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A General Discussion

on

Non-Adiabatic Effects in Chemical Dynamics

A General Discussion on Non-Adiabatic Effects in Chemical Dynamics, was held at the University
of Oxford, UK on 5th, 6th and 7th April 2004.
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See W. FuBB, W. Rettig, W. E. Schmid, S. A. Trushin and
T. Yatsuhashi, p. 23.

To describe how an electronically excited molecule finds its way to a lower
state, the traditional approach assumed a vertical transition, governed by
matrix elements and densities of states. The more modern ‘pathway
approach™ assumes large distortions of the molecule, usually connected
with photochemical reactions, and tries to follow the path of a wave packet
on the potential energy surfaces. Femtosecond spectroscopy allows us to
monitor this path. The last slope often (also in the given case) stimulates
vibrations in the final potential well. If they are identified, they give a
component of the reaction coordinate. The investigated case is a charge-
transfer reaction between two excited states. The arrows show, after pas-
sing through a conical intersection, branching of the path, one branch
making a detour (right-hand side) via the charge-transfer state; vibrations
are observed in the final potential well that has double minima along two
coordinates.

Image kindly supplied by Dr Werner FuB, Max-Planck-Institut fiir
Quantenoptik, Garching, Germany.
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Introductory lecture: Nonadiabatic effects in chemical dynamics
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First published as an Advance Article on the web 25th June 2004

Recent progress in the theoretical treatment of electronically nonadiabatic processes is
discussed. First we discuss the generalized Born—Oppenheimer approximation, which
identifies a subset of strongly coupled states, and the relative advantages and disadvantages
of adiabatic and diabatic representations of the coupled surfaces and their interactions.are
considered. Ab initio diabatic representations that do not require tracking geometric phases
or calculating singular nonadiabatic nuclear momentum coupling will be presented as one
promising approach for characterizing the coupled electronic states of polyatomic
photochemical systems. Such representations can be accomplished by methods based on
functionals of the adiabatic electronic density matrix and the identification of reference
orbitals for use in an overlap criterion. Next, four approaches to calculating or modeling
electronically nonadiabatic dynamics are discussed: (1) accurate quantum mechanical
scattering calculations, (2) approximate wave packet methods, (3) surface hopping, and (4)
self-consistent-potential semiclassical approaches. The last two of these are particularly
useful for polyatomic photochemistry, and recent refinements of these approaches will be
discussed. For example, considerable progress has been achieved in making the surface
hopping method more applicable to the study of systems with weakly coupled electronic
states. This includes introducing uncertainty principle considerations to alleviate the
problem of classically forbidden surface hops and the development of an efficient sampling
algorithm for low-probability events. A topic whose central importance in a number of
quantum mechanical fields is becoming more widely appreciated is the introduction of
decoherence into the quantal degrees of freedom to account for the effect of the classical
treatment on the other degrees of freedom, and we discuss how the introduction of

such decoherence into a self-consistent-potential approximation leads to a reasonably
accurate but very practical trajectory method for electronically nonadiabatic processes.
Finally, the performances of several dynamical methods for Landau—Zener-type and
Rosen—Zener-Demkov-type reactive scattering problems are compared.

1 Introduction

Electronically nonadiabatic processes (also called non-Born-Oppenheimer or non-BO processes)
are defined as those in which the electronic state changes nonradiatively during the dynamical
event. Electronically nonadiabatic processes are essential parts of visible and ultraviolet photo-
chemistry, collisions of electronically excited species, chemiluminescent reactions, and many
recombination reactions, heterolytic dissociations, and electron transfer processes. Often electronic
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excitation energies are much greater than the energies of nuclear motions, and electronically excited
species have different valence properties than ground-state species; consequently electronically
activated chemical systems may have dynamical mechanisms significantly different from those of
thermally activated systems.

The Born-Oppenheimer (BO) separation of electronic and nuclear motions and the use of
classical mechanics to model the nuclear part of the problem have allowed for the development and
successful application of a variety of theoretical electronic structure' and dynamics® methods
designed for the electronically adiabatic case where the entire effect of the electronic subsystem is
embedded in a potential energy surface that governs nuclear motion. The generalization of these
theoretical methods to handle non-BO events adds new considerations and often significantly
increases the computational demands of the calculation. From the point of view of the electronic
subsystem, the computation of excited-state electronic wave functions and energies usually requires
an open-shell formalism and expanded basis sets, and a consistent treatment of the active space is
required in configuration interaction calculations.>® Furthermore, computing the couplings
between the electronic states requires specialized methods, and the electronic couplings are sin-
gular, rapidly varying, high-dimensional vectors. From the point of view of the nuclear subsystem,
the treatment is complicated by the need to consider a different potential energy surface for each
electronic state and transitions between these surfaces.” When conical intersections are present,
nuclear motion on the adiabatic surfaces also involves geometric phases.'®!! Although great
progress has been made in the quantum mechanical treatment of nuclear motion on coupled
potential energy surfaces, the practical treatment of systems with a large number of nuclear degrees
of freedom is greatly facilitated by using classical mechanics. Since the light mass and antisymmetry
requirements of the electrons preclude a classical treatment, one then requires a semiclassical
treatment that combines quantum mechanics for the electron motion with classical mechanics for
the nuclear motion. A particularly subtle issue that reaches to the heart of the probabilistic
interpretation of quantum mechanics'? (sometimes called quantum information theory or quantum
measurement theory) is the loss of coherence in the quantal (electronic) subsystem due to its
intersection with the classical subsystem (i.e., nuclear motion).'*'* In recent work, considerable
progress has been made in sorting out these issues, and we can now present a more satisfactory
theory than was possible a few years ago.

