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reface

Nowadays, electromechanical (EM) resonators are widely used in most sophisti-
cated electronic equipment. For example, bulk acoustic wave (BAW) resonators
using crystal quartz are indispensable for frequency or time generation owing to
their outstanding performances.

The mobile communication market has grown explosively in last two decades.
From a technological point of view, this growth is significantly indebted to the rapid
evolution of silicon technologies, and most of all, functionalities are now realized by
the use of silicon integrated circuits (Si-IC). However, highly precise frequency gen-
eration and excellent radio-frequency (RF) filtering are exceptional. They were only
realizable by the use of quartz resonators and surface acoustic wave (SAW) devices,
respectively.

RF-BAW devices employing a piezoelectric thin membrane were proposed in
1980. Although their excellent performance was well recognized, the majority of
engineers believed that their applicability was very limited due to extremely tight
requirements given to the device fabrication.

However, the tremendous efforts of a few believers moved mountains. RF-BAW
devices progressed surprisingly in the last decade and are now mass produced. Fur-
thermore, they are attempting to take over the current RF-SAW filter market.

The devices also receive much attention from Si-IC industries for their use as a
core element in sophisticated RF front-end and/or one-chip radio modules based on
the system-on-chip (SoC) or system-in-package (SiP) integration with active
circuitry.

This book deals with key technologies and hidden know-hows necessary for the
realization of high-performance RF-BAW resonators and filters. All the authors are
prominent professionals in this field, and they did their best to transfer their knowl-
edge to the younger generation. This book is invaluable not only for young engi-
neers and students who wish to acquire this exotic technology, but also for experts
who wish to further extend their knowledge. It is extremely hard for any person to
prepare such a monograph solely, and only fruitful collaboration of these authors
could make this difficult task possible.

By the way, the term film bulk acoustic wave resonator (FBAR) might be more
familiar to a majority of readers. However, its use is often limited to the category of
a free-standing membrane fabricated by the surface or bulk micromachining tech-
nology. Namely, the solidly mounted BAW resonator (SMR) employing the multi-
layered reflector(s) is excluded from this category. From this reason, we follow this
categorization, and the RF-BAW resonator is used as the whole set of these two cat-
egories throughout this book.
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Preface

In Chapter 1, Dr. Keneth Lakin, a pioneer of the RE-BAW devices and a techni-
cal leader in this field, reviews the background and history of the RF-BAW resona-
tors and takes readers on a virtual tour of extensive efforts that brought the
technology to its current success.

In Chapter 2, Dr. Lakin gives detailed explanations on resonator and filter
topologies that frequently appear in current RF-BAW technologies.

Electrical characteristics of RE-BAW device are simulated quite well by com-
puter simulation and its use is vital in current device design. In Chapter 3, Dr. Jyrki
Kaitila describes the BAW device basics, explaining the one-dimensional modeling,
detailing various second effects inherent for the precise simulation, and then discuss-
ing numerical techniques and underlying physics.

In Chapter 4, Dr. Robert Aigner and Dr. Lueder Elbrecht discuss RF-BAW
devices based on the solidly mounted resonator technology. First, they consider their
design and then discuss their fabrication for mass production in a semiconductor
fabrication environment.

In Chapter 5, Dr. Richard Ruby, the father of FBAR, reviews free-standing bulk
acoustic resonators (FBARs). Dr. Ruby begins this chapter with a short history
about the high obstacles that he and his group encountered, how he struggled, and
how he achieved a great triumph at the last minute.

In Chapter 6, Dr. Masanori Ueda compares the RE-BAW device with the RF-
SAW device from various points of view. Dr. Ueda has been involved in the research
and development of both of these devices, and can evaluate them without bias.

As described before, BAW device performances can be simulated numerically
fairly well. However, achievable performances are critically dependent on employed
manufacturing process, especially the quality of deposited piezoelectric thin films. In
Chapter 7, Dr. Sergey Mishin and Yuri Oshmiansky describe one of the most impor-
tant technologies for the fabrication of RF-BAW devices, namely, deposition of
high-quality thin films mandatory for realization of high-performance BAW devices.

In Chapter 8, Dr. Gernot Fattinger and Dr. Stephan Marksteiner discuss one
more important factor for the realization of high-performance RF-BAW devices:
namely, characterization of RF-BAW materials and devices. They also discuss the
major technologies of laser probing and electrical properties.

Integration of RF-BAW devices with semiconductor circuitry is one of the most
important concerns for the future in this community. In Chapter 9, Dr.
Marc-Alexandre Dubois, a principal researcher of the famous MARTINA European
Consortium, details monolithic integration of RF-BAW devices on Si.

