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ABSTRACT.

A pseudo-tree is a partially ordered set such that the set of all
predecessors of any element is linearly ordered. Clearly, each linearly
ordered set is a pseudo-tree and pseudo-trees are, in general, much more
complicated objects than chains. The aim of this paper is to develop a
theory of natural order topologies on pseudo-trees which extends the
theories of linearly ordered topological spaces and GO-spaces. Moreover,
applications are given for some classes of continua which admit a natural

ordering.
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1.INTRODUCTION

The main purpose of this paper is to build up a theory of natural
topologies on pseudo-trees, i.e., partially ordered sets which fulfil the
following acyclicity condition: for each point the set of all its
predecessors is linearly ordered. The developed theory appears to be a
natural extension of the theories of linearly ordered topological spaces
and GO-spaces (see Remark 6.12). It contains a part of the research due
to T.B.Muenzenberger, R.E.Smithson and L.E.Ward (see Remark 5.16). The
obtained results are used to solve problems of J. van Mill, B.J.Pearson
and J.J.Charatonik.

Chapter 2 contains all the preliminary definitions and facts. The
theory of topologies on pseudo-trees is developed in Chapters 3-7. It
turns out that, dealing with pseudo-trees, there are two immediate ways
to generalize the construction of the natural topology of a linearly
ordered set. They lead to the interval topology TJ and order topology
Ts' Unfortunately, TJ and Ts do not behave well (even in the simplest
cases they need not be Hausdorff, etc.). However, all the pathologies are
omitted when one concernes the topology of a type T; which makes
pseudo-trees being monotonically normal, and compact pseudo-trees being
regular supercompact. We show that the restriction to pseudo-trees in the
class of all partially ordered sets is essential (Example 3.3). We do not
state the corollaries for trees (which are the most important class of
pseudo-trees), this can be easily done by the reader, however, see also
Remark 6.17.

Chapters 8-10 are of a different nature than the predeceding part of

the paper. They deal with three classes of uniquely arcwise connected
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JACEK NIKIEL

continua (dendrons, dendroids and hyperspaces of all subcontinua of

hereditarily indecomposable continua). Since each uniquely arcwise
connected space admits a natural acyclic order structure, we are able to
apply topological properties of pseudo-trees to get some information on
continua considered in the last three chapters.

Now, recall a general question of M.A.Maurice (see [53, p. 289]):

which theorems known for linearly ordered topological spaces can be

proved for topological spaces whose topology is less directly tied to

linear orderings?



2. PRELIMINARIES

We include a subject index (which contains also all abbreviations) at
the end of the paper. If a confusion is possible we will equip our
abbreviations with additional subscripts (for example we will sometimes
write rx(x), rs(x). r(x’s)(x) instead of r(x); etc.).

We will often write iff to mean "if and only if".

A. Set theory

An ordinal number is identified with the set of all its predecessors.
A cardinal number is the first ordinal of a given cardinality.
Nonnegative integers are treated as ordinals. Recall that 0 is a limit
ordinal. By w and W, we will denote the first infinite and the first
uncountable ordinals, respectively. If « is a cardinal number, then ot
denotes the first cardinal greater than a«. |Al denotes the cardinality
of a set A.

By R we denote the set of real numbers. If we write a < b, for some
a,b € R, then we always mean the standard ordering of reals. If a,b € R,
then [a,b] denotes the interval with end-points a,b;

[a,b[ = [a,b] - (b}, etc.

Let A be a family of subsets of a set X. We will say that A is binary
[58, p. 7] provided for each subfamily B c A such that B = § there
are U,V € B such that U n V = @. Moreover, we will say that A is
cross—free (61, p. 60] if for any U,V € A either UcV, or V c U, or
UnV =g, or UuV=YX. By v.A (resp. A.A) we will denote the family
of all unions (resp. intersections) of finitely many members of A.
Observe that v.A.A = A.v.A 1is the least family of subsets of X which
contains A and is closed with respect to taking finite unions and

intersections.
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B. Ordered sets

We will denote partially ordered sets by (X,s). "Isomorphism" will
always mean "isomorphism of partially ordered sets". We will write
-~ x <y to mean that x is not less than y, and x 1y to mean that
~x £y and -~ x 2 Yy.

