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Introduction

Siegel modular forms are holomorphic functions on the generalized upper half plane
H,,, which consists of all symmetric complex n X n-matrices with positive definite imag-
inary part. They admit Fourier expansions of the type

f(2) =" a(T)expmio(T2),

T

where T runs through a lattice of rational symmetric matrices.

A modular form is called singular if
a(T) # 0 =T singular, i.e. detT =0.

Important examples of modular forms are theta series

Zexp nio(S[G]Z).
G

Here S is a rational symmetric positive definite 7 X r-matrix and G runs through a
lattice of rational 7 X n-matrices. This theta series is singular if

r<n.

The theory of singular modular forms states in a very precise sense that each singular
modular form is a linear combination of theta series.

In these notes we give an introduction to the theory of Siegel modular forms,
especially singular ones. We aspire to highest generality, we consider arbitrary congru-
ence subgroups of the Siegel modular group, the modular forms can be vector valued
and the weights are allowed to be half integral. Before we describe the contents in more
detail, we make some historical comments.

The notion of a singular modular form is due to H.RESNIKOFF [Rel], who considered
scalar valued modular forms of the transformation type

f(M(Z)) = v(M)det(CZ + D)"/*f(Z).

He proved that such a modular form can be singular only if r is integral and if r < n.
The question arose whether in this case all modular forms are singular. In the paper
[Fr1] an affirmative answer was given in the case n = 2. A little later the general case
was independently solved by different methods in [Fr2] and [Re2).

The only known examples of singular modular forms were theta series (and linear
combinations of them). So the question arose whether every singular modular form is
a linear combination of theta series. I gave a very short and simple proof (s.[Fr4]) that
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scalar valued singular modular forms with respect to the full Siegel modular group are
linear combinations of theta series

Z expmio(S[G]Z),

G integral

where S is an even unimodular positive matrix. (Even means that S is integral and that
the diagonal is even.) A little later I generalized this result to vector valued modular
forms with respect to the full Siegel modular group [Fr5]. Those forms are holomorphic

functions
f:H, — Z

with values in some finite dimensional vector space Z, which transform as
f(M(Z)) = o(CZ + D)f(2).
Here
o : GL(n,C) — GL(Z2)

is some rational representation. The role of r is played by the biggest number k£ such
that
o(A)det(A)~*

is polynomial. In the vector valued case it is necessary to consider theta series with
harmonic coefficients:

ZP(SI/2G) expmio(S[G]Z).
G
Here P is a harmonic polynomial with the transformation property
P(GA) = p(A') det(A)~"2P(G).

(For simplicity we assume r = 0mod 2 at the moment.) It is a very remarkable fact
that vector valued singular modular forms automatically “produce” such harmonic co-
efficients.

The method which I used depended heavily on the restriction to the full modular
group. As has been pointed out in [Al], [Zw] and [En], the method generalizes to
congruence groups which contain all unimodular substitutions,

Z+— Z|U), U e GL(n,Z).
But the general case of an arbitrary congruence subgroup or at least of a cofinal system

of congruence subgroups was not obvious.

In an important paper [Ho] R.HOWE proved a theorem about singular representa-
tions of Sp(n, A) (A denotes the ring of adeles). In classical language his result can be
formulated as follows:

FEach singular Siegel modular form is linear combination of theta series.
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(HOWE actually considered only square integrable modular forms with respect to the
PETERSSON inner product. A little later WEISSAUER proved [Wel] that singular forms
are always square integrable.).

In some sense the result of HOWE is not satisfactory. Let I' be a fixed congruence
subgroup of the Siegel modular group. As usual we denote by [I', p] the space of all
modular forms with the transformation law

f(M(Z)) =0o(CZ+ D)f(Z) forall M €T.

This space is of finite dimension. Very often the dimension has geometric or arithmetic
meaning and one would like to compute or estimate it.

For this reason one would like to have a finite system of theta series which
generates [T, g] and one would like to describe all linear relations between the generators.

The representation theoretic result of HOWE seems not to give an answer to this
refined question. For example, he always has to consider besides the theta series

Z P(S'%G)exp mio(S[G)Z)

G integral

all satellites
> P(5'2G)expwio(S[G]Z +2G'V)

G integral

with arbitrary rational characteristics V. But they generate a vector space of infinite
dimension and it is not clear which linear combinations of them belong to a given group
I'. This question is difficult because there are non-trivial relations between them. For
example, the classical Riemann theta relations are of this type.

The first step into a more concrete representation theorem has been done by R.ENDRES
[En]. He treated the case of scalar valued modular forms of weight 1/2 (r = 1). Some
of his ideas have proved to be essential for the general case.

