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Preface

Generative and component approaches have the potential to revolutionize soft-
ware development in a similar way as automation and components revolutionized
manufacturing. Generative Programming (developing programs that synthesize
other programs), Component Engineering (raising the level of modularization
and analysis in application design), and Domain-Specific Languages (elevating
program specifications to compact domain-specific notations that are easier to
write and maintain) are key technologies for automating program development.

GPCE arose as a joint conference, merging the prior conference on Genera-
tive and Component-Based Software Engineering (GCSE) and the Workshop on
Semantics, Applications, and Implementation of Program Generation (SAIG).
The goal of GPCE is to provide a meeting place for researchers and practitioners
interested in cutting edge approaches to software development. We aim to foster
further cross-fertilization between the software engineering research community
on the one hand, and the programming languages community on the other, in
addition to supporting the original research goals of both the GCSE and the
SAIG communities.

This volume contains the proceedings of the Third International Conference
on Generative Programming and Component Engineering, held in Vancouver,
Canada from October 24 to 28, 2004, where it was co-located with OOPSLA
2004 and ISSM 2004.

Responding to the call for papers 89 abstracts were submitted, 75 of which
materialized as full paper submissions. The papers were reviewed by program
committee members and their co-reviewers who together produced a total of 250
reviews, between 3 and 5 per paper. Reviews were often thorough and sometimes
actually included the views of multiple co-reviewers. Consensus about the papers
to be accepted was reached during the online program committee meeting held
in the second week of May 2004. The meeting consisted of a discussion by email
of each of the papers by the entire PC so that members could get an overall
impression of the quality of the submitted papers, beyond the ones they reviewed
themselves. The committee selected 25 of the 75 papers for presentation at the
conference and publication in the proceedings. Of the accepted papers, two are
co-athored by PC members (from a total of six PC submissions). We tried hard to
ensure fairness and held PC submissions to a high standard. Paper submission
and reviewing were supported by the open source version of the CyberChair
conference system installed at the webserver of the Institute of Information and
Computing Sciences of Utrecht University, The Netherlands.

In addition to the technical paper presentations the conferences featured two
invited speakers, a panel, four tutorials, five workshops, and six demonstrations.

Invited Speakers. The keynote talk by Jack Greenfield examined the software
factory approach to rapidly develop domain-specific languages and tools to auto-
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mate the production of applications in specific domains, combining innovations
in adaptive assembly, software product lines, and model driven development.

The invited talk by Peter Mosses gave an overview of the state of the art
in modular language description, i.e. the specification of the semantics of pro-
gramming language features in separate modules such that new languages can
be defined by module composition. .

Panel. A panel chaired by Gabor Karsai and further consisting of Don Batory,
Krzysztof Czarnecki, Jeff Gray, Douglas Schmidt, and Walid Taha examined
the current state of the field of generative programming, addressing issues such
as its relevance for information technology practice, incorporating generative
approaches in education, evaluation and comparison of generative technologies,
and research challenges.

Tutorials. The four GPCE tutorials gave introductions to important areas of
the generative programming field:

— Adaptive object-model architecture: Dynamically adapting to changing re-
guirements by Joe Yoder

— Multi-stage programming in MetaOCaml by Walid Taha and Cristiano Cal-
cagno

— Generative software development by Krzysztof Czarnecki and Jack Green-
field

— Program transformation systems: Theory and practice for software genera-
tion, maintenance, and reengineering by Ira Baxter and Hongjun Zheng

Workshops. Prior to GPCE 2004 six workshops were held, providing an oppor-
tunity for attendees to exchange views in subareas of generative programming.

With the introduction of software product line approaches into the prac-
tice, variants and variability add a new dimension of complexity to the software
development process. The combinatorial explosion of possible variants in sys-
tems with a high degree of variability requires improved and changed concepts
for specifying, modeling, and implementing these systems to assure quality and
functionality. In the OOPSLA /GPCE Workshop on Managing Variabili-
ties Consistently in Design and Code participants discussed and identified
efficient ways for dealing with highly variable software systems on design and
code level by evaluating existing approaches and new ideas from the research
community and industrial practice.

The Software Transformation Systems Workshop was designed to in-
vestigate the use of software transformation tools to support generative pro-
gramming by looking at various generative techniques and suggesting how these
may be supported by various general purpose transformation tools, leading to
a more general understanding of common principles for supporting generative
methods.
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MetaOCaml is a multi-stage extension of the widely used functional pro-
gramming language OCaml. It provides a generic core for expressing macros,
staging, and partial evaluation. The First MetaOCaml Workshop provided
a forum for discussing experience with using MetaOCaml as well as possible
future developments for the language.

The 6th GPCE Young Researchers Workshop provided a platform for
young international researchers to present their work and receive feedback from
experienced panelists.

The OOPSLA/GPCE Workshop on Best Practices for Model-
Driven Software Development brought together practitioners, researchers,
academics, and students to discuss the best practices for the development of
model-driven software, and to discuss the state of the art of tool support for
MDSD, including emerging Open Source tool products for model-driven devel-
opment of software systems.

Demonstrations. The following demonstrations were held in parallel to the
technical paper program:

— Implementation of DSLs using staged interpreters in MetaOCaml by Kedar
Swadi from Rice University

— MetaEdit+: Domain-specific modeling for full code generation demonstrated
by Juha-Pekka Tolvanen from MetaCase

— Towards domain-driven development: the SmartTools software factory by
Didier Parigot from INRIA Sophia-Antipolis

— Xire: Cross-artifact information retrieval by Michael Eichberg, and Thorsten
Schaefer from Darmstadt University of Technology

— C-SAW and GenAWeave: A two-level aspect weaving toolsuite by Jeff Gray,
Jing Zhang, and Suman Roychoudhury, from the University of Alabama at
Birmingham and Ira Baxter from Semantic Designs

— The concern manipulation environment by Peri Tarr, Matthew Chapman,
William Chung, and Andy Clement, from the IBM Thomas J. Watson Re-
search Center and IBM Hursley Park.

— Program transformations for re-engineering C++ components