Let (X,s) be a partially ordered set, A,B,Y c X, B # @.

(Y,<) will always denote the set Y together with its partial ordering
induced from (X,<). Moreover, we will write:

A <B if a <b for any a € A, b € B; and

A <CB if a < b for any a € A, b € B.
We also will use the following conventions: @ < B; # < x; and - x < @,
for each x € X. Let: M(A) = {x € X : A <£x}), m(A) = {x € X : A < x},
L(B) = {x € X : x <B} and 1(B) = {x € X : x < B}. We will always write
M(x) instead of M({x}), etc.

By inf(Y) (resp. sup(Y)) we will denote the greatest (resp. the
least) element ¢ of (X,<) such that c¢c <Y (resp. c 2 Y), provided
such an element c¢ exists. In particular, sup(@#) denotes the least
element of (X,<).

We say that Y is a chain of (X,s) provided (Y,<) 1is a linearly
ordered set. Maximal chains (with respect to the inclusion) are called
branches. We say that Y is an anti-chain of (X,s) if x 1y for any
x,y €Y, x #y.

(X,s) 1is said to be a semi-lattice provided inf({x,y}) exists in
(X,<) for any x,y € X. If inf(C) exists for each nonempty C c X,

then we say that (X,<) 1is a complete semi-lattice.

Bl. Linearly ordered sets

We will often write "chain" instead of "linearly ordered set".
Let (X,s) be a chain and Y c X. We say that:
(X,s) contains a jump if there are x,y € X such that L(x) = 1(y);
(X,<) contains a gap if there exist nonempty A,B c X such that

A <B, AuB =X, A has no greatest element and B has no least element;
a set Y is dense in (X,5) provided, for any x,y € X, if x < y,

then there exists a point t € Y such that x <t < y.
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Bz. Pseudo-trees

We say that a partially ordered set (X,<) is a pseudo-tree [46,

Definition 6, p. 83] if the following acyclicity condition holds:

if x,y,z € X, x <z and y < z, then
either x =y, or x <y, or x > y.
Saying equivalently, (X,s) 1is a pseudo-tree iff L(x) 1is a chain in
(X,s), for each x € X. Clearly, each linearly ordered set is a
pseudo-tree.
Let (X,s) be a pseudo-tree and Y c X. We say that:
Y is a semi-branch of (X,<) if Y is a chain of (X,s) and
L(y) ¢ Y, for each y € Y (hence @ is a semi-branch);
Y is convex in (X,s) provided M(L(x) n L(y)) n (L(x) vl(y)) cY,
for any x,y € Y (see also Remark 5.14, below).

Let D be a semi-branch of (X,<) and set

AD = (A : A is a maximal family of branches of (X,<) such that
CnC’” =D for any C,C’ € A, C # C’}.
Note that |Al = |A’] for any A,A’ € AD. Hence we can define a cardinal

number r’(D) as |Al, for any A € A We define also r(D) as

D"
follows: r(D) = r’(D) provided either D =@ or D = {(d} for some
d € X, and r(D) = r’(D) + 1 otherwise (see also remarks in the begining
of Chapter 8). If x € X we will often write r(x) instead of r(L(x)).
Let (X,<) and (Y,<’') be pseudo-trees, (J,<") a chain, and
f: XY and j: X » J be functions. We will say that:
f: (X,s) » (Y,<’) 1is semi-convex if f(L(x)) = L(f(x)) for each
x € X;

“1(B) is

f: (X,s) » (Y,s’) 1is convex provided f is semi-convex and f
convex in (X,<) for each convex subset B of (Y,<’');

j embeds (X,s) into (J,s") if f(x) < f(y) for any x,y € X
such that x < y (see also [24, p. 15]);

j (J,s")-folds (X,<) provided j 1is a semi-convex map which embeds
(X,<) into (J,5");

j strongly (J,s")-folds (X,<) if j (J,<")-folds (X,<) and
j(C) = J for each branch C of (X,x5).

