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Preface

This volume groups together the papers accepted for the Seventh International
Workshop on Multi-Agent-Based Simulation (MABS 2006), co-located with the
Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), which occurred in Hakodate, Japan on May 8, 2006.

MABS 2006 was the seventh workshop of a series that began at ICMAS 1998
(Paris, France), and continued successively with ICMAS 2000 (Boston, USA),
AAMAS 2002 (Bologna, Italia), AAMAS 2003 (Melbourne, Australia), AAMAS
2004 (New York, USA) and AAMAS 2005 (Utrecht, The Netherlands). The
revised version of the papers of these workshops appeared in Springer’s Lec-
ture Notes in Artificial Intelligence, in volumes 1534, 1979, 2581, 2927, 3415
and 3891. All information on the MABS Workshop Series can be found at
http://www.pcs.usp.br/~mabs.

Multi-agent-based simulation is an inter-disciplinary area which brings to-
gether researchers active within the agent-based social simulation (ABSS) com-
munity and the multi-agent systems (MAS) community. The scientific focus of
MABS lies in the confluence of the ABSS and MAS communities, with a strong
empirical/applicational vein, and its emphasis is on (a) exploring agent-based
simulation as a principled way of undertaking scientific research in the social
sciences and (b) using social theories as an inspiration to new frameworks and
developments in multi-agent systems.

To promote this cross-influence, MABS provides a forum for social scientists,
agent researchers and developers, and simulation researchers to (a) assess the
current state of the art in the modeling and simulation of ABSS and MAS; (b)
identify where existing approaches can be successfully applied; (c) learn about
new approaches; and (d) explore future research challenges.

MABS 2006 attracted a total of 25 submissions from 11 different countries
(Brazil, France, Italy, Japan, Pakistan, Portugal, South Korea, Spain, Sweden,
UK, USA). Every paper was reviewed by three anonymous referees, and in the
end 12 papers were accepted for long presentation and 3 papers were accepted
for short presentation. Every paper was later reviewed again by a Program Com-
mittee member for this volume.

We are very grateful to every author who submitted a paper, as well as to all
the members of the Program Committee and the additional reviewers for their
hard work. The high quality of the papers included in this volume would not be
possible without their participation and diligence. We would also like to thank
Takao Terano, who gave a very interesting invited talk.

Thanks are also due to Jiming Liu (AAMAS 2006 Workshop Chair), Hideyuki
Nakashima and Michael Wellman (AAMAS 2006 General Chairs), and Ei-ichi
Osawa (AAMAS 2006 Local Organization Chair). Finally, we would like to thank



VI Preface

Springer staff, especially Alfred Hofmann and Christine Giinther for their sup-
port of MABS, and their help in the making of this book.

As the social simulation community grows and spreads its multi-disciplinary
influence over several scientific areas, the related conferences also get more promi-
nence, autonomy and importance. To illustrate this point, consider the new
WCSS (First World Congress on Social Simulation), the recent ESSA (Euro-
pean Association on Social Simulation) conference series, the already established
NAACSOS (North American Association for Computational Social and Organi-
zation Sciences) conference series, or the PAAA (Pacific Asian Association for
Agent-Based Approach in Social Systems Sciences) workshop series. In this new
context, we still find that MABS has a place and a relevant role to play, serving
as an interface between the community of social simulation and that of computer
science, especially multi-agent systems.

April 2007 Luis Antunes
Keiki Takadama
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Exploring the Vast Parameter Space
of Multi-Agent Based Simulation

Takao Terano

Department of Computational Intelligence and Systems Sciences,
Tokyo Institute of Technology
4259 Nagatsuda-Cho, Midori-ku, Yokohama 226-8502, Japan
terano@dis.titech.ac.jp

Abstract. This paper addresses the problem regarding the parameter
exploration of Multi-Agent Based Simulation for social systems. We focus on
the principles of Inverse Simulation and Genetics-Based Validation. In
conventional artificial society models, the simulation is executed
straightforwardly: Initially, many micro-level parameters and initial conditions
are set, then, the simulation steps are executed, and finally the macro-level
results are observed. Unlike this, Inverse Simulation executes these steps in the
reverse order: set a macro-level objective function, evolve the worlds to fit to
the objectives, then observe the micro-level agent characteristics. Another
unique point of our approach is that, using Genetic Algorithms with the
functionalities of multi-modal and multi-objective function optimization, we
are able to validate the sensitivity of the solutions. This means that, from the
same initial conditions and the same objective function, we can evolve different
results, which we often observe in real world phenomena. This is the principle
of Genetics-Based Validation.