A brief theoretical discussion is presented in Section 2. In Sections 3-5, recent progress in the
theoretical treatment of non-BO chemistry is discussed along three related lines: the calculation of
potential energy surfaces and their couplings (Section 3), the development of methods for com-
puting accurate quantum mechanical scattering dynamics (Section 4), and the testing, application,
and systematic improvement of semiclassical methods for simulating non-BO dynamics (Section 5).
Section 6 is a summary.

Although the specific examples considered in the present paper are processes initiated by
collisions, the methods are general and can also be applied to unimolecular processes.

2 General theoretical considerations and definitions

The Hamiltonian for a molecular system may be written
H(R,r)=Tgr+ H,(R,r), (1)

where R and r are vectors of the nuclear and electronic coordinates, respectively, Ty is the nuclear
kinetic energy operator, and H, is the electronic Hamiltonian, which contains the electronic kinetic
energy operator and all Coulomb interactions, as well as the spin—orbit interaction if appropriate.

Some chemical systems may be modeled adequately within the framework of the Born—
Oppenheimer (BO) approximation.'®!'? This approximation recognizes the large mass disparity of
nuclei and electrons and allows their different-time-scale motions to be decoupled. Nuclear motion
is then governed by a single BO potential energy surface ¥, which describes the variation of the
ground-state electronic energy with changes in the nuclear geometry, i.e., the ground-state nuclear
wave function v, solves the equation,

[Tr+ V(R) — Elyo(R) =0, (2)
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where
V(R) = (¢o|He(R,1)|0),, 3)

Tg is nuclear kinetic energy, H, is the rest of the Hamiltonian, E is total energy, ¢, is the ground-
state electronic wave function, and the integration in eqn. (3) is over the electronic coordinates r.

For non-BO processes, more than one electronic state is important in the overall dynamics, and
the single-surface treatment described by eqn. (2) is qualitatively incorrect. A proper theoretical
framework may be developed in terms of a basis set of electronic wave functions ¢;, where i labels
the electronic states, and optionally (but not necessarily) one may choose this basis so that ¢, has
the same meaning as above. By analogy with the BO approximation, one may define potential
energy surfaces for each electronic state, i.e.,

Vi(R) = (¢i|Ho(R,7)|di),, 4)

as well as off-diagonal matrix elements of the electronic Hamiltonian, which are in general
non-zero,

Vii(R) = ($ilHe(R, 1) ¢;),- (5)
By expanding the multi-state wave function ¥ in terms of the electronic basis, i.e.,
P(R,r) =) ¢:(RY(R), (6)
one obtains a set of coupled equations analogous to the BO result in eqn. () e
[Tr+ VilR) + TP (R) - E|wi(R) = =3 [TV (R) + TP R) + Vi) |y (B), (1)
J#i
where
) 2
W _—h Ny g 8
Tg/ - 24 <¢71WR|¢1> Ve = 2u djj - Vg, (8)
2
@ _—h 2
T :ﬂ<¢,~|VR\¢_,->, )

wis the reduced mass for the nuclear system, and Vy is the nuclear gradient operator. The terms in
eqns. (8) and (9) arise from the action of the nuclear momentum and kinetic energy operators on
electronic basis functions and may be called the “momentum” and “kinetic energy ” nonadiabatic
coupling terms, respectively. Note that Tﬁ,-l) is zero because d;; is anti-Hermitian, and Tﬁ-z) (for both
i = jand i#)) is often neglected. The matrix elements of the nuclear gradient operator dj; are called
nonadiabatic coupling vectors, and Tf-jl)njzj is called a nonadiabatic coupling term (NACT).

Eqn. (7) shows that nuclear motion in each electronic state is governed by the potential energy
surface associated with that state as well as the various coupling terms in eqns. (5), (8), and (9). The
situation may be simplified somewhat by making certain choices for the electronic basis. If the
electronic basis is chosen such that ¥, is diagonal, the nuclear motion is coupled only by the action
of the nonadiabatic coupling terms in eqns. (8) and (9). This choice for the electronic basis is called
the adiabatic'® electronic basis. Another choice for the electronic basis that is often useful is called
the diabatic®>** electronic basis. It is sometimes possible to rotate the electronic states in electronic
state space (via a unitary transformation) to obtain a diabatic representation where the non-
adiabatic couplings are small enough (for many purposes) to neglect. In the diabatic representa-
tion, the electronic Hamiltonian is no longer diagonal, and the nuclear motion is coupled by the
diabatic or scalar coupling shown in eqn. (5). Alternatively, one can define or calculate approx-
imate potentials in a diabatic representation and obtain the adiabatic representation by diag-
onalization of the potential energy matrix ¥, and in that case, if no approximations are made, the
adiabatic and diabatic electronic representations yield identical results.