Let (X,s) be a pseudo-tree, a an ordinal number and
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Q = (Xﬁ : B < a) a (transfinite) sequence of subsets of X. We will say
that Q 1is a description of (X,s) if the following conditions hold:
(i) if either B =0 or B =73 + 1, then XB = U PB' where PB
is a maximal family of pairwise disjoint branches of a

sub-pseudo-tree (X - U {X6 T S5 < BY , 5);

(ii) if B # 0 and B is a limit ordinal, then x belongs to XB

iff xﬁEU{Xy:y<B} and 1(x)CU{Xy:7<B}iand

(iii)X=U{XB:f3<a}.
Clearly, each pseudo-tree admits many descriptions.
BS. Trees

A pseudo-tree (X,S) is said to be a tree if a chain (L(x),s) is a
well-ordered set, for each x € X. The definitions of a length of a tree,
an Aronszajn tree and a Souslin tree can be found for example in [46] and
[24]. Recall only that a tree (X,s) is said to be Q-embeddable (resp.
R-embeddable) provided that there exists a function which embeds (X,=s)
into the set of all rational numbers (resp. real numbers). Recall also
that Q-embeddable trees do exist (see for example [46], it is easy to
check that the Aronszajn tree constructed there in the proof of Theorem 2

on p. 330-332 is Q-embeddable).

C. Topology

Topological spaces will be often denoted by (X,T), where X is a set
and T a family of all open subsets of X. However, we will often use the
following convention: if (X,T) 1is a topological space and Y c X, then
(Y,T) denotes the topological space Y whose topology is induced from
(X,T). This will never lead to a confusion.

We will say that a topological space X is:

supercompact if X admits a subbasis S for closed sets such that S is a
binary family (clearly, each supercompact space is compact - but not
conversely - see for example [58]);

regular supercompact [58, p. 43-44] provided X admits a closed

subbasis S such that S is a binary family and Vv.A.S consists of closed

domains (i.e., cl(int(U)) = U for each U € S);



TOPOLOGIES ON PSEUDO-TREES

monotonically normal [33, p. 481-482]) if X is a T,-space and there

1

exists an operator H which assignes to each pair (p,C), where C c X is
closed and p € X - C, an open set H(p,C) ¢ X such that: (1)
p € H(p,C) ¢ X -C ; (2) if D c X 1is closed and p ¢ C > D, then
H(p,C) c H(p,D) ; and (3) if p,q € X and p # g, then
H(p,{q}) n H(q,{p}) = &;

rim—-finite (resp. rim-compact) if each point of X has an arbitrarily
small open neighbourhood with the finite (resp. compact) boundary;

semi—-locally connected provided each point of X admits an arbitrarily

small open neighbourhood the complement of which has finitely many
components;

zero—dimensional if X admits a basis consisting of closed-open sets;

a continuum if X is a compact connected Hausdorff space;

a Suslinian curve provided X is a continuum such that each family of

pairwise disjoint nondegenerate subcontinua of X is countable.

A closure, an interior and a boundary of a set A will be denoted by
cl(A), int(A) and bd(A), respectively. We will also use standard
symbols Ls, Li and Lim to denote topological limits of a sequence of
sets.

If X is a metric space, d a distance function on X, A ¢ X and € is
a positive real number, then diam(A) denotes the diameter of A, and
B(A,e) = {x € X : d(A,x) < €} denotes the open ball of the radius € and
with the center A.