Keywords: Multi-Agent Based Modeling, Social Systems, Verification and
Validation, Parameter Exploration, Genetic Algorithms.

1 Introduction

As Alan Kay stated, the best way to predict the future is to invent it. When we use
Multi-agent based simulation (MABS) for social systems, we always invent a new
world, or a new bird-view-like point, because we are able to design the simulation
world as we would like to. Therefore, when we use MABS, we are predicting some
future. After several decades of the Allan Kay’s statements, we have a new gear for
predicting the future: MABS is a new modeling paradigm [1],[2].

MABS focuses from global phenomena to individuals in the model and tries to
observe how individuals with individual characteristics or “agents” will behave as a
group. The strength of MABS is that it stands between the case studies and
mathematical models. It enables us to validate social theories by executing programs,
along with description of the subject and strict theoretical development.

In MABS, behaviors and statuses of individual agents are coded into prog-
rams by researchers. They also implement information and analytical systems in the

L. Antunes and K. Takadama (Eds.): MABS 2006, LNAI 4442, pp. 1-14, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 T. Terano

environment, so the model itself may be very simple. Even when the number or
variety of agents increases, the complexity of simulation descriptions itself will not
increase very much [13], [14]. Axelrod [1] has emphasizes that the goal of agent-
based modeling is to enrich our understanding of fundamental processes that may
appear in a variety of applications. This requires adhering to the KISS principle,
which stands for the army slogan “keep it simple, stupid.”

Running an agent-based model is an easy task, however, the analysis is not [7].
Even for a simple simulator with the KISS principle, we must cope with vast
parameter space of the model. This paper discusses the problem regarding the
parameter exploration of Agent-Based Simulation for social systems.

2 Coping with the Huge Parameter Spaces

There are no Newton’s Laws, or the first principles in social systems. This makes
MABS approaches both easy and difficult. The easy face is that we are able to build
models as we like, on the other hand, the difficult face is that the models are hardly
grounded in any rigorous grounding theories. For example, the application of finance
engineering is one of good candidates of MABS approaches. They seem to follow the
first principles, however, it is not true. The assumptions of finance engineering often
come from the principles of statistical physics, one of the first principles of physics.
However, the real data and real phenomena sometimes break the assumptions. This
means that the assumptions about social phenomena are not based on the first
principles.

The real phenomena in our society and social systems are only collections of
instances. Therefore, using social simulation techniques, we are able to generate so
many instances of simulation results through MABS. This is the very merit of our
MABS approach.

However, even simple models with ten step decisions with ten alternatives in every
step have 10**10 parameter spaces. This means that it would take over 10,000 days to
complete them, if we could search 10 spaces per second. We must compute so many
cases. To overcome the problem, one solution of the issue is to follow the KISS
principle. Simple convincing models are welcome. However, the simpler the model,
more explanatory interpretation of the result has to be, in order to avoid easy
explanation such as “We did it and we got it.” Actually, several extreme explanations
were given to the models discussed in Axelrod or Epstein. When the model is simple,
the result seems to be obvious, and the harder we try to understand phenomena, the
more complex the model becomes against the KISS principle.

To convince the results of MABS, we are required (i) to rigorously validate the
models and simulators, (ii) to examine background social and organizational system
theories, and (iii) to overcome the vast of parameters of both agent behaviors and
models. Also, (iv) we need multiple good results to design and analyze social
complex task domains. Therefore, as another solution, we propose a new method,
which employs Generate and Test techniques in the simulation process. This follows
the principles of Inverse Simulation and Genetics-Based Validation.
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3 Principles of Inverse Simulation

In conventional MABS models, the simulation processes are executed
straightforwardly: Initially, many micro-level parameters and initial conditions are
set, then, the simulation steps are executed, and finally the macro-level results are
observed. Unlike in conventional simulation models, in the Inverse simulation, we
execute these steps in the reverse order: set a macro-level objective function, evolve
the worlds to fit to the objectives, then observe the micro-level agent characteristics.
Thus, we solve very large inverse problems. The basic principles are shown in
Figure 1. The essential point is that we force to get desired results specified by the
macro-level objective functions, then analyze the micro-level structures of the results.

