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Preface

This monograph is intended to provide a snapshot of the status and opportunities for advan-
cement in the technologies of dynamics and control of large flexible spacecraft structures.Itisa
reflection of the serious dialog and assessments going onall overthe world,across a wide variety
of scientific and technical disciplines, as we contemplate the next major milestone in mankind’s
romance with space: the transition from exploration and experimentation to commercial and
defense exploitation.

This exploitation is already in full swing in the space communications area. Both militaryand
civilian objectives are being pursued with increasingly more sophisticated systems such as large
antenna reflectors with active shape control. Both the NATO and Warsaw pact alliances are
pursuing permanent space stations in orbit: large structural systems whose development calls
for in-situ fabrication and/or assembly and whose operation will demand innovations in
controls technology.

The last ten years have witnessed a fairly brisk research activity in the dynamics and control
of large space structuresin orderto establish a technology base forthe development of advanced
spacecraft systems envisioned for the future. They have spanned a wide spectrum of activity
from fundamental methods development to systems concept studies and laboratory
experimentation and demonstrations. Some flight experiments have also been conducted for
various purposes such as the characterization of the space enviroment, durability of materials
and devices in that environment, assembiy and repair operations,and the dynamic behavior of
flexible structures. It is this last area that has prompted this monogram. The emphasis is clearly
on the basic analytical and experimental methods development aspects of theitechnology.

The principal aims of this monopgrah are to bring together the view points gfthe structural
dynamicists and the control theoreticians and, through this interdisciplinary dialogue, to.
facilitate further coordinated efforts in resolving outstanding technical ptoblems in the
nonlinear dynamics and control of highly flexible space structures.

In Chapter 1, Noor and Mikulas deal with several issues pertinent to the development of
equivalent-continuum models for beam-like and plate-like lattices. These issues include: (i) a
definition of the equivalent continuum, (ii) characterization of the continuum model and (ii)
different approaches for the generation of stiffness, inertia, and thermal properties of the
equivalent continuum. In Chapter 2, Atluri and lura discuss computational methods to treat
nonlinerarities of the structural, the inertial, and of the damping (due to flexible hysteritic

joints) type that arise in the context of dynamicsand control of LSS. Both semi-dfiscrete typeand .
space-time tyfe methods to analyse the transient nonlinear response are discussed. Algorithms

for implementing control on nonlinear semi-discrete type coupled systems of ordinary
differential equations, are discussed. Reduced-order structural modeling technigpes for both
the equivalent-continuum models of LSS, as well as for truss arxd-frame type lattice-structuges
are discussed. Simple finite element methods for beam type 1SS undergoing large rotational
deformations, and field-boundary-clement methods for shell-type LSS undergoing large
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deformations are discussed. Exact and explicit expressions for tangent stiffness operators of
truss and framée type LSS are given Finally, Atluri and Tura discuss the mechanical coupling
between structural members and piezo-electric-film type control actuators, and give
expressions (0. the actuator forces as functions of the excitation voltages and the magnitudes of
generabzed internal forces in the member

In Chapter 3, Hu, Skelton, and Yang discuss the question of the contribution of a specific

“mod= of lnear vibration to the norm of the nodal response vector of a structure, in a situation
wherein t1e promary consideration is the accuracy of dynamic response of a structure at specific
locations. [his question is of importance in deciding which modes are to be retained in creating
a requced order structural model for the purpose of designing the controllers. In Chapter 4,
Modi and Ibrahsm discuss ageneral formulation, applicable to a class of space platforms with

flexible exiendable members, for analyzing transient dynamic situations involving complex
interactions between deployment, attitude dynamics, and flexural rigidity. In Chapter 5, Park
surveys partitioned solution procedures for large-scale simulation of dynamics and control of .
space structures which involve structural elements capable of large overall as well as flexible
motions. ' % ‘

In Chapter 6, Zak discusses the case of puise excitations of structures. In such cases, if a finite
dimensional discrete model of the siructure. is grmﬂ‘oyed. a loss of contribution of the high-
frequency modes to the dynamic responss: iy result. Zak shows that the thus unmodetled part
of the response can be represented by a sviiem of thin pulses and discusses the associated
fundamenta! dynamucal properties of the system. In Chapter 7, Bainum reviews the topics of
rathematical models for orbital dynamics of large flexible structures, numerical techniques
for synthesizing shape and attitude control laws, and the modelling of environmental
diisturbance torques due to the interaction of solar pressure on vibrating and thermally
defotynated structures. , -