In general, an adiabatic-to-diabatic transformation that makes all of the components of d;; zero
is not possible.*>*® Useful diabatic representations may be developed that minimize these terms
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or—more generally—that make them small enough to be neglected, and these are often called
quasidiabatic representations to emphasize the approximations involved, but we and many others
call them dlabatlc with the understandmg that strictly diabatic representations do not exist. It has
been shown*’ that in regions far from conical intersections, although one cannot make the NACTs
zero, one can make their effect as negligibly small as for cases where the Born-Oppenheimer
approximation is valid.

Finally, it is often possible to restrict theoretical attention to a subset of important electronic
states which may be strongly coupled to one another but are only weakly coupled to all of the other
electronic states. This procedure is called the generalized Born-Oppenheimer approximation.*”*®

3 Coupled potential energy surfaces

In many theoretical treatments, the first step in modeling a non-BO system is the development of
analytic expressions for the potential energy surfaces in eqn. (4) and their couplings. As discussed
above, there are two possibilities for representing a set of coupled potential energy surfaces, the
unique adiabatic representation or a nonunique diabatic one. They each have strengths and
weaknesses. Some strengths of the adiabatic representation are that it is well defined, it lends itself
well to using variational and perturbation theory methods to calculate it by electronic structure
theory, it often provides a good zero-order picture when the coupling is neglected, and in principle
it provides a basis for exact treatments. The diabatic picture, in contrast, inevitably neglects some
coupling (because a “strict” diabatic basis does not exist) and is not unique, although it too
sometimes provides a good zero-order picture when coupling is neglected. For large systems
(organic photochemistry, photocatalysis, ezc.) the rigor of the adiabatic representation is not so
important, and in fact even for systems with 4-10 atoms, a rigorous treatment is usually not the
goal. Therefore it may be very attractive to use a diabatic representation in which the coupling
caused by the electronic Hamiltonian dominates the coupling due to nuclear kinetic energy so that
the latter may be neglected for practical calculations.

The diabatic representation has an important advantage that increases in attractiveness as sys-
tems get large, namely that the coupling is a scalar. For three coupled surfaces, there are three
scalars, one coupling surface 1 to surface 2, another coupling 2 to 3, and the third coupling of 1 to
3. In contrast specifying the nonadiabatic coupling requires three 3N — 6 dimensional vectors,
where N is the number of atoms. Furthermore the diabatic surfaces and couplings are smooth,
whereas the adiabatic surfaces have conical intersections and avoided crossings and the non-
adiabatic coupling is often rapidly varying and has singularities, and it requires special attention to
consistent treatment of the origin®**~? and long -range effects.%-333

For these reasons there has been interest in developing practical methods for working with
diabatic representations, and considerable progress was made in this direction. We particularly
single out for discussion a new approach called the fourfold way.**>>>° The fourfold way
allows for the direct calculation of diabatic states and their couplings using the conventional
variational and perturbational methods of quantum chemistry. This is particularly important
because diabatic representations used for dynamics calculations should not be based on an
arbitrary selection of configurations. Rather the variational principle should be used to optimize
the space spanned by the strongly coupled electronic state vectors, then the electronic config-
uration space should be transformed to one that in some sense minimizes the nuclear
momentum coupling, at least in regions where the nonadiabatic coupling is large. The fourfold
way is designed to accomplish this process in a general way, but the method still requires care
that is commensurate with the care required to treat ground-state problems by multi-config-
uration self-consistent-field methods, which can be chancy. This is not surprising because
electronically nonadiabatic photochemistry intrinsically involves open-shell systems, and such
systems do not lend themselves to black box approaches. The fourfold way has been developed
for configurational wave functions based on complete active space multi-reference Moller—Plesset
second order perturbation theory* (CAS- MRMP2) and complete-active-space multi-configura-
tion quasi-degenerate perturbation theory® (CAS-MC- -QDPT). The extension to the MC-QDPT
version is particularly important because this is a perturb-then-diagonalize approach in which
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an effective Hamiltonian is formed by perturbation theory and then diagonalized. This allows
the method to be valid for nearly degenerate states and even for truly degenerate states.
(Isolated pathologies are possible® but should not prevent useful applications of the method for
dynamics.)

