the CPU when performing
selected types of decimal arithmetic operations such as a decimal
adjust of the accumulator after a mathematical operation. Such an
operation can convert the binary contents of the register to two
binary-coded-decimal (BCD) digits. Details of such a conversion will
be outlined later in this publication.

The zero (Z) flag refers to a flip-flop that can indicate whether
the value of the accumulator or other associated register is exactly
equal to zero. It is set to a logic one condition if the register is zero.
It is cleared to a logic zero if the related register is non-zero. Note the
converse relationship. It is sometimes confusing to beginning
machine language programmers! This flag is also used during the
execution of bit-test instructions to indicate the complemented
state of the bit being tested. That is, if the tested bit is zero, the
flag will be one and vice-versa. Once again — take note of the con-
verse relationship! The Z flag is also affected by selected Z80 I/O
operations as will be detailed elsewhere.

The sign (S) flag refers to a flip-flop that indicates whether the

value in the accumulator or other associated register is a positive or
negative value based on the two’s complement convention. Essen-

1-6

Z80 INSTRUCTION SET

tially, this flag monitors the most significant bit in the accumulator
or other associated register and mimics its condition.

The next flag to be discussed serves as a combination parity and
arithmetic overflow (P/V) indicator. When arithmetic instructions
are being performed this flag functions as an overflow detector.
The Z80 CPU utilizes the two’s complement arithmetic convention
whereby the most significant bit in a register indicates the sign
(zero for positive, one for negative) of the value held by the remaining
bits in the register. If adding two numbers having like signs results in
the register changing sign, the P/V flag will be set. If not, it will be
cleared. Conversely, if subtracting two numbers having different
signs results in the minuend (number from which a value is being
subtracted) register (assumed to hold the result of the subtraction
operation) changing sign then the P/V flag will be set. Otherwise it
is cleared to the logic zero condition. The P/V flag can also serve as
a parity indicator during the execution of such operations as register
rotates and Boolean logic functions when it is not being used to
indicate arithmetic overflow. In such instances it is set to indicate
that the accumulator or other associated register contains a value
that has even parity. Parity is useful for a number of reasons and is
usually used in conjunction with testing for error conditions on
words of data, particularly when inputting data from external
sources. Even parity occurs when the number of bits that are set to
the logic one state (out of eight possible) is an even count (0, 2, 4, 6
or 8) regardless of their positions within the register. The P/V flag
is also affected by the execution of block transfer and search direc-
tives, and some other special types of instructions. These cases will
be discussed as appropriate later.

The final flag to be mentioned here is called the add/subtract (N)
flag. It is similar to the H flag mentioned earlier in that it is not
accessible to a programmer. It is used internally by the CPU to
enable it to distinguish between addition (which clears the flag to a
logic zero state) and subtraction (which sets the flag to a logic one
state) instructions and is required when such mathematical opera-
tions are followed by a decimal adjust directive. The existence of
this flag and its status is purely academic as far as the programmer
is concerned.

Z80 INSTRUCTION SET

It is important to note that the Z, S and P/V flags (as well as the
previously mentioned C flag) can all be set to known states by
appropriate instructions. It is also important to note that some
mstructions do not result in the flags being set so that if the
programmer desires to have a routine make decisions based on the
status of flags, the programmer must make sure that the proper
instructions, or sequence of instructions, is utilized. It is important
to note in particular that ‘‘load register’’ directives do not themselves
affect the flags. Since it is often desirable to obtain a data word (i.e.,
load it into an accumulator) and test its status for such information
as whether or not the value is zero, a negative number, and so forth;
the programmer must remember to follow a load instruction in such
a situation by a logical instruction (such as the AND A — “logical
AND the accumulator with itself”’) in order to set up the Z, S and
P/V flags (the C flag would not be affected by such a directive)
before using a ‘“‘conditional instruction.”