I Chaptet 8, Srinivasan discusses the phenomenon of friction between contacting surfaces.
and addresses related issues such as quantifying the nature and magnitude of friction forces,
quantifying the nature and magnitude of vibratory motion at contacting interface, and
predicting the extent of damping that may be present. These tepics are of interest in the passive
control of space structures. In Chapter9, Meirovitch discusses the active control concept of the
independent-modal-space-method, and. the concept of direct feddback control. He also
discusses the related issues of deciding suitable control gains, the presence of damping, etc. In
Chapter 10, von Flotow discusses the limiting case, labelled the acoustic limit, wherein the
control bandwidth includes a veiy large number of natural modes. He argues that, in this limit,
the modatl amnalysis approach to control design is of limited value, and discusses alternate
approaches involving wave-propagation’ formalisms applicable to flexible lattice-type

_structures. - . ' . _

_ In Chapter 11, Lynch and Banda prescqt the control design techniques of Linear Quadratic

‘Gaussian-with Loop Transfer Recovery, for large space structures, wherein the high-frequency

~madeling uncertainties necessitate a robust control design. InChapter 12, Bernstein and Hyland
reviewthe machinery of Optimal Projection for Uncertain Systems, for active control of flexible
stru'ctures,nhd‘demonstrate its practical value. In Chapter 13, Kosut presentsan approachtothe
problem of désigning a robust control using on-line measurements, emipoying the methods of
parameter identification to obtain a nominal estimate of the plant-transfer function. Non-
parametric spectralinetirods are then used toobtain a freqeuency domain expression formodal

v
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grvertaiay, 1 the modial unceriidnt 2xeecds u specificd frequeney bound, deta ilters used in
the systemadentfication are modified, ana the procedure i repeoted. He also presents an
analysis which establishes conditions under which the procedure converges wo a satsfucotry
robust design.

In Chapter 13, Junkins and Rew address the questic vhether a fead-back conirol law,
gesigned based on g lincar fwvte dimensional discrets muihematica: mode! of a {iexibie
structure, will stabibize and nowr-optimally controi the res! system. They emphasize the
developmaent of robust eigenstrugturg assignment methods and summarize optimization
mw'pds in whick both the controiler and selected strycural parameters are redesigned to

mprove the robustness. Inthe final Chapter 15, Khot presents two approaches for the optimum
Utn;g,n of a strucutre and its conirol systen with the oi)jcui‘;fe uf mgdifying the structural
stiffniess in erderte achieve both o mintmumweight struciure, end a desired spectrum of closed-
loop eigenvalues and structural frequencies.

The editors behieve that these fifteen chapters collecuvely form a sound foundation for the

subject of dvnamics and control of tlexible structures, wherein rapid scientificadvances are to be

expected in the next decade or so. It is towards this objective thﬂ the editors hope that this
sponograph would serve as a calalyst.

[t iz o gicat plzasure to thank all the authors for their Lind cooperation through a timely
preparation of theirmanuscripts. The ediiors also thaik the Harsis Corperatioa, Government
Aetospace Systems Division, of Mcibourne, Florda for their kind permission to use the
illustration that appears on the cover of this manograph. A note of thanks to Ms. Deanna
Wirkler is alse recorded here, for her assistance in the various editoral tasks.

Atlanta and Washingion, D. C., Juiy 1987 ' Satya IN. Atiuri, Anthony K. Amos
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Continuum Modeling of Large Lattice Structures:
Status and Projections

Ahmed K. Noor and Martin M. Mikulas
NASA Langley Research Center
Hampton, Virginia 23665

SUMMARY )

The status and some recent developments of continuum modeling for large repetitive
lattice structures arc summarized. Discussion focuses on a number of aspects includ-
ing definitjon of an effective substitute continuum; characterization of the contin-
uum model; and the different approaches for the generation of the properties of the
continuum, namely, the constitutive matrix, the matrix of mass demnsities, and the
matrix of thermal coefficients. Also, a simple approach 1s presented which can be
used to generate analytic expressions and/or numerical values of the continuum
properties,

Application of the proposed approach to some beamlike and double-layered platelike
lattices, currently considered as candidatres of large space structures, is described.
Future directions of research on continuum modeling are identified. These include
needed extensions and applications of continuum modeling as well as computational

strategies and modeling techniyues.