A key element in the fourfold way is that the diabatic systems are defined by a unitary trans-
formation of ab initio adiabatic states, where the transformation’®*? is based on configurational
uniformity. (Such a transformation has also been used fruitfully by other workers, based on other
criteria.’”*?) In order for this to produce useful diabatic states, it is necessary to first re-express the
configuration state functions (CSFs) in terms of diabatic molecular orbitals (DMOs), and these are
produced by the fourfold way. The essential step in using the fourfold way to obtain DMOs is
maximizing a three-parameter functional that involves the sum of the squares of the orbital
occupation numbers for all of the states, a state-averaged natural orbital term,>® and a transition
density term. (The DMOs do not depend on tangentially related constructs such as one-electron
properties.zg) This threefold density criterion is often sufficient, but not in strong interaction
regions for excitation from an open shell. In such regions we require the fourth element, which
involves maximizing the overlap of one orbital with a reference molecular orbital. The fourfold way
is effective at producing diabatic orbitals even in cases where a maximum overlap criterion®
applied to all orbitals fails. The resulting diabatic orbitals are globally defined and unique (path-
independent) if the dominant configurations and weak coupling regions can be defined unam-
biguously. The method is general enough to allow for dominant CSF groups to have completely
different members in different arrangements, and all ambiguities involving orbital and molecular
orientation are solved by specific prescriptions or the introduction of resolution molecular orbitals.

Diabatic representations, with all their advantages for gas-phase processes, are also useful for
condensed-phase photochemistry.*

Although these developments make the generation of diabatic representations more automatic,
in some cases there may be practical advantages in working directly in the adiabatic representation
because it altogether avoids the nonunique transformation to a diabatic representation. Ideally
though, the choice between a diabatic and adiabatic representation should be based not on the
convenience of generating the potential energy surfaces and their couplings, but rather on which
one is more suitable for dynamics. Although accurate quantum dynamics are independent of
representation, approximate methods usually depend on representation, and they will tend to be
more accurate if one uses the representation with the smallest coupling between the surfaces; this is
problem dependent and the best choice may also be method dependent. Thus two important
questions emerge: (1) how can we determine, for a given system and a given approximate dynamics
method, which representation will yield the most accurate results; (2) can we develop improved
methods that are less dependent on representation than previously existing semiclassical methods?
Both questions are addressed in Section 5.

4 Quantum mechanical dynamics

Once an analytic representation for the potential energy surfaces and their couplings is obtained (in
either the adiabatic or diabatic representation), one may proceed to modeling or calculating the
non-BO dynamics. Quantum mechanical calculations are especially challenging for non-BO sys-
tems both because there are open channels on more than one potential energy surface and also
because, for typical energy gaps, the kinetic energy is high on at least one surface.

For chemical systems with three or four atoms and two electronic states, the dynamics may be
calculated using accurate quantum mechanical techniques. The method that we use to calculate
accurate transition probabilities is time-independent quantum mechanical scattering theory. In
these calculations we assume that a particular two-state diabatic representation of the potential
energy surface is exact, and we neglect electronic angular momentum. After those two assumptions,
the rest of the treatment is exact, that is, numerically converged to two or three significant figures.
The calculations employ the outgoing wave variational principle’” ®' (OWVP). The OWVP
method, as we employ it, is particularly efficient because it divides the scattering problem into two
smaller problems. The Schrodinger equation is solved by expanding the outgoing scattering waves
in terms of internal-state channel functions for each asymptotic chemical arrangement. (A channel
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is defined by a set of quantum numbers, including the arrangement number, that characterizes the
state of the completely dissociated reactant or product fragments.) The full Hamiltonian for each
chemical arrangement is partitioned into a distortion Hamiltonian that contains some of the
channel-channel coupling and causes rotationally-orbitally inelastic scattering and a coupling
potential that contains the remainder of the channel-channel coupling. The solutions to the former
are called distorted waves. The deviation of the accurate wave function from the distorted-waves is
expanded in a basis set consisting of L? functions and half-integrated distorted-wave Green’s
functions (HIGFs), and the deviation of the full scattering matrix from the part contributed by the
distorted-waves is obtained by making it stationary with respect to variations of the coefficients of
the L? basis functions and the HIGFs. The 1% functions are sums of products of Gaussians,
spherical harmonics, and diatomic eigenfunctions. The HIGFs are dynamically optimized by
solving the distorted-wave problems on a finite difference grid as nonhomogenous coupled ordinary
differential equations with two-point boundary conditions and with the quadrature grid for the
matrix elements of the OWVP being a subgrid; this is more stable than forming the Green’s
functions from irregular solutions, and it avoids working with discontinuities or interpolation.
Using this two-step scheme, the full scattering matrix is written as the sum of two terms, where the
first term is the distorted-wave Born approximation for the scattering matrix obtained using the
distorted-wave functions, and the second term is the contribution from the coupling potential.

The steps in the accurate calculations are therefore: (1) decouple the problem into small blocks in
single chemical arrangements; (2) solve these multi-channel nonreactive problems to obtain par-
tially coupled HIGFs; (3) calculate intra-arrangement and inter-arrangement matrix elements of
the L2 basis functions and HIGFs; (4) solve a dense matrix problem for the coefficients of the I’
basis functions and HIGFs.