NOTATION

The descriptions of the various types of instructions available on a
Z80 CPU that are provided herein will include the mnemonics and
machine language codes for the instructions. The machine codes will
be given in two forms: three digit octal codes and two digit hexa-
decimal notation. It may be noted that the mnemonics used through-
out this book are those originally promulgated by Zilog Corporation,
the developers of the Z80 CPU. Despite the fact that many 8080
users, noting that the Z80 is an enhancement of that device, may be
disappointed that Zilog Corporation did not expand the widely
accepted industry standard 8080 mnemonics, this book will not
attempt to alter the path that history has shown is generally
followed. The originator of the device almost always sets a de facto
standard for the mnemonic nomenclature that becomes universally
accepted. There are already second sources for the Z80. These
manufacturers are adopting the same general mnemonic symbols. As
an aid to users of this publication, Appendix A lists the mnemonics
used in this publication in alphabetical order. It may be used to
quickly locate the detailed description of an instruction in this
section. If the programmer is not already aware of it, the use of
mnemonics facilitates working with an ‘‘assembler” program when

1-8

Z80 INSTRUCTICN SET

1t is desired to develop relatively large and complex programs. Thus,
the programmer is urged to concentrate on learning the mnemonics
for the instructions and not waste time memorizing the machine
codes. After a program has been written using the mnemonic codes,
the programmer can always use a lookup table to convert to the
machine code if an assembler program is not available. It is a lot
easier technique (and subject to less error) than trying to memorize
the some seven hundred digital combinations that make up the
machine code instruction set!

The machine code for the instructions is presented in both three
digit octal and two digit hexadecimal notation. Both formats are
provided for those readers that may be familiar with only one or the
other. As may be observed during the presentation of the instruc-
tions, the three digit octal format allows easier recognition of many
of the types of instructions — particularly when it comes to speci-
fying operand registers, than does the two digit hexadecimal repre-
sentation. It may also be easier for a novice to deal with numbers
that only range from zero to seven instead of having to deal with the
ramifications of tacking letters of the alphabet onto the numbering
system as is done with hexadecimal notation.

The programmer must be aware that many Z80 instructions
require more than one byte in order to be fully specified. Some of
the “immediate” type commands, classes of instructions using
indexed and relative addressing modes, and input and output instruc-
tions require two consecutive bytes. There are also many directives
such as those that identify an operand as being in a specific memory
location that require three or four bytes. The number of bytes
required for each type of instruction will be indicated in the descrip-
tions that follow.

LOAD AND DATA TRANSFER INSTRUCTIONS

The first group of instructions to be presented consists of those
used to load data from a single CPU register to another CPU register,
or from a single CPU register to a location in memory, or vice-versa.
This group of instructions requires just one byte. It is important to
note that none of the instructions in this group affect the CPU flags.

1-9

Z80 INSTRUCTION SET

LOAD DATA FROM ONE CPU REGISTER
TO ANOTHER CPU REGISTER

MNEMONIC OCTAL HEXADECIMAL
LD A A 177 TF
LDB A 107 47
LD AB 170 78

The load register group of instructions allows the programmer to
move the contents of one CPU register into another CPU register.
The contents of the originating (from) register are not changed. The
contents of the destination (to) register become the same as the
originating register. Any CPU register may be loaded into any CPU
register. Note that, for instance, loading register A into register A is
essentially a ‘“no operation” directive. When using mnemonics, the
load symbol is the mnemonic LD followed by the destination register
and then the source register. The mnemonic LD B,A means that the
contents of register A (the accumulator) is to be loaded into register
B. The mnemonic LD A,B states that register B is to have its contents
loaded into register A. It may be observed that this basic instruction
has many variations. The octal representation of the machine
language coding for this instruction has the same format as the
mnemonic code except that the letters used to represent the registers
in the mnemonic form are replaced by octal digits representing
binary patterns that the CPU can recognize in the machine language
form. Using octal code, the seven CPU registers are coded as follows:

REG A
REG B
REG C
REGD
REGE
REGH
REG L
MEM

Uk WN=O

The last entry in the above list illustrates that memory reference

1-10

Z80 INSTRUCTION SET

instructions, to be presented shortly, code to the binary pattern
represented by the octal number six.