SYMBOLS

A(k) cross-sectiondl area of member k of the repeating cell

[C] matrix of stiffness coefficlents of the simplified continuum

Cll’ C12, Cl3’ stiffness coefficients of the simplified continuum (see Tables

. C88 } 1 an%-z gnd Figs. 4 and 5)

{CT) : tﬁefmal load vector of the simplified continuum

dl’ dz, e d6 generalized displacements (see Figs. 4 and 5)

elky : elastic mpdulus of the material of member k of the repeating

: a cell

Fl, F2,~.L; F6 . geperalized internal forces im tﬁé continuum beam model (see
- . Fik. 4)

Gll’ Gy Gli' , partitions of the matrix [G]C, see Egqs. 37

[G]c ’ geometric stiffness matrix of the continuum

[g] : geometric stiffness matrix of the simplified continuum

[g(k)] geometric stiffness matrix of member k of the repeating cell

[x] . stiffness matrix of the gepeating cell

[K]C . stiffness matrix of cOn;iguqm

STERSPURSEY KZZ'} partitions of the matrix [K]c' see Eqs. 14

K30 K33

Springer Series in Computationat Mechanics
S.N. Atluri. A. K. Amos (Eds.}
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kinetic @nergy density of the continuum
letipth of member k of the repeating cell

zehding and twisting moments in contisuum beam model (see Fig.
)

hending and twlsting stress resultants in continuum plate model
(see Fig. 5)

partitions ‘of the matrix [M]C, see Eqs. 15

matriy of density parameters of the continuum

mat:li of deaslty parameters of the simplified continuum model
density parameters of the simplified continuum {see Tables 1
and 2 and Figs. 4 and 5)

consistent mass matrix of member k' of the repeating cell

axlaI force in beamiike lattices (see Fig. 4)

extensional stress resultants in continuwum plate model (see
Fig. 5)

thermal load vector of the repeating cell
thermal load vector of the continuum : -
partitions of the vector (PT}C, see Egqs. 16

transverse shearing forces in the y and z directions in contin-
vun beam wodel

transvyerse shear stress resultants in continuum plate model

transformation matrix whose entries are products of direction
cosines of member k

stress resultants in the continuum plate model (see Fig. %)
temperature parameter (see Egs, 26 and 132)
temperatuce of member k of the repeating cell

vector of temperatur2 parameters used in describing the
continuum

thernoelastic strain energy density of the continuum

contributions to the strain energy of the linear and quadratic
terms in the femperature parameters

{gotbermal strain energy
displacement components in the coordinate directions

displacement parameters characterizing warping and cross-—
sectional distartions

dispiaccement parameters in the coordinate directions

vector of nodal displacements of member k of the repeating cell

‘vector of displacement parameters used in describing the

continuum
partitions of the vector {u_}, see Eqs. 13

v B
Cartesian coordlinates 2=

coetritienL of thermal expansion of member k of the repeating
cell .

crensfurmation maivices (see Egqs. 6, 7, 8 and M)



Yzy’ Y;z‘ Y;z shearing strain parameters in the coordinate planes

Y120 Y130 Yoq shearing strains in the coordinate planes

{A}c vector of displacement parameters and their spatial derivatives
for the continuum ’

E(k) axial strain of member k of the vepeating cell

cll’ 522, 533 4'axial strains in the coordinate directions

Cz, C;. EZ éxtensional strain parameters in the coordinate directions

{el}e vector of strain parameters used in describing the continuum

(E}(k) vector of strain components In the ccordinate directions used
in the expansion of e -

(ccl}, {Ccz}, [ec3} partitions of the vector {C}C. see Eqs. 12

IS strain parameter (see Egs. 25)

K curvature changes and twist parameters

2x°
xy
mass density of the material (see Fig. 6}
<* @y, ¢= rotation components !

30 strain parameter (see Eqs. 25)

Q characteristic geometric property of the repeating cell of the
lattice (length of repeating cell for heamlike lattices and
planform area of repeating cell for platelike lattices)

w fraguency of vibration (see Figs. 3-11)

{
(e, m, n)‘k) direction cesines of member h
gx = 3ax ny - 3i%y ., az = 3/92

Superscript ¢ denotes transposition.

{. INTRODUCTION

Lartice structures have heen used for many yoars in:épxnning large areas with few
intermediate supports. These structuras can combine low cost with Light weight and
an estheticdlly rleasing appearance. Also, duce to their ease of packaging, trans-
porting, and assembling in space, lattice structures have attvacted considerable
attentlon for use in large-area space structures such as the spacce station, large
space mirrors, antennas, multipurpose platforms, amd power systems for supporting
space pperations. A main feature of the large-area lattice structures considered
for space applications is that the basic pattern or conflguration is repeated many
times. '

A review of the state-of-the-art in the analysis, design and counstruction of lat-
tice structures until 1976 is given in {14 and 31]. The currently-used approaches
for analyzing large repetitive lattices can be grouped into four classes; namely:

1) direct method

2) discrete ficld methods

) periodic structure approaches

43y  substitute contlnuum approaches.
Y



In the firss hpproach (direct method) the structure is analyzed as a systeﬁ af
discrete finite elements, and the ﬁethodg of solving structural framework problems
are applied. It has the obvious drawback of being computationally expensive f;r large
lattices. This is particularly true when a buckling, vibration, or a nonlinear ana-—
1ysis 19 tequired.; :

The second approach (Qiscrete field methods) takes advantagée of the regularity of
the structure and involves yriting the equilibrium and compatibility equations at a

typical joint of the lattice and either solving the resulting difference equgtions
directly, or using truncated Taylor series expansions to replace the difference equ-
atipns by differential equations (see, for example, [15, 16, 50, 51 and 62]). This
approach works well for simple lattice"configurations, but becomes quite involved for
lattices with complex geometry.

The third group of methods are referred to as periodic structure approach, and are
based on either: a) the combined use of finite elements and transfer matrix methods,
which 18 efficient only for rotationally perfodiec (i.e., cyclically symmetric) struc-
tures or lattices with simple geometries [33, 64 and 65], or b) the exact representa-
tion of the stiffuess of an individual member from which the analysis of beamlike
lattices with simply supported edges can be performed [4, 5 and 6].

The fourth approach is based on replacing the actual lattice structure by a sub-
stitute continuum model which is equivalent to the original structure in ;omé sense,
such as the comstitutive relations, strain energy and/or kinetic energy (see, for
example, [3, 17, 18, 19, 21, 24, 29, 34, 35, 37, 42, 43, 54, 55, 56, 59, 63 and 66]).
The use of continuum models to simulate the behavior of planar lattice beams dates
back to the previous ceﬁtgry f61, p. 483]. It has gained popularity only in recent
years and has been applied to a variety of other discrete gystems and phenomena in-
cluding solid and liquid crystals, dislocations and defects, composite materials and
biological systems.

The number of publications on continuum modeling of repetitive lattice structures
has been steadily increasing. Therefore, there is a need to broaden awareness among
practicing engineers and research workers about the recent developments in variodus
aspects of countinuum modeling for large lattice structures. The present paper is a
modest attempt to fill this void. Specifically, the objJectives of this paper are:

1) to assess the effectiveness of the cufrently used approdches for continuum
modeling; -

2) to present a simple aud rational approach for development of continuum models
for large repetitive lattice structures; and

3) to identify the future directions of‘research which have high potential for
realizing the advantages of continuum modeling. ‘

The scope of the present study includes thermoelastic stress analysis, buckling,
free vibration, and geometrically nonlinear problems of large lattice structures.
“Beamlike and platelike repetitive lattices with pin and rigid jolnts are considered.

Continuum modeling of lattices with flexible joints will also be discussed.
(™Y .



2. ADVANTAGES OF CONTINUUM MODELING ) . .

Before an assessment, is made of the different approaches fér developing continuum
models, the following three advantages of using the continuum modeling approach for
analyzing repetitive lattice structures are ldentified. First, it offers a practical
and efficlent approach for analyzing large latti;e structures. This is particularly
true for beamlike and platelike lattices, wherein a dimensionality reduction can re-
sult in a substantial reduction in the number of degrees of freedom. Second, it
provides a simple means of comparing structural, thermal, and dynamic characteristics
of lattices with different configurations and aséessing the sensitivity of their
responses to variations in material and geometric properties; and third, it provides
an effective tool for parameter/system identification and feedbasek eontrol system
design of lattice structures.

3. DEFINITION AND KEY ELEMENTS OF A SUBSTITUTE CONTINUUM HODEL

A number of definitions have been given for the slibstitute continuum model. Here-
in an effective continuum model is defined to be a continvum which has the following
characteristics: '

1) the same amount of thermoelastic strain and kinetic emergies are stored in it
as those of the original lattice structure when both are deformed identically;

2) the tetperature distribution, loading and boundary conditions of the continuum
simulate. those of the original lattice structure being modeled;

3) for beamlike and platelike lattices the continuum models are one~dimensional
beams and two-dimensional plates, respeetively (see Fig. 1);

4) 1local deformations are accounted for; and )

5) lattices with pin joints are modeled as classical contimya, and lattices with
rigid (and/or flexible) joints are generally modeled as micropoiar continua.

The last two characteristics are perhaps the most important in terms of recent
developments and are discussed subsequently.

v

B.i Local Deformations

The local deformations of two axially loaded planar trusses are shown in Fig. 2.
The first truss has double lacing and a single-bay repeating cell. The second truss
has sipgle lacing and a double bay repeating.cell. The cord members of the first
truss remain straight as shown on the top sketch. On the other hand, the actual de-
formation of the single-laced truss has the zig-zag pattern shown on the top right
sketch. On the average, however, the cord members reméin straight. Early continuum
models averaged these deformations, théreby substantially overestimating the axial
stiffness. Recent continuum models, for lattices with more than one bay in tﬁeir

repeating cells, do account for the local deformations [37, 38 and 42].

3.2 Ordinary Versus Micropolar Continua

A contrast between the ordinary and micropolar continua is made in Fig. 3. For an
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Truss member (pinjoints) | Beam member (riid joints)
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Figure 3 — Deformation patterns for pin-jointed and rigid-jointed
one-dimensional members

axially loaded‘pin-jointedvtruss member the transverse motion 1s completely charact-
erized by the joint displacements. The member rotation ¢ is related to the joint
displacements vy and wj. Therefore, the appropriate continuumvto use in modeling
pin-jointed trusses Is the ordinary continuum for which the displacement field com~
.plecely characterizes the motion of the structure. ‘

On the other hand, for a rigid-jointed member, the transverse motion is character-

ized by both the joint displacements wis wj as well as the joint rotations 6,, 8

’
which are independent degrees of freedom. Therefore, the approptiate concin:um {o
use in modeling rigid—jointéd flexural members is one whose motion is characterized
by both a displacement field and an independent rotacion field (referred to as micro-
rotation field). The micropolar continuum is such a continuum. v ’

[

3.3 Characterization of the Substitute Continuum Model

The substitute continuum model, is characterized by the thermoelastic constitutive
relations and density parameters which are determined in terms of the geometric and
material properties of the original lattice structure. The thermoelastic constitutive
relations and density parameters of the continuum can then be used to determine: a)
the thermoelastic strain and kinetic enérgies; b) the governing differential equa~
tions; and whenever appropriate c)'quivalent discrete finite element models.

3.4 Comments on Continunm Models

The following three comments regarding continuum models seen to be in order:

1. For some lattices the substitute contiguum models may not have much resem-
blance to the -continuum theories commonly used in engineering practice. Aldo, for
complicated lattices the continuum models may be fairly complicated, and thepefore,
not useful for practical applications.



2. The accuracy of the predictions of the continuum approximation increases wich
¢he Increase in the number of repeating cells (or modules) constituting the criginnl
lattice structure.

3. The response of the substitute continuum model (which simulztes that of the
original latiice structure) can be generated through: a) exact (or analycis) soluifon
of the governing differential equatiems, or b) application of a discretization tech-

nique such as Rayleigh~Ritz technique or the finite element method.

4. DEVELOPMERT OF SUBSTITUTE CONTINUUM MODE:S POR STRESS ANAL:SIS AND FREE -
VIBRATION PROBI.EMS

A number of approaches have been proposed fer developing continuum models, and for
determining the appropriate constitutive relations and densitv parameters, These
approaches include:

a) relating the force or deformation characteristics (or both) of a small segment
of the lattice to these of a small Ségment of the continuum [2G, 21, 22, 25, 26, 27,

28, 29 and S3]; .

b} using the discrete fisld mathod to obtain the goveruing difference squations
of the lgtrice and elither selving them directiy or converting them to approximate
differential aquatlons [16, 30 and 51];
¢) applying homogenlzation techniques bas2d on using multiple~scale asymptotie
expansions (see [7, 8, 11 and 32]); aad

d) using energy equivalence concepts. The potential and kinetle energles of a
cypical {repe~ting) cell of the lattice are equated to thosé of the continuum, after
expanding the nodal displacements of the lattice in a Taylor serles.

The latter approach has been applied to a number of beamlike and platelike lattices.
Computerized syrbolic manipulation wes used to generate analvtic expressions for the
seiffness and deuslty parameters of the continuum (see [37, 38, 39, 41 and 42)).
More recently, an equivalent approach was proposed for generating the propertiese of
simplified one- and two-dimensional contrinuum modeisyof beamlike and platelike lat-  *
tice rrusses with pin ioints, which does not require the use of computerized symbolic
manipulation {see [A6]). Rather, numerical values of the stiffness and mass coef-
fictents can be obtained by using a small Fortran program on an IBM PC (see f491y.
A modified version of this apnricach is described subsequent)yr.

The three key elements of rle foregolng approach ave:

1) intraduction of kinematic and Lempericure assumpiions o veduce the dimensione

ality of the continuum;

2

23 expansi-n of each of the nnasl digplacements, strain components, and teapera-

ture in a Taylor series; and

3y peneration of four tronsformarlov wmazrices which relate nodal dieplacoments,

awial styvains Mrﬁ tempersrures of Iudivids wowbhers of the repeating celi to the

disylacements, Beraln and termporaluare parsmeters of the contimmm,



The procedure consists of the three major phases which .are discussed subsequently

for the case of lattices with pin joints.

Phase 1 ~ Generation of the Thermoelastic Stiffnesses of a Repeating Cell
1) A repeating cell (or module) is isolated from the lattice grid. The axi&i
strain, temperature, and consistent mass matrix of a typical member, k, of the re-

peating cell are given by C(k), T(k) and [m(k)], respectively. .-
(k)

2) The axial strain € of member k 1s expressed in terms of the vector of strain

components. in. the coordinate directions through the following matrix equation:

() o [rM) ey ) (1)
where
)

‘11

22

ey . g 33 o))
Y12

13

\T23 )

[R(k)] = [22 m2 n? tm  &n mn](k) (3)

Ell' E22' E33 are the axial -strains in the coordinate directions; 712, 113, Y23 gre
the shearing strains; and (£, m, n) are the direction cosines of the member.

For simplicity, in the present study the strain state is assumed to be uniform
within each repeating cell. Variation of the strain state within the repeating cell
can be accounted for by expanding {E)(k) in a Taylor series about the center of the
repeating cell. The number of terms in the Taylor series expansion is equal to the
number of independent deformation modes of the repeating cell. '

3) The stiffness matrix and the thermal load vector of the repcating cell are

generated using the following equations:

Kl= X (an® w0 rM] ' RO
members

= X (@manp® [rOIE @ (5)
wembers

where E, &: L, @ are the elastic modulus, cross-sectional area, length and coeffici-
ent of thetﬁa] expansion of member k; and superscript t denotes transposition.

The thermoelastic stiffnesses of the equivalent three-dimensional classical con-
tinuum are obtained by dividing the right-hand sides of Eqs. 4 and 5 by the volume
of the repeating cell. Note that for members shared by n repeating cells, their
cross sectional areas in Fqs. 4 and 5 are divided by n.