Several computational refinements are used to make the calculations efficient: (1) The grids used
in the initial finite difference step are unevenly spaced so the subgrids used for later quadratures
have efficient Gauss—Legendre node spacings. (2) High-order finite difference schemes are used. (3)
The intra-arrangement integrals are re-calculated as needed to keep storage manageable (a so called
“direct” algorithm). (4) The problem, including boundary conditions, is formulated in a molecule-
fixed frame, which allows one to limit the basis set to small values of the body-frame angular
momentum projections. (5) The problem is formulated with real boundary conditions and hence
real arithmetic until the last step, where complex scattering matrix boundary conditions are used to
avoid spurious singularities in the variational principle. (6) In calculating matrix elements, we
prescreen both integrals and quadrature points to eliminate unnecessary work.

The OWVP method has been used to obtain fully-converged quantum mechanical scattering
results for a variety of electronically nonadiabatic chemical systems. The initial such application
was the nonreactive quenching process Na(3p)+ H, — Na(3s) + H, for zero® © and unit® total
angular momentum using a two-state representation of the NaH, system. Accurate quantum
mechanical calculations were also carried out®® for the spin-orbit-coupled collisions
H+HBr—H,+ Br(2P1 /2) and Hy + Br(2P3 /2)- The competition between electronically nonadiabatic
reaction and electronic-to-vibrational energy transfer was investigated for the Br(’P, /
»)+H, — HBr + H reaction.”” Calculations for a series of three-body model systems exhibiting
avoided crossings in the vicinity of the reaction barrier showed strong nonadiabatic effects on
reaction probabilities due to funnel resonances.®® OWVP calculations have been performed more
recently on a variety of model systems, including three qualitatively different types of chemical
systems: (1) systems with conical intersections,®” 7 (2) systems with diabatic surfaces that cross and
adiabatic surfaces that do not intersect,’* and (3) systems with wide regions of weak coupling where
neither the diabatic nor the adiabatic surfaces cross.”>’® This set of calculations includes reac-
tive®® 727476 and nonreactive’"’? scattering collisions as well as unimolecular excited-state decay
processes.”*”?

The availability of accurate quantum mechanical results for realistic full-dimensional non-BO
systems allows for the systematic study of the accuracy of more approximate methods, and we have
identified a subset of the calculations discussed above to serve as benchmark test cases. The systems
are defined in the diabatic representation, and the set of diabatic surfaces (eqn. (4)) and their
couplings (eqn. (5)) is referred to as a potential energy matrix or PEM. We include three Landau—
Zener—Teller-type’””° PEMs (collectively referred to as the MXH family’* of PEMs), which fea-
ture narrowly avoided crossings where the diabatic surfaces cross but the adiabatic surfaces do not.
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The three MXH PEMs differ from one another in the strength and width of their coupling, and all
three MXH PEMs describe the reaction

% M + HX
M+HX—>{H+MX/ (10)
where the excited model metal atom M* collides with the diatom HX. The system may quench
nonreactively to form M + HX or reactively to form H+MX. The masses of the M, X, and H
atoms are 6.04695, 2.01565, and 1.00783 amu, respectively. The diabatic and adiabatic energies for
one of the MXH systems along the collinear ground-state reaction path are plotted in Fig. 1(a).
OWVP calculations with 20659 basis functions were carried out’® for all three MXH PEMs at total
energies from 1.07 to 1.13 eV.

The second family of PEMs included in the set of benchmark cases is the YRH family,”> which
contains two Rosen—Zener-Demkov-type PEMs,*" 82 featuring wide regions of weakly coupled

- and nearly parallel surfaces where neither the diabatic surfaces nor the adiabatic surfaces cross.
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Fig. 1 Adiabatic (solid lines) and diabatic (dashed lines) energies along the collinear ground-state reaction
Path for (a) one of the MXH systems and (b) one of the YRH systems. The total energies used in the quantum
mechanical and semiclassical calculations are shown as dotted lines. The energies of the initial rovibrational
States of the diatom used in the set of benchmark test cases are labeled (v, /), where v and j are the vibrational
and rotational quantum numbers, respectively. Note: 1 @y = 0.529 A.
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The two YRH PEMs differ from one another in the strength of their coupling and describe the
reaction

* Y +RH
Y +RH—>{R+YH, (11)
where the excited model metal atom Y* collides with the diatom RH. The masses of the Y, R, and
H atoms are 10, 6, and 1.00783 amu, respectively. The diabatic and adiabatic energies for one of
the YRH systems along the collinear ground-state reaction path is shown in Fig. 1(b). OWVP
calculations with 25269 basis functions were carried out” for both YRH PEMs at total energies
from 0.99 to 1.13 eV. The various PEMs are distinguished by the strtength of coupling of the
diabats, as measured by a parameter UT$*.

