Lecture Notes in

Computer Science

Edited by G. Goos and J Martnianis
5063511

73
Graph" Grammars =
and Their Application

to Computer SCIence and Blology :

Internatnonal Workshop

Edited by e ~ ‘ 53
Volker Claus, Hartmut Ehng and Grzegorz Rozenberg . =

Springer Verlag

. Berlin Heldenberg NewYork



“TPBO/

i 8063511

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

Graph-Grammars
and. Their Application
to Computer Science and Biology

International Workshop
Bad Honnef, October 30 - November 3, 1978

LTI

E8063511

Edited by
Volker Claus, Hartmut Ehrig and Grzegorz Rozenberg

Springer-Verlag
Berlin Heidelberg New York 1979



Editorial Board
P. Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Editors

Volker Claus
Universitiat Dortmund
Lehrstuhl Informatik Il
Postfach 500500
D-4600 Dortmund 50

Hartmut Ehrig

Technische Universitit Berlin
Fachbereich Informatik
Otto-Suhr-Allee 18/20
D-1000 Berlin 10

Grzegorz Rozenberg
Rijksuniversiteit te Leiden
Subfaculteit der Wiskunde
Wassenaarseweg 80
Postbus 9512

2300 RA Leiden

AMS Subject Classifications (1970): 68-00, 68 A30
CR Subiject Classifications (1974): 4.0, 5.0

ISBN 3-540-09525-X Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-09525-X Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies
are made for other than private use, a fee is payable to the publisher, the amount of
the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1979

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210



Preface

One of the older and by now well-established areas of theoretical
computer science is formal language theory. Roughly speaking it deals
with finite specifications of (possibly infinite) sets of strings.
The sets of strings (called string languages) turn out to be useful
for describing quite a variety of phenomena in a number of disciplines
of science such as for example Tinguistics, computer science,enginee-
ring, psychology and biology. However in many applications of formal
language theory applying string languages was considered to be the
first step only, leading to a more general theory where sets of
multidimensional objects,as well as various tranformations of them
could be (finitely) described and studied. Then for example various
problems in data bases, semantics of programming languages, two-
dimensional programming languages, data flow analysis or incremental
compilers call for finite grammatical definitions of sets of graphs,
whereas various problems in picture processing and biological pattern
generation require finite grammatical (or machine) descriptions of
sets of maps. Extending the theory of formal (string) languages to a
theory of formal multidimensional Tanguages is a very natural step
from the mathematical point of view.

Consequently there is a need, justified by both practical and theo-
retical considerations, to built up a theory of languages able to
accomodate structures more general than strings - for example graphs
and maps. Indeed various efforts were made in this direction within
the last 10 years. However it is clear that the theory available
(which we loosely refer to as “graph grammar theory" for historical
reasons) so far does not match the theory of formal string languages.
One obvious reason for this is that from the mathematical point of
view the sets of structures like graphs and maps are intrinsically
more difficult to deal with than the sets of strings. However another
reason may be that in spite of the genuine interest in the topic
there is a Tack of concentrated effort in building up the desired
theory. The "graph grammar community" appears to be quite scattered,
not communicating well with each other and not communicating its
findings very well to the outside world.

It was our perception of this lack of communication that gave us the
idea to organize a meeting of researchers from very diversified areas
of science who are either active workers in the theory of graph
grammars or have a genuine interest in this area. This meeting took
place in Bad Honnef, West Germany,in the fall of 1978 and the present



\"

collection is a direct consequence of this meeting. Not all of the
papers presented at the meeting appear in this volume: some of them
were already committed somewhere else, others did not make it through
the selection process. Also some papers from this volume were not
presented at the above mentioned meeting, but in our opinion their
inclusion gives a better view of the current state of art in graph
grammar theory. Of special character are the two first papers of this
volume together presenting a rather complete survey of graph grammac
theory. They certainly form a good starting point for perusing this
volume.

In our opinion the meeting was successful in the sense that it gertain-
1y broadened our understanding of what the whole area is about, as

well as making most of the participants even more decided than before
to devote their scientific efforts to the further development of this
well motivated and mathematically very challenging area.