In Chapter 10, Dr. A. Bart Smolders, Dr. Jan-Willem Lobeek, and Dr. Nicolaus
J. Pulsford discuss the RF integration from another aspect—system-in-package (SiP)
integration. They explain various technologies used in the SiP integration, demon-
strate its effectiveness, and then show how the BAW technologies fit well with
REF-SiP, which will be the mainstream for further RF integration.

Ken-ya Hashimoto
Editor

Chiba University
Chiba-sha, Japan
May 2009
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1.1

Ken Lakin

BAW Technology Background

The purpose of this chapter is to give a brief history of the development of BAW
technology which is covered in technical detail in later chapters of this book. First it
is necessary to define what the BAW technology is and then put the history in that
context. For the purposes of this book, BAW history is interesting not so much as
who did what when (that will be apparent from numerous references) but how other
technologies were drawn upon to make the development of the modern thin film
BAW technology possible. Microelectronics has played a key role over the years by
providing materials-processing techniques previously unavailable. Review papers
give an overview of thin film resonator technology [1-5].

1.1.1 Basic Definitions

The term bulk acoustic wave (BAW) refers to primary acoustic waves that propaga-
tion in the bulk of a material whose dimensions are infinite and wherein the wave
occupies all of that volume. There are three possible propagation modes called the
normal modes of the material. Those modes are well understood for a large number
of materials whose elastic properties are known. In more practical terms, a wave in
a finite three- dimensional region can only approximate the propagation character-
istics of an infinite region. The first approximation required to support a BAW is
that the lateral extent of the medium is much larger than the wavelength and
cross-section of the wave. The practical definition of BAW is imprecise and depends
on what artifacts crop up due to the finiteness of the beam. For example, a beam
starting out as being of comparable dimensions to the wavelength would appear as
a point source and spread widely, due to diffraction, but could be described as some
complex linear combination of the normal modes. The second approximation is
that the lateral extent of the wave, and therefore of the medium, is such that the
wave is primarily one-dimensional but with some residual effects due to lateral
finiteness. In the direction of propagation the material extent may be very finite,
such as a half-wavelength thick for a resonator. Yet in such a case, dimensions will
appear large in the direction of propagation because the wave bounces within the
resonator between parallel surfaces maintaining its characteristics as if propagating
over considerable distance. Typical average lateral dimensions might be
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approximately 100 times the wavelength for resonators in filters designed for
50-ohm source and load impedances.

Whereas finiteness is a distortion imposed on BAW, other modes of propagation
are uniquely tied to the finiteness of a structure. For example, waves can propagate
along and be guided by a surface or at an interface. The most notable being the solid
to air interface that supports surface acoustic waves (SAWs). A feature of waves is
that they tend to be guided by regions of slower velocity and lower energy density. If
there is a lateral deformation at or very near a surface, the material can expand per-
pendicular to the force (Poisson effect) out into the air region. That added degree of
freedom makes the surface appear mechanically softer and as a result the SAW is
confined to the surface. In the case of SAWs the material region must be just a half
space with the relevant approximation that the material is sufficiently thick that the
wave does not exist at any other surfaces.

If the material region is formed as a plate with two parallel surfaces, but large in
lateral extent, then another set of waves, plate waves (PW), can propagate along the
parallel boundaries of the plate. These waves are most pronounced when the thick-
ness of the plate is comparable to the propagation wavelength. It turns out that such
a geometrical constraint is met by a typical BAW resonator. Further, plate waves can
be generated in BAW resonators and can plague high-performance BAW resonators
with parasitic resonances.

Other modes of propagation are possible in the typical BAW structural approxi-
mation but PW are the most pronounced.

Since a resonator can be though of as a confinement structure for a wave bounc-
ing between reflecting surfaces, it is only a manner of properly generating and con-
fining a wave to make a useful resonator. Two issues then emerge. First, how to
generate the wave, and second how to confine the wave so that most of the energy is
stored with a minimum amount of energy loss except on a controlled basis.

1.1.2 Role of Piezoelectric Materials

The most straight forward method of generating an acoustic wave is to use a piezo-
electric material. The piezoelectric direct and inverse effects are described in general
by the equations,

T=cS—-¢eE (1.1)
D=eS+¢E (1.2)

Here (1.1) is Hook’s law of elasticity, T is stress (force per unit area), S is strain,
e is the piezoelectric coefficient, ¢ is mechanical stiffness, ¢ is permittivity, and E is
the electric field. The second equation shows the contribution of mechanical strain
to electric charge generation and displacement current. Accordingly, mechanical
deformations and electric properties are piezoelectrically coupled.

As will be shown in subsequent chapters, the strength of the piezoelectric cou-
pling determines the bandwidth of filters and the mechanical losses in the material
will determine resonator Q and accordingly filter insertion loss.