Quantum mechanical results often display an oscillatory structure as a function of energy,
whereas the approximate methods that we wish to test (which are based on classical theories) do
not. In order to eliminate the effect of these oscillations when testing the approximate methods, we
average the quantum mechanical results over several energies located around the nominal scat-
tering energy. For the MXH systems, the quantum mechanical result at 1.10 eV was obtained by
averaging results from 1.07 to 1.13 eV. Quantum mechanical results for the YRH systems were
obtained at two energies: the 1.10 eV result was obtained by averaging results from 1.07 to 1.13 eV,
and the 1.02 eV result was obtained by averaging results from 0.99 to 1.05 eV. The OWVP method
gives the entire state-resolved scattering matrix, and in order to define a manageable test set, we
include a subset of these transitions. Specifically, we consider the scattering dynamics of three
initial rovibrational states for the diatom in the MXH systems, two initial rovibrational states for
the diatom in the YRH systems at 1.1 eV total energy, and one initial rovibrational state for the
diatom in the YRH systems at 1.02 eV total energy. The full set of benchmark quantum results
includes 9 MXH cases, 3 YRH cases, and a total of 12 test cases with five different PEMs. The
MXH and YRH systems have been used to systematically test several approximate methods, as
discussed in the next section.

5 Semiclassical trajectory methods

For systems larger than a few atoms, an accurate quantum mechanical dynamical treatment is not
computationally affordable. One must therefore rely on approximate semiclassical” methods
where the full dynamics of the system is approximated or simplified in some way using classical
ideas.®® Although many semiclassical methods have been proposed and reviewed,?! 88487 few
have been systematically tested against accurate quantum mechanical calculations for realistic,
fully-dimensional chemical systems, due to the difficulty in obtaining quantum mechanical results.
As discussed in Section 4, we have developed a broad test set of atom—diatom scattering calcu-
lations, and we focus our attention in this section on methods that have been validated using these
test cases to determine their accuracy and applicability.

The semiclassical methods considered here may be classified as trajectory ensemble methods,
where a swarm of classical trajectories is used to simulate the nuclear motion of the system. A
quantum mechanical nuclear wave packet has some inherent width in configuration and
momentum space, whereas classical trajectories are delta functions in phase space. (Equivalently, a
quantal particle’s coordinates and momenta have some inherent uncertainty or spread, whereas in
a classical system these quantities are fully determined.) An ensemble of trajectories is therefore
required to approximate the quantal situation, where the distribution of the trajectories in the
ensemble mimics the width of the accurate quantal wave packet.®”

Trajectory ensemble methods may be further categorized into those in which the entire ensemble
of trajectories is treated simultaneously and trajectories are allowed to influence each other’s
motions (coupled trajectory methods), and those in which each trajectory in the ensemble is treated
independently (independent trajectory methods). Several coupled-trajectory methods have been
developed.®®*° Some involve “dressing” a classical trajectory with a shape functions such as a
Gaussian, and using the overlap of these shape functions to determine the overall dynamics of the
system, and others involve using trajectory-derived ensemble-averaged quantities in the equations
of motion.
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We note that some of the coupled-trajectory methods are very similar to Gaussian wave packet
methods in which the centers of the Gaussians follow classical trajectories. These methods are
based on early work by Heller.'”!°! One method that has been systematically tested is the minimal
version'?? of the full multiple spawning method'**!** (FMS-M). In this method, a number of
Gaussian-shaped packets are propagated along classical trajectories, and the trajectories occa-
sionally spawn new wave packets, which propagate on other electronic surfaces. Electronic state
density is allowed to flow back and forth between the packets, thus simulating the non-BO event.
This method strikes a nice balance between including quantum mechanical effects and maintaining
computational efficiency, but because one cannot afford to spawn a complete basis set of wave
packets moving in all directions, and because one usually makes approximations that force
the wave packet centers to follow classical-like paths, the method does not eliminate some of the
arbitrariness (see below) that is most troubling in more classical approaches. Furthermore the
propagation of a wave packet is more expensive than the propagation of a trajectory, and, as with
all wave packet methods, one must be careful to fully sample phase space, a drawback which
significantly raises the cost of wave packet methods for large systems.

Another class of wave packet methods is based on the time-dependent multi-configuration time-
dependent Hartree method.'’'% These methods are viewed as approximate quantal methods
rather than semiclassical methods and will not be discussed here. Coupled-trajectory methods and
multiple spawning methods may be used to study the importance of coherent motions, but their
computational cost is higher than independent trajectory methods for full-dimensional systems. We
will focus our attention on independent-trajectory methods.

A non-BO process modeled using classical trajectories may be described as follows: as the
ensemble of nuclear trajectories evolves in time, the nuclear motion causes a change in the overall
electronic state of the system (via the nonadiabatic vector momentum (and possibly kinetic energy)
couplings or diabatic scalar potential coupling terms) which in turn results in a new effective
potential energy felt by the trajectories, affecting the nuclear motion. This nuclear-electronic
interaction is the source of nonadiabatic electronic state changes, and to properly treat these non-
BO effects a self-consistent treatment of the nuclear-electronic coupling is necessary (i.e., the
electronic and nuclear degrees of freedom must be made to evolve simultaneously). Several
methods for modeling this self-consistency within the independent-trajectory approximation have
been proposed, and we discuss them next.