By C(X) we will denote the hyperspace of all subcontinua of a
continuum X. C(X) will always be equipped with the Vietoris topology -
see e.g. [72].

cl

. Topologies on partially ordered sets
Let X be a set, T a topology on X and < a partial ordering on X. We

will say that < is a continuous ordering of (X,T) if the set

{(x,y) € X x X : x £y} 1is closed in the space (X,T) x (X,T).
Let (X,s) be a chain. The family
S = {L(x) : x € X} u (M(x) : x € X} is a subbasis for closed sets of

the order topology T on X. The space (X,s,T) 1is called a linearly
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ordered topological space (LOTS). The basic information on linearly

ordered topological spaces can be found in [27] and [53]. Recall only
that (X,T) 1is a connected space iff (X,s) has no jumps and gaps, and
(X,T) is compact iff (X,s) has no gaps and contains the least and
greatest elements.

Let T' be a topology on the chain (¥,s). We will say that (X,s,T’)

is a generalized ordered space (GO-space; see e.g. [52], [53]) provided

T ¢ T’ and there exists a basis S’ for the space (X,T") such that S’
consists of sets of the form either m(x) n 1(y), or m(x) n L(y), or

M(x) n 1(y), or M(x) n L(y), x,y € X.

C2. Arcs, arcwise connected spaces

We say that a topological space (X,T) 1is an arc provided it is a
continuum with exactly two non-cut points. Then there exists a linear
ordering < on X such that (X,s,T) is a LOTS; moreover, if (X,=) is a
chain, T’ denotes the order topology of (X,s) and the space (X,T’) is
compact connected, then (X,T’) is an arc [35,Theorem 2-27, p. 54].

We say that a topological space X is uniquely arcwise connected if,

for any x,y € X, x # y, there exists exactly one arc in X the end-points
of which are x,y. This arc will be denoted by ([x,y]. If, for any
distinct points x,y € X, the arc [x,y] 1is separable, then X is called

an I-connected space.

A uniquely arcwise connected space X is said to be a nested space
provided, for each family A of arcs of X such that A is linearly ordered

by inclusion, the set U A is contained in some arc.

C3. Dendritic spaces, dendrons

We will say that a topological space X is a dendritic space provided X

is connected and for any x,y € X, x # y, there exists =z € X such that
x and y lie 1in distinct components of X - {z}. If X is a dendritic
space, x € X and U is a component of X - {x}, then U is an open set and
bd(U) = {x}, [83, Theorem 4, p. 296]. Hence each dendritic space is
Hausdorff. Recall that there exist dendritic spaces which are either not

locally connected or not arcwise connected (see Example 5.15 (ii)).
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If X is a dendritic space and x,y are distinct points of X, then an
interval [x,y] of X with end-points x,y is defined to be the set
{x,y} v {z € X : x,y lies in distinct components of X - {z}}. The
introduced notation will never lead to a confusion because if X is a
uniquely arcwise connected dendritic space, x,y € X, x # y, then the arc
of X with end-points x,y is the same as the interval [x,y], [71, Theorem
3, p. 109].

Compact dendritic spaces are called dendrons. Recall that each
dendrite (i.e., a metrizable, acyclic and locally connected continuum) is
a dendron, and each metrizable dendron is a dendrite. Moreover, there

exists a universal dendrite in the plane R2, [45, Example (v), p. 300].



3.

ORDER TOPOLOGIES ON PSEUDO-TREES

Let (X,s) be a partially ordered set and set S1 = {M(x) : x € X},
82 = (X - m(x) : x € X} and Ss = S1 u S2. Let TS denote the topology
on X for which SS is a closed subbasis.

3.1. PROPOSITION.

Tl—topology on X.

3.2. PROPOSITION.

If (X,s) 1is a partially ordered set then TS is

If C is a branch of a pseudo-tree (X,<), then the

topology of C induced from the space (X’Ts) is precisely the usual

order topology of C.

Proof. Indeed, if

x ¢ C, then M(x) nC =@ and C c X - m(x).