In these notes we prove a refined representation theorem for singular modular forms,
which gives a finite system of generators and describes all linear relations between them.

Actually the proof is complete only for n > 2r (instead of n > 7) and some other cases.

Our method is elementary and not representation theoretic. It depends heavily on
the analysis of the Fourier-Jacobi expansion of a modular form. Now we describe the
contents in more detail.

Chapter I contains an introduction to the theory of Siegel modular forms. We con-
sider vector valued forms and also admit half integral weights. Therefore we have to
deal with multiplier systems. The choice of a multiplier system is not too important,
because in the case n > 1, two multiplier systems always agree on a suitable congru-
ence subgroup. We investigate the standard multiplier system —the so called theta
multiplier system- in some detail and express it as a Gauss sum. This Gauss sum
will be computed in important special cases. All the results about the theta multiplier
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system are already in the literature but are scattered. It seemed me to be worth while
to include this theory with complete proofs.

As already mentioned, vector valued modular forms involve finite dimensional ratio-
nal representations of GL(n). We include the theory of highest weights of such repre-
sentations without proofs. Readers who are interested only in scalar valued modular
forms can pass over this part.

Chapter II is devoted to the theta transformation formalism. Examples of
modular forms are theta series. In the vector valued case (and only in this case) one
needs theta series with harmonic coeflicients. For our purposes it is necessary to develop
the transformation formalism for arbitrary polynomial coefficients. One reason is that
in the Fourier Jacobi expansion of a vector valued modular form, theta series arise
with polynomial coefficients which are not known to be harmonic in advance. For the
proof of the transformation formalism we use EICHLER’s imbedding trick. This is a
very convenient method to reduce the transformation formalism to the full modular
group, where simple generators are available. The transformation formalism simplifies
considerably if the coefficients are harmonic forms. For the purposes of these notes not
much more than the definition of a harmonic form is needed. Nevertheless we have
included some of the beautiful results of KASHIWARA-VERGNE [KV], who classified all
harmonic forms.

Chapter III contains the proof that non-vanishing modular forms are singular if and
only if 7 < n. The main tool is the Fourier Jacobi expansion of a modular form.
The transformation properties of those coeflicients lead to the notion of a Jacobi form.
We prove a variant of the SHIMURA-isomorphism [Sh|, which states that Jacobi forms
correspond to finite systems of usual modular forms. The proof of this correspondence is
tedious in the vector valued case and depends heavily on the general theta transforma-
tion formalism. We prove the correspondence between Jacobi forms and usual modular
forms only for varying levels, i.e., we do not get information about precise levels.

Chapter IV describes a central part of the theory. First of all we describe a certain
space of Fourier series M, which contains the space of modular forms of a fixed level
q. This inclusion is nothing else but a reformulation of the classification of singular
weights. The space M has the advantage that in its definition no multiplier system
or sophisticated congruence groups have to be considered. At first glance the space
M looks tremendously big. Actually our general representation theorem is valid for
arbitrary elements of M. We will investigate the Fourier Jacobi expansion of elements
of M. The representation theorem will be reduced to an elementary statement?(called
the fundamental lemma in these notes) which has nothing to do with modular forms.

Unfortunately this lemma seems to be very hard.

Chapter V is devoted to the fundamental lemma. We give a complete proof in the
case n > 2r and in some other cases.

In the last chapter we formulate the results and point out the connection with the
theory of theta relations. We work out a formula for the dimension of M (and as a
consequence of certain spaces of singular modular forms), which allows one in principle
to compute the dimension explicitly by a calculator. We include some numerical results.
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But we confess that the connection between our results and the classical theta relations
is not understood satisfactorily.

Most of the material of these notes has been published in the preprint series of the
“Forschungsschwerpunkt Geometrie, Heidelberg” [Fr7-10].

In particular I would like to thank Dr. Dipendra Prasad who brought my attention
to various mistakes in the original manuscript.

Heidelberg, 1990
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I Siegel modular forms

1 The symplectic group

We introduce the symplectic group and recall some of its basic properties. A detailed treatment
can be found in [Fr4].

Let R be a commutative ring with unit element 1 = 1. We denote by

1
E=E™ =

the n X nm-unit matrix with coeflicients in R and by

=% %)

the standard alternating matrix. The symplectic group of degree n with coefficients in
R consists of all 2n x 2n-matrices

Me R(Zn‘2n)’

such that
IM] =1

Here we use the usual notation
A[B] = B'AB (B’ = transpose of B)
for matrices A € R(™™, B € R(™™) We denote the symplectic group by
Sp(n, R). £

It is often useful to decompose a symplectic matrix into four n x n-blocs:

A B
M= <C’ D) .
) A B . . . .
1.1 Remark. 1) A matrizc M = c pl® symplectic if and only if the relations

AD-C'B=E, AC=C'A, BD=D'B
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hold. Espectally
Sp(1, R) = SL(2, R).