The electronic motion along each classical trajectory is obtained by propagating the solution to
the electronic Schrodinger equation with the appropriate initial conditions. The solution may be
represented in the form of an electronic density matrix p, where the diagonal element p;; is the
electronic state probability for state 7, and p;; for i #j are the electronic state coherences.”"'%" If the
entire system is described in quantum mechanical language, then p is the reduced density matrix
obtained by tracing the density matrix of the entire system (electrons and nuclei) over the nuclear
degrees of freedom. The Schrodinger equation for the wave function reduces (neglecting Tsz)) to the
following equation for the reduced density matrix:®>

ihbkj i Z (P(;‘Flj w Plekl) (12)
]

where
Fj=V;—ihR d; (13)

Each trajectory in the ensemble evolves classically according to Hamilton’s equations of motion
under the influence of a semiclassical effective potential energy function Fgc, which must be
carefully chosen such that the self-consistency discussed above is maintained. The classical treat-
ment of the nuclear motion is not always a good approximation and may introduce significant
errors when, for example, the nuclei are light or the observables of interest are sensitive to the
quantization of vibrational energy levels or the phases of the nuclear wave functions, as near
thresholds and resonances, respectively. However, this approximation is often very useful, even for
problems involving hydrogen.

One may anticipate that a successful semiclassical effective potential energy function Ve will
be some function of the potential surfaces, their couplings, and p. As discussed above, one can
express the electronic potential energies and their couplings in either the adiabatic or diabatic
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representations, and these two representations are equivalent if no approximations are made.
Several of the semiclassical methods that will be discussed next involve approximations that do not
preserve representation independence, and one must choose which representation to use for a given
simulation. When this is the case, we will discuss a method for choosing the preferred repre-
sentation. However, for some non-BO problems it may not be possible to assign a single preferred
electronic representation. For example, a system may have two or more distinct dynamical regions
which differ in their preferred representation. Therefore, it is desirable to develop semiclassical
methods that are accurate in both the diabatic and adiabatic electronic representations.

Several semiclassical algorithms have been proposed with differing prescriptions for Vs, and the
approaches may be divided into two general categories: (1) time-dependent self-consistent-potential
methods, and (2) trajectory surface hopping methods. Each category will be discussed briefly.

Semiclassical time-dependent self-consistent-field (TDSCF) theory provides a general framework
for incorporating quantum mechanical effects into molecular dynamics simulations. The semi-
classical TDSCF method is also known as the semiclassical Ehrenfest (SE) method, the partially
classical Ehrenfest model,'”® the time-dependent Hartree method, the time-dependent self-con-
sistent field method,”!%®1%° the self-consistent eikonal treatment,''* the hemiquantal method,'!!
and mean-field theory. In this article we are especially concerned with the use of this method to
treat the problem of vibronic effects, that is, the coupling of electronic and nuclear motions when
the Born-Oppenheimer approximation breaks down. We group all methods of this type into a
general category that we call self-consistent potential methods. The Ehrenfest method converts this
problem to classical molecular dynamics on a time-dependent average potential energy surface that
is most appropriate for strong interaction regions but leaves the system in an unphysical final state
that corresponds to a quantum superposition of pure states. It is well known that an open quantum
system, that is a quantum system interacting with an environment (a “bath”), tends to a statistical
mixture''? of final states, not a pure state corresponding to a quantal superposition of final states.
The quantum mechanical description of this phenomenon is that the off-diagonal elements (which
are called coherences) of the reduced density matrix tend to zero. The zeroing of the off-diagonal
elements of the density matrix goes by many names including decoherence, transverse or spin—
lattice relation, and reduction of the wave packet. This general phenomenon has specific relevance
to the present problem because the electronic degrees of freedom may be considered to be an open
quantum system in the presence of the bath of nuclear degrees of freedom. Thus the nuclear degrees
of freedom decohere the electronic density matrix, and this occurs continuously at a finite rate, not
suddenly at a surface hop or a detector. When the coherences (i.e., the off-diagonal elements of p)
decay, the system becomes a statistical mixture, not a pure state. The system should then evolve like
a mixture of systems on the different potential surfaces, and the self-consistent potential for the
ensemble of trajectories is then an average of the various potential surfaces. This is where the
Ehrenfest method fails because it evolves each trajectory on an average potential (which is different
for each trajectory) rather than averaging the evolutions on the individual surfaces. We need to
introduce an algorithmic decay of mixing by which the electronic density matrices generating the
potential energy surfaces for the individual trajectories each lose their mixed character and become
a pure state; this decay of mixing must be stochastic or probabilistic such that the fraction of
trajectories propagating on each pure surface is equal, on average, to the probability of observing
each pure state in the statistical mixture corresponding to the reduced density matrix. Furthermore
not only must the nuclear motion be consistent with the electronic density matrix, but also the
electronic density matrix is a function of the nuclear trajectory; that is, the theory must be self-
consistent. This is the physical picture behind the coherent switching decay of mixing''® (CSDM)
algorithm and the earlier self-consistent decay of mixing''* (SCDM) algorithm. These algorithms
introduce continuous decoherence toward a pure state, called the decoherent state, and this pure
state is stochastically switched from one to another state in a self-consistent''* or coherent''* way
along the trajectory. In both algorithms the effective potential for nuclear motion is obtained from
the self-consistent electronic density matrix, and in the SCDM this self-consistent density matrix
also governs the switching of the decoherent state. However, we have found that for some problems
the evolution of the electronic density matrix that governs the switching should be more coherent
than the evolution of the electronic density matrix that governs the effective potential for nuclear
motion, and making this switching coherent for each complete passage of a region of strong
interaction of the electronic states makes the CSDM algorithm''® more accurate than the earlier' '
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less coherent algorithm. The switching is not completely coherent throughout the trajectory but
rather coherent during each complete passage of the system through a region of strong interaction
of the electronic states. At a point of minimum interaction of the electronic states, between strong
coupling regions, the electronic density matrix (p) that governs the switching is re-set to the one (p)
that governs nuclear motion.