This meeting would not have been possible without the generous help
we have received from

Minister fiir Wissenschaft und Forschung des
Landes Nordrhein-Westfalen

Deutsche Forschungsgemeinschaft
Hewlett-Packard, Frankfurt

Mathematischer Beratungs- und Programmier-
dienst, Dortmund.

We are very grateful for that. We are also very indebted to A.Poigne
for helping us so much in the organization of the meeting and editing
this volume. Of course we are most grateful to all the participants
of the meeting for turning it into a week of very useful scientific
and very pleasant personal contacts.

V.Claus,
H.Ehrig,
G.Rozenberg.



Table of contents

Preface

Survey papers
Introduction to the algebraic theory of graph
grammars (a survey)

H.Ehrig

A tutorial and bibliographical survey on graph grammars
M.Nagl

List of contributions

Partially-additive monoids,graph-growing and the
algebraic semantics of recursive calls
M.A.Arbib, E.G.Manes

Rewriting systems as a tool for relational data base design
C.Batini, A.d'Atri

Programmed graph grammars
H.Bunke

Shortest path problems and tree grammars: An algebraic
framework
A.Catalano, St.Gnesi, U.Montanari

Constructing specifications of abstract data types by
replacements
H.D.Ehrich, V.G.Lohberger

Decomposition of graph grammars, productions and derivations
H.Ehrig, B.K.Rosen

Locally star gluing formulas for a class of parallel graph
grammars
H.Ehrig,A.Liedtke

111

70

127

139

155

167

180

192

206



\!

Transformations of data base structures
A.L.Furtado

Explicit versus implicit parallel rewriting on graphs
E.Grotsch, M.Nagl

Two-level graph grammars
W.Hesse

A pumping Temma for context-free graph languages
H.J.Kreowski

Two-dimensional, differential,intercalary plant tissue
growth and parallel graph generating and graph recurrence
system

J.Lick, H.B.Llick

Parallel generation of maps: Developmental systems for
cell layers
A.Lindenmayer , G.Rozenberg

Processes in structures
A.Maggiolo-Schettini, J.Winkowski

Map grammars: cycles and the algebraic approach
K.Nyrup, B.Mayoh

On multilevel-graph grammars
A.017ongren

Graph grammars and operational semantics
P.Padawitz

Complexity of pattern generation by MAP-L systems
A.Paz, Y.Raz

A graph grammar that describes the set of two-dimensional
surface networks
J.L.Pfaltz

224

237

255

270

284

301

317

331

341

350

367

379



Vil

Definition of programming language semantics using
grammars for hierarchical graphs
T.W.Pratt

Determinism in relational systems
V.Rajlich

Analysis of programs by reduction of their structure
M.Rosendahl, K.P.Mankwald

Graphs of processors
W.J.Savitch

Definitional mechanism of conceptual graphs
J.F.Sowa

A graph-like lambda calculus for which Teftmost-outermost
reduction is optimal
J.Staples

Relationsships between graph grammars and the design
and analysis of concurrent software

J.C. Wileden

Cellular graph automata
A.Wu, A.Rosenfeld

List of participants

389

401

409

418

426

440

456

464

476



INTRODUCTION TO THE ALGEBRAIC
THEORY OF GRAPH GRAMMARS
(A SURVEY)

Hartmut Ehrig
Technical University Berlin, FB 20

August 1978

ABSTRACT

The aim of this survey is to motivate and introduce the basic constructions and re-
sults which have been developed in the algebraic theory of graph grammars up to now.
The complete material is illustrated by several examples, especially by applications
to a "very small data base system", where consistent states are represented as graphs,
operation rules and operations as productions and derivations in a qgraph grammar re-
spectively. Further applications to recursively defined functions, record handling,
compiler techniques and development and evolution in Biology are sketched in the in-

troduction. This survey is divided into the following sections:

1. INTRODUCTION

2. GLUING CONSTRUCTIONS FOR GRAPHS

3. SEQUENTIAL GRAPH GRAMMARS

4. CHURCH-ROSSER PROPERTIES, PARALLELISM -
AND CONCURRENCY THEOREMS

5. PROPERTIES OF DERIVATION SEQUENCES

6. PARALLEL GRAPH GRAMMARS

7. LOCALLY STAR GLUING FORMULAS

8. GRAPH LANGUAGES

9. APPENDIUM: CONCEPTS OF CATEGORY THEORY
USED IN THE ALGEBRAIC THEORY OF GRAPH GRAMMARS

10. REFERENCES



1. INTRODUCTION

The algebraic theory of graph grammars is an attempt to describe sequential and
parallel graph grammars using graph morphisms and gluing constructions for graphs as
basic concepts for the construction of derivations. These gluing constructions are
very useful because on one hand they are generalizing the concatenation of strings
and on the other hand they are special cases of pushout resp. colimit constructions
in categorical algebra so that universal diagram techniques can be used in most of
the constructions and proofs. Unfortunately categorical concepts are not known to
most researchers in Computer Science and Biology (and there are still many mathe-
maticians not familiar with these constructions!) Actually this had been a disad-
vantage in making the algebraic approach widely known and we hope that this intro-
ductory paper may help to remove this (artificial) burden. Hence we avoid categori-
cal terminology as far as possible in the following sections but the concepts of
category theory which are implicitely used are summerized in an appendium.

The aim of this survey is to motivate and introduce the basic constructions and re-
sults which have been developed in the algebraic theory of graph grammars. Except
of two typical cases we don't give full proofs since they can be found in the lite-
rature. Let us point out that this paper is neither a survey on different approaches
to graph grammars, for which we refer to /OV.Na 78/, nor a survey on applications.
But we will briefly sketch the main fields of applications in 1.1 before summerizing

the contents of this survey in 1.2 and giving some technical remarks in 1.3.

1.1 MAIN AREAS OF APPLICATIONS

The development of the algebraic theory of graph grammars was mainly influenced by
problems in those areas of applications where "dynamic graph models" can be used
(dynamic in the sense of any manipulation of the graph structure).

The main areas of those applications are the following:

- Semantics of recursively defined functions

- Record handling

- Data base systems

- Compiler techniques

- Development and evolution in Biology

In the first three of these areas Church-Rosser properties for graph derivations
play an important role. The use of Church-Rosser properties in various areas of
Theoretical Computer Science (with correctness of operational semantics being a
most "transparent" case) is well-known. Here the data structures to be manipulated
are strings or trees. Graph grammar theory allows to extend these applications to
arbitrary linked data structures. We will briefly discuss and illustrate the first
three of the application areas while the last two are only sketched.

1. Semantics of Recursively Defined Functions

Recursion in programming has often been explicated in terms of macro-expansions of

trees. However, efficiency considerations have led to the use of collapsed trees.



Taking for example the recursive definition
f(u,v)=ite (u=0,0,f (u-1,£f(u,v)))
we can represent the right hand side by the collapsed tree in Fig. 1.1 instead of a

tree which avoids to represent same variables and constants by different nodes.

X
(o]
, (8]
.
=) £
2
(w) (1) h v
X, X, 1 2

Figure 1.1: Graph Grammar Production for a Recursive Definition

Hence we can express the recursive definition by the graph grammar production in
Fig. 1.1 (where the meaning of the gluing items X1 X

2 and 3)

17 %y will be given in Sections
Now expressions, like f#(4,f(3,u))+u, can be represented as "expression graphs" and
a macroexpansion of f as an application of the production defined above. Using the
Church-Rosser properties for graph derivations we are able to show that all those
macroexpansions are satisfying the Church-Rosser property which means that they can
be applied in arbitrary order leading to the same result in all cases. Also all or
nothing evaluation of a function can be represented as a direct derivation of ex-
pression graphs and evaluations and macroexpansions together define a Church-Rosser
system. Hence we obtain in /AP.EhRo 76/ a mathematical proof of the following re-
sult:

With all or nothing evaluation of given functions, recursively defined functions,
represented as expression graphs instead of trees, are single-valued.

An extension of these results including partial evaluation is studied in /AP.Pa 78/.
2. Record Handling

/AP.Eh Ro 77/ discusses a mathematical foundation for reasoning about the correct-
ness and computational complexity of record handling algorithms using algebraic
graph theory. A class of pattern matching and replacement rules for graphs is
specified, such that applications of rules in the class can readily be programmed as
rapid transformations of record structures. When transformations of record struc-

tures are formalized as applications of rules to appropriate graphs we can use



Church-Rosser properties to prove that families of transformations are well behaved.
In particular, it is shown that any Church-Rosser family of transformations satis-
fying mild conditions can be combined with housekeeping operations involving in-
diréct pointers and garbage collection without losing the Church-Rosser property.
Moreover parallel derivations are used to express the net effect of two trans-
formations as a single transformation. These results and the general theorems that
support them can be used to analyze the behavior of a large structure that can be
updated asynchronously by several parallel processes or users.