By observing the entire set of machine codes representing load
directives one may discern for this class of instructions, that when
the most significant octal digit in the machine code is a one, it signi-
fies that the computer is to perform a load operation. The next two
octal digits completing the code specify the destination and source
registers in order. Thus, in machine code, the instruction to load
register B with the contents of register A has the octal value 107. The
use of hexadecimal code does not lend itself as readily to this
method of direct machine language coding because the binary group
of three bits represented by the middle octal digit in the above
discussion is split between the two 4-bit binary groups that map to
hexadecimal notation.

It is important to note that the load instructions above do not

affect any of the CPU flags.

LOAD DATA FROM ANY CPU REGISTER
TO A LOCATION IN MEMORY

LD (HL),A 167 77
LD (HL),B 160 70
LD (HL),C 161 71
LD (HL),D 162 72
LD (HL),E 163 73
LD (HL),H 164 74
LD (HL),L 165 75

This type of instruction is similar to the previous group of instruc-
tions except that now the contents of a CPU register are loaded into
a specific memory location. The memory location that will receive
the contents of the designated CPU register is that whose address is
contained in the CPU register pair H and L at the time the instruc-
tion is encountered. The H register specifies the high portion of the
memory address desired while the L register specifies the low part of
that address. Note that there are seven different instructions in this
group as any CPU register may have its contents loaded into any

1-11

Z80 INSTRUCTION SET

location in memory. Instructions in this group do not alter the CPL
flags.

LOAD DATA FROM A MEMORY LOCATION

TO ANY CPU REGISTER
LD A,(HL) 176 7E
LD B,(HL) 106 46
LD C,(HL) 116 4E
LD D,(HL) 126 56
LD E,(HL) 136 5E
LD H,(HL) 146 66
LD L,(HL) 156 6E

This group of instructions may be considered as the complement
of the immediately preceeding group. Now, the contents of a byte in
memory whose address is specified by the H (for the high portion of
the address) and L (low part) registers will be loaded into the CPU
register specified by the instruction. Once again, this group of
instructions has no affect on the status of the flags.

LOAD IMMEDIATE DATA INTO A CPU REGISTER

LD A,ddd 076 ddd 3E dd
LD B,ddd 006 ddd 06 dd
LD C,ddd 016 ddd OE dd
LD D,ddd 026 ddd 16 dd
LD E,ddd 036 ddd 1Edd
LD H,ddd 046 ddd 26 dd
LD L,ddd 056 ddd 2E dd

This type of “‘immediate data” instruction requires two consecu-
tive bytes in order to be completely specified. The first byte contains
the operation code for the instruction. The second byte — the byte
“immediately following’’ the operation code — must contain the data
upon which action is taken. (The term ‘‘ddd” as used in the above
group of instructions will be used in this text to denote a general
byte of data.) Thus, a load immediate instruction in this context will

1-12

Z80 INSTRUCTION SET

cause the CPU to load the contents of the byte immediately
following the instruction code into the designated CPU register. The
load immediate directive LD A,1 would result in the value 00000001
(binary) being placed in the accumulator when the instruction was
executed.

It is important to remember that all immediate type directives
must be followed by a data byte. An instruction such as LD A alone
(instead of LD A,ddd) would result in improper operation. This is
because the computer would assume the next byte contained data.
If the programmer had mistakenly left out the data and in its place
had another instruction, the computer would not realize the
operator’s mistake. Hence, the program would be fouled up.

Note too, that the load immediate class of instructions does not
affect the status of the CPU flags.

LOAD IMMEDIATE DATA INTO A MEMORY LOCATION
LD (HL),ddd 066 ddd 36 dd

This instruction is essentially the same as the load immediate
group that transfers the data into a CPU register except that now the
contents of the H and L registers are used as a pointer to an address
in memory. The contents of the data byte will be placed in the speci-
fied memory location. This instruction does not affect the status of
the CPU flags.

LOAD INSTRUCTIONS THAT USE INDEX REGISTERS

The next six types of load directives to be presented involve the
IX and IY index registers. There are several points worthy of note
regarding these instructions. First, the directives themselves require
two bytes just to specify the operation code, A third byte is required
for the offset value that all indexed instructions must provide. For
immediate type instructions, a fourth byte will be used to provide
“immediate data.”