But toward which pure states should the systems decohere, e.g., toward the adiabatic pure states
or the diabatic ones? What is the privileged electronic basis in which the density matrix becomes
diagonal? The analog of this question in quantal measurement theory is: what is being mea-
sured?'!® This is clearly determined by the measuring system, which from the point of view of the
quantum system, is the environment. In our problem, the environment is the nuclear degrees of
freedom. In quantal measurement theory, the privileged basis selected by the environment is called
the pointer basis,''> and it is determined by the interaction Hamiltonian connecting the two
subsystems. In the special case where the environment changes slowly on the natural time scale of
the quantal system, the pointer basis becomes the adiabatic basis of the quantal system,''® j.e., it is
determined by the quantal system’s internal Hamiltonian, not by the system-environment coupling.
Thus for systems where the Born—-Oppenheimer approximation is a good zero-order description,
the adiabatic basis should be the decoherent basis. However, we are interested in systems with
strong interactions between the states, i.e., Born—-Oppenheimer breakdown, and in such cases it is
not easy to determine the pointer basis, although our physical intuition tells us that when the
diabatic representation is a good zero-order approximation, the diabatic basis should be the
decoherent basis. One problem though is that the pointer basis may be different at different geo-
metries. A key to resolving the dilemma of how to choose the decoherent basis is provided by
recalling that the exact quantum mechanical solution is independent of the basis in which the
problem is solved. Therefore we seek a method that gives similar results in the two extreme bases,
adiabatic and diabatic. Then the choice of decoherent basis will not be so much of a problem
because one will get an accurate answer even if one locally makes the wrong choice.

The starting point for mean-field methods is the quantum Ehrenfest theorem''”:!'® which states
that the expectation values of the position and momentum operators evolve according to classical
equations of motion with an effective potential energy function given by the expectation value of
the potential energy operator. We define the semiclassical Ehrenfest (SE) independent-trajectory
method by taking Vsc to be the expectation value of the electronic Hamiltonian:*5:!!?

Vse :prj-l/:j- (14)
i

The SE method has the desirable feature that it is formally independent of electronic repre-
sentation.''® Unfortunately, the SE method has many more disadvantages that result from
the mean-field assumption.®® At any instant along an SE trajectory it is physically meaningful
for the nuclear motion of a system to be influenced by some average of the potential energies of all
of the electronic states. However, it is not physically meaningful for the nuclear motion corres-
ponding to each electronic state to be described by a single trajectory. If the potential energies of
the various electronic states are similar in topography and energy, then the nuclear motions in each
state will be such that an average SE trajectory may provide a reasonable approximation. For
many chemical systems, however, this is not the case, and it is not possible for a mean-field tra-
jectory to accurately approximate the motion in these different electronic states. An important
consequence of this arises in the case of low-probability events. An SE trajectory will be dominated
by the character of the high-probability motions, and low-probability motions may not be properly
explored. Furthermore, it is not clear how to interpret the final state of an SE trajectory. In general,
an SE trajectory will finish the simulation in a coherent superposition of electronic states, whereas
physically one expects isolated products to be in pure electronic states (if there is no electronic state
coupling in the product region of phase space). The internal energy distribution of products in a
superposition of electronic states is not reliable because it does not correspond directly to the
internal energy distribution of any single physically meaningful product.

The SCDM!''"* and CSDM'!? methods, introduced above, are modified SE methods that force
the system into a pure electronic state as the system passes through and leaves the strong coupling
region. Both methods add decay terms to off-diagonal matrix elements of the electronic density
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