A typical example of a Church-Rosser property involving indirect pointers is given
in Fig. 1.2 where in all steps indirection productions are applied (if the target
of an arc is colored I the indirection production allows to change the target of
this arc to its successor). Let us point out that in Fig. 1.2 starting with the
arc colored C we need three while starting with z we only need two applications of

the indirection production to end up with the same resulting graph.

Figure 1.2: Church-Rosser Property of Indirection



3. Data Base Systems

A convenient way to represent a semantic network, the semantic structure of a data
base system, is that of using (colored) graphs. In /AP.Eh Kr 76a/,/AP.Kr 78/ and
/AP.Eh Kr 78/ it is suggested that manipulations in semantic networks can be ex-
pressed using graph productions and derivations. A simple example of a library is
given and it is shown how to formalize operations like registering, ordering,
lending and returning a book using graph grammar productions and derivations. A
typical example for returning a book with catalogue number K 12345 by reader

L 0815 is given in Fig. 1.3 (the upper row is the production representing the
operation "returning" and the lower row is the direct derivation representing the

change of (a small part of) the state of the library system).

K 12345

K 12345

Figure 1.3: Production and Direct Derivation for Returning a Book

More details of this library system will be given in Sections 2 up to 5 where this
example is used to illustrate most of the constructions and results in the Algebraic
Theory of Graph Grammars. Expecially the operations and consistent states of the
library are defined in 3.2 and 3.4.2 as examples of productions and the language of
a graph grammar respectively. Using the rotion of "independence" for graph deri-
vations (see 4.1) it is shown in Example 4.2 which of the library operations are
independent such that they can be applied in arbitrary order or in parallel. More-
over it is discussed in Example 4.8 how the productions ordering and registering
(which are not independent if they are applied to the same book) can be combined to
a "concurrent production" which has exactly the same effect like sequential appli-
cation of ordering and registering. The corresponding results (4.4, 4.5, 4.7 and
4.11) in the theory of graph grammars seem to be a basic tool for synchronization
problems in data base systems (see /AP.Kr 78/ or /AP.Eh Kr 78/). An extension of

some of these results to generalized data base systems is studied in /AP.NePa 77/



and /AP.St 78/.

Since the structure of a semantic network can be defined by a graph grammar the
correctness of these structures can be checked using parsing techniques. Two
examples of approaches to realize conceptional schemes for data base systems using
graph grammars are given in /AP.Go Fu 74/ and /AP.Sc 76/.

4. Compiler Technigues

In several cases compiler techniques can be considered as manipulations of (colored)
graphs. We will give two examples: 1. Implementing an incremental compiler, we
must consider various lists and a lot of references between them in order to allow
insertion, deletion, or substitution of increments. Since the structure is not al-
ways a tree it is shown in /AP.Sc 75/ how to establish a syntax-directed concept for
implementing incremental compilers using the graph grammar approach for partial
graphs in /AP.Sc Eh 76/. 2. For code optimization in a compiler we need program
data flow analysis. One of the standard approaches is to construct the control flow
graph.

To construct this graph it is standard to group instructions into basic blocks,

take these blocks as the nodes, and so on. In /AP.Fa Ke Zu 76/, however, it is
shown that most of these graphs can be generated by a graph grammar. A slightly
extended version of the algorithm in /AP.Fa Ke Zu 76/ can test in linear time
whether a given graph can be generated and construct a parse in the case where the
answer is YES.

5. Development and Evolution in Biology

The use of L-systems to model the development of filamental organisms is widely
known. The string representation in the mathematical models, however, restrict the
application to very simple organisms. In /GL.Lu Li 74/ A. Lindenmayer and K.Culik II
have given a mathematical model to extend L-systems to graphs. This allows to model
the development of slightly more general (and perhaps also of some higher dimensional)
organisms. The main idea is to predict the development of such an organism by
calculation of derivation sequences in parallel graph grammars (which are also
called graph L-systems). Algebraic approaches to parallel graph grammars are given
in /GL.Eh Kr 76/, /GL.Eh Rb 76/, /GL.Ld 78/ and /GL.Eh Ld 78/. In the last two
papers the construction of locally star gluing formulas (generalizing locally cate-
native formulas) is given for graph sequences of (special) parallel graph grammars.
This allows to predict the development of organisms by a recursive procedure without
calculating the complete derivation sequence.