2) One has I"1 = —I. Therefore the transpose M' of a symplectic matriz M is sym-
plectic, i.e.

AD' - BC'=E, AB'=BA', CD'=DC'.
3) The inverse of a symplectic matriz is

M1=I"MI= ( D _B')

el Al
4) Some examples of symplectic matrices are

a‘) (107) §>’ S=S,7

/
b) (% U°_1>, U € GL(n, R):

0 FE
c) I= (—E 0 ) .
1.2 Proposition. Let R be either Z or a field. The group Sp(n, R) is generated by the

spectal matrices
E S ol 0 FE
(5 2)s=55 (5% 5)

The symplectic group with coefficients in Z is sometimes called the Siegel modular

group. We denote it by
Ty, = Sp(n,Z).
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Congruence subgroups

The kernel of the natural restriction homomorphism mod gq
I.lq] :== ker(Sp(n,Z) — Sp(n,Z/qZ))
is called the principal congruence subgroup of level q.

1.3 Definition. A subgroup
I c Sp(n,R)

is called a congruence subgroup if it contains some principal congruence subgroup
[plglCT

as a subgroup of finite index.

1.4 Theorem. Assumen > 1. Let
I' € Sp(n,Z)
be a normal subgroup which is not contained in the central subgroup {+E(*™}. Then T
s a congruence subgroup.
Corollary. FEach subgroup T' C Sp(n,Z) of finite index is a congruence subgroup.

We don’t have to make use of this beautiful result of MENNICKE [Me]. But it will
sometimes be helpful to have it in mind.
There are several “standard” congruence subgroups which we will use in these notes.

1) The theta group
Ino={ME€T,, AB' and CD’have even diagonal entries }.
We will see later that I',, y actually is a group.
2) The generalized Hecke group
Tnolg) :={M €T,, C =0modgq}.

3) The “theta variant” of 2) [En]
Tho9g) = {M €T,; C=0modg, the diagonal entries of (CD’)/q are even}.

4) IGUsA’s group [Igl]
T.[q,2q] = {M €T,[q], the diagonal entries of AB’/qand CD’/q are even}.

One has
T'n[2q] C Tylg,2q] C Talg).

Obviously
Fa=Lullly Tus=Tu[1;2)

1.5 Remark. The Igusa group
Ilg,2¢) CTh0

s a normal subgroup of 'y, ».
For even q, the group I'y[q,2q] ts normal in the full modular group Tp,.

The proof of this remark can be found in [Igl].
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2 The Siegel upper half space

We introduce the action of the real symplectic group on the Siegel upper half space.

In the following, we denote by
Z,={Z2=2"eC™)}

the vector space of all symmetric complex n X n-matrices.

2.1 Definition. The Siegel upper half space of degree n consists of all symmetric
complex n X n-matrices whose imaginary part is positive (definite).

H,={Z=X+i&€2,, Y >0}

2.2 Remark. The Siegel upper half space is an open conver subdomain of Z,.

2.3 Remark. Let

f:H, —C
be a holomorphic function without zeros. Then there exists a holomorphic square root
of f:

h:H, — C,

i.e. h is holomorphic and

Proof. Consider for a fixed Z, the function

a:(0,1] — C,
o(t) = f(iE +t(Z —iE)).

The function .
H(Z) ::/ a(t)/al(t) dt
0
is holomorphic and has the property

eH(2) = §(2).

The function
h(Z) = H (D)2

has the desired property.
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2.4 Lemma. Let
Z eH,, M eSp(nR).

CZ+D (M: (é, g))

Then the matriz

1s invertible and
M(Z) :=(AZ + B)(CZ + D)™!

is again contained in H,. This defines an action of Sp(n,R) on H,, i.e.
a) E(Z)=2Z,
b) M(N(Z))=(MN)(Z) for M,N € Sp(n,R).

The map
IHIn _’Hnn
Z —M(Z),
is of course biholomorphic. It can be shown that each biholomorphic map of H, onto
itself is symplectic (i.e. of this form).

2.5 Remark. Two symplectic matrices M, N € Sp(n,R) have the same action on H,
if and only if

M = £N.
Examples of symplectic substitutions are
_7_( 0 EY, _ _ -1
1) M-I-(_E 0), Kzy=-271,
2 M:(]{f Z)’5=S’; M(Z)=Z+S,

!
3) M= ([é U0‘1> ,U € GL(n,R); M(Z)=U'ZU.

For proofs we refer to [Fr4].