They have thought such brute force approach is infeasible, so far, however, using
recent competing genetic algorithms (GAs) [4] has made it possible to get multiple
solutions in reasonable times. In our simulators in the following sections, we have
employed GAs with tabu-search techniques in Operations Research literatures[5],[6].
The method is able to optimize multi-modal functions [3]. This means that, from the
same initial conditions and the same objective function, we can evolve different
results, which we often observe in real world phenomena.

Forward Simulation Inverse Simulation Method

’ Design the Model I |Design a Model with Many Params.|
I
i !

r Set Various Parameters ] | Set a Global Objective Fnc. |

| |

| Execute Simulation I Execute Simulation to Optimize it J

| |

| Evaluate Results | I Evaluate Initial Parameters |

— 1 =

Fig. 1. Basic Cycles of Agent-Based Simulation

The agents, their behaviors, and the world are controlled by many parameters. In
our settings, genotypes of GAs are corresponding to initial parameters of agents and
the initial world we are considering. Phenotypes of GAs to be evaluated are
simulation results, which can be measured macro-level evaluation functions. We will
carry out so many simulation cycles to get the results. For example. To get one result,
we might need several hundred simulation steps per simulation. To evaluate one
generation, we might need several hundred populations in parallel, and to converge
the macro-level objective functions, also we need several hundred GA generations.
The outline is shown in Figure 2.
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Fig. 2. Inverse Simulation

To apply Inverse Simulation, we assume that the MABS models have the following
properties:

(i) micro-level rich functionalities of agent behaviors, interactions, and the world;
The requirement is important to leap simple models to be analyzed. If the model
would be simple, the KISS principle would work better to convince the results.

(ii) macro-level clear evaluation measures to be optimized through the simulation
processes;
The requirement is critical to quantitatively evaluate the simulation results. We
usually use macro level measures of a social network, e.g., the centrality, agents’
population distributions, or GINI index of some welfare of the worlds. The
landscape of the objective functions might be very complex in the social
phenomena, e.g., multiple peaks and multiple objectives. So, simple GAs are not
adequate to get the results.

(iii) Fast execution of single simulation run.
The requirement is necessary to compute the simulation efficiently. Inverse
Simulation is computationally high cost. Therefore, the faster the run, the better
the results. We are planning to utilize Grid-based computer systems to apply the
technique.

4 Principles of Genetics-Based Validation

Validation is one of the most critical tasks in MABS approach to convince the results.
In this section, we address a new statistical validation method: Genetics-Based
Validation for the solutions of simulation results. This is a kind of sensitivity analyses
of parameters in the experimental system we target. The principle is summarized as
follows. When Inverse Simulation terminates, using GAs for multiple solutions, if
there were multiple solutions in the targeted MABS model, then every important
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parameter of the model would converge. This means that the objective functions have
their peaks. However, non-essential parameters would have various distributed
values. It is because the variations of non-essential parameters would not contribute to
the values of objective functions. If we would have used conventional GAs, because
of the effects of genetic drifts, the non-essential parameters would converge. This is a
bad situation for our analysis. Competing GAs with the functionalities to cope with
the multiple solutions, they keep diversity of the solutions. We are able to utilize the
variance of the parameters to determine whether specified parameters are essential for
the results of simulations or not.

In Figure 3, we illustrate the situations. we observe some distribution of
simulation results. Initially, simulation results are several values in the sense of the
objective functions values. In the final steps, the objective function values converge
to the same level, however, the distributions of solutions are different according to the
essential and/or non-essential dimensions of parameters. Therefore, applying
statistical techniques, we are able to uncover the shape of the landscapes of the results
measured by the specified objective functions. For example, to apply the principal
component analysis technique, we are able to obtain the distributions of solution
values, or simulation results, which will reveal both essential and non-essential
dimensions of parameters.. We call the method Genetics-Based Validation.

Objective Func. Non-Essential

Value Dimension
* Initial Simulation
* Final Simulation Essential ’

Dimension

Fig. 3. Principles of Genetics-Based Validation

5 How Inverse Simulation and Genetics-Based Validation Work

We have applied the proposed techniques: Inverse Simulation and Genetics-Based
Validation to various kinds of agent-based simulation models. In this section, we will
briefly describe three of them. The first example is a MABS model for social
interaction analysis. The second one is a marketing model of competing firms. The
last one is concerned with a MABS model for financial decision making. The three
models are too complex to understand from the KISS principle, however, we are able
to uncover what have happened in the sense of parameter sensitivity analysis.