Finally let us mention that an approach of N. Rashewsky to describe the spezializa-
tion and evolution process of organisms was formulated in terms of (sequential)

graph grammars in /AP.Eh Ti 75/.

1.2 CONTENTS OF THIS SURVEY AND HISTORICAL REMARKS

Motivated by several other graph grammar approaches (which are reviewed in /OV.Na 78/)

the algebraic approach was introduced by H. Ehrig, M. Pfender and H.J. Schneider in



/GG.Eh Pf Sc 73a,b/. Extended versions were given in /GG.Ro 75b/, /AP.Eh Kr 76b/,
/GG.Sc Eh 76/ and /GG. Eh Kr Ma Ro Wi 78/ to cover all the applications sketched in
1.1.1 up to 1.1.4. But for this survey we only consider a simplified version of
gluing constructions and derivations underlying this approach which is given in
Section 2 and 3.

The embedding theorem given in /GG.Eh Pf Sc 73b/ (and improved in /GG.Eh Kr 76/,
/GG.Eh 77/, /GG. Kr 77a/ and /GG.Eh Kr Ma Ro Wi 78/ was the first basic result in
the Algebraic Theory of Graph Grammars:

Given a derivation sequence Go==% N Gn of graphs and an embedding ho:GO——éao
then it is possible to obtain an extended sequence Go==# e = Gn using the same
productions provided that a suitable JOIN-condition is satisfied. This condition,
the embedding theorem (including also the inverse CLIP-construction in 5.3), and

some other properties of derivation sequences are discussed in Section 5.

A second basic contribution to the algebraic theory of graph grammars was given by
B.K. Rosen in /GG.Ro 75a/, where he started to study Church-Rosser properties of
derivations in graph grammars. The results obtained in this and subsequent papers
/GG.Eh Kr 75b/, /AP.Eh Ro 76/, /AP.Eh Kr 76a/, /GG.Kr 77b/ and /AP.Eh Ro 78b/ are
summarized in the Church-Rosser-, Parallelism-, and Concurrency Theorems in Section

4 (see 4.4, 4.5, 4.7 and 4.11) and in Theorem 5.6 on canonical derivation sequences.

A third basic contribution to the algebraic theory was given by H. Ehrig, H.-J.
Kreowski and G. Rozenberg in /GL.Eh Kr 76/ and /GL.Eh Rb 76/ where approaches to
parallel graph grammars were given generalizing L-systems from strings to graphs.
These algebraic approaches were basically motivated by the original paper

/GL.Cu Li 74/ of Culik II and Lindenmayer and by the algebraic approach in the
sequential case mentioned above. While some technical results for the algebraic
approaches to parallel graph grammars are given in /GL.Eh Kr 76/, /GL.Eh Rb 76/,
and /GL.Eh 75/ the first basic result is given in /GL.Ld 78/ resp. /GL.Eh 1Ld 78/:
The construction of a locally catenative formula for dependent PDOL-systems is
generalized to the graph case (see 7.4 and 7.6). All this is discussed in Sections

6 and 7. The basic parallel gluing construction, however, is given already in 2.9.

Let us point out that readers which are only interested. in parallel graph grammars
may skip Sections 3,4 and 5. On the other hand Sections 6 and 7 may be skipped by

those which are only interested in the sequential case.

In Section 8 several results concerning graph languages generated by algebraic graph
grammars (sequential and parallel case) are summarized with a pumping lemma for
type2-graph grammars (proved in /GG.Kr 78/)being of central importance.

As mentioned above there is an appendium in Section 9 on the basic notions of Cate-
gory Theory which are implicitly used in the other sections. Moreover, the proofs
of two results in Section 2 and 4 are given in 9.6 and 9.7 which are typical for

the proof techniques used in the Algebraic Theory of Graph Grammars.