3.3, EXAMPLE. The assumption that (X,s) 1is a pseudo-tree is

essential in Proposition 3.2. In fact, let X = {(x,y) € R2

x2 + y2 = 1} and let

(x,y) s (u,v) provided either x = 0 and

y =-1, or u=0 and v =1, or xu > 0 and y < v. Observe that

(X'Ts) is a Hausdorff space. Let C = {(x,y) € X : x < 0}. Then C is a

branch of (X,<) and C equipped with the topology induced from (X,Ts)

is homeomorphic to [0,1[ u {2}.

3.4. THEOREM. Let

(X, )

be a pseudo-tree and x,y be distinct points

of X. Then there are no disjoint open neighbourhoods of x and y in

(X'Ts) iff at least one of the following conditions hold:

(a) 1(x) I(y) # 8

(b) 1(x) = L(y) (resp.

such that y € C

and

sup(1l(x)) does not exist;

1(y) = L(x)) and there a branch C of (X,x)

(resp. x € C) and y = inf(C n m(y)) (resp.

X = inf(C n m(x)));

(¢) x,y are minimal elements of (X,<) and there exists a branch C

without a least element;

(d) there exist distinct points x,,x

1(x) = 1(y) = 1(xy) =

11Xgre € X such that

10

a
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(e) there exist distinct points X 1Xgseen € X such that either

L(y) = 1(x) = l(xl) = ... or L(x) = 1(y) = l(xl) =

Proof. Suppose that U,V are disjoint open subsets of (X,T) such
that x € U, y € V. We may assume that
U =m(a) nn {X - M(ai) 1 <1 < m} and

V =m(b) nn {X - M(bi) : 1 <1i<n}, for some

a,a,,...,a ,b,b.,...,b € X such that a < x, a < a,, either x < a, or
1 m 1 n i i
X L a;, a; 4 aj for i # j, b<y, b« bi' either y < bi or y 4 bi’
b, + b, for i # j.
1 J

If (a) holds, then a,b € 1(x) = 1(y) and there is ¢ € X such that
a<c<x and b < c < y. Hence c € U nV - a contradiction. Suppose

that (b) holds. Let w = min{z : z € C n m(y) and either =z = a; or

z = bi’ for some i}. Since inf(C nm(y)) = y, the set
W={z :y <z <w} is nonempty. Observe that W c U n V. If (c) holds,

then @ # 1(t) cUnV, where t = min{z : z € C and either 1z = ay or

z = bi’ for some i}. Suppose that either (d) or (e) holds. Note that

{xl,xz,...} c m(a) n m(b). Moreover, {xl,xz,...} c X - M(z) |if

z ¢ {xl.xz,...), and {xl,x2,...) - {xn) c X - M(z) if =z = X Hence
infinitely many points of {xl,xz,...) are contained in UnV, a
contradiction.

Now, assume that x,y have no disjoint neighbourhoods in (X'Ts)'

Case 1: x > y. Hence there is no z € X such that x > z > y, i.e.,
1(x) = L(y). Suppose that (b) and (e) do not hold. Let
A=({z : z = inf(C nm(y)) for some branch C of (X,<) such that
y € C}. Hence y ¢ A and m(y) = U {M(z) : z € A}. Moreover, A is finite
- because A = {z € X : 1(x) = 1(z)}. Set U = m(y) and
V=nN({X-Mz): z€A}. Then U,V are disjoint neighbourhoods of x,y,
respectively; a contradiction.

Case 2: x 1 y. Hence there is no z € X such that either
1(x) nl(y) <z < x or 1(x) nl(y) <z <y, i.e., 1(x) = 1(y). Suppose
that (a)-(d) do not hold. Since (a) does not hold, either 1(x) = @ or

1(x) = L(z) for some z € X. Since (d) does not hold, the set

B {t : 1(x) = 1(t)} 1is finite. Moreover, if 1(x) = @ then

X U {M(t) : t € B}, and if 1(x) = L(z) then m(z) = U {M(t) : t € B}