References using the first bibliography on graph grammars (prepared by Manfred Nagl)

are given in Section 10.

For readers more familiar with the material let us point out that in this survey we

only consider productions p=(Bl<——K——a BZ) where K— B1 and K—> B, are injective

2
and (colorpreserving) graph morphisms. This is convenient for the presentation but
not adequate for some of the applications mentioned in 1.1. On the other hand we
are quite sure that most of the constructions and results can be generalized to
"structures" (in the sense of /GG.Ra 75/ and /GG.Eh Kr Ma Ro Wi 78/) instead of
graphs so that we can cover all these applications (and some more) using only one

unified approach.

1.3 TECHNICAL REMARKS

As mentioned above already the reader is not supposed to be familiar with algebraic
or categorical notation. All what we need will be carefully motivated and intro-
duced. We only assume basic knowledge of sets and mappings and formal language
theory in the string case.

Finally let us remark that (in order to avoid brackets) we sometimes use notations
like fx for a map f applied to the argument x, fA for the set ffx/xEA} but not to
be confused with gf for the composition of maps applied in the order first f and
then g. The notation for graphs and graph morphisms will be introduced in 2.3 and
Z2.5.

1.4 ACKNOWLEDGEMENTS

Many thanks to Barry K. Rosen, Hans-J6rg Kreowski and Grzegorz Rozenberg for care-
fully reading of the first draft of this survey, stimulating remarks, discussions
and suggestions which led to a considerably improved exposition. Sections 6 and 7
of this survey can be considered as a first part of the paper /GL.Eh Ld 78/ by

Axel Liedtke and myself. In fact this is an improved and simplified version of his
master thesis /GL.1Ld 78/. The bibliography on graph grammars used in this survey
was prepared by Manfred Nagl. Last but not least I am thankful to Helga Barnewitz
for excellent typing of the paper.



2. GLUING CONSTRUCTIONS FOR GRAPHS
The first major problems to be tackled in building the algebraic theory of graph

grammars is to generalize catenation of strings to catenation of graphs, referred
to as gluing of graphs. Let us consider a Chomsky production of the form p=(u,v)
with nonempty v. Then for each context x,y we obtain a direct derivation Xuy= Xvy

in such a way that u is replaced by v. More precisely we replace u by v and connect

the first symbol vy of v=v1...vs with the last symbol x of X=X X and the last
Vg of v with the first y1 of y=y1...yt. Regarding x,v and y as graphs
x v
*1 x ! s Yy Ve
O O ... 0O [e] (¢] . O o} Q. oeee O (0]
1 2
we have two "gluing items" 1 and 2 connecting v with the context x and y. (Note

that also the case v= ¢ (empty word) can be included where the corresponding graph
consists of a single node.)

In the general graph case u,v and (x,y) become arbitrary graphs Bl' B2 and D
respectively.

Since the gluing items 1 and 2 in our example are part of v (resp. u) and of the
context x and y we will consider in the graph case an "interface" graph K, which is
"part" of B2 (resp. Bl) and D, where B2 (resp. Bl) and D are disjoint elsewhere. 1In

other words K is exactly the intersection of B, (resp. Bl) and D. In this special

2

case we can define the "gluing of B2 (resp. Bl) and D along K" as the union of B2
(resp. Bl) and D. Hence the string xuy coresponds to the gluing of B1 and D along

K and xvy to the gluing of B, and D along K. This means that a direct derivation in

2
the graph case will consist of two gluing constructions.

For the special case mentioned above where K is exactly the intersection of B and D
the gluing of B and D along K is very simple: it is the union of B and D. But this
definition of gluing depends essentially on the representations of B, D and K. 1In
general we will have the situation that B, D and K are arbitrary disjoint graphs and
that the connection between them is given by graph morphisms b:K— B and d:K— D.
In this case the gluing G of B and D along K can be defined by the following

iterative procedure for G:

procedure gluing, parameter (G), input parameters (B, D, K, b, d)

begin G:=B+D < disjoint union >
for all nodes and arcs k in K do
G:= identification (G, bk, dk)
end
where identification (G, bk, dk) is a procedure which identifies the items bk and dk
in the graph G. (Note, that for a more explicit version of the gluing procedure we
also have to define graph morphisms c:D—> G and g:B—> G).

Let us consider the following example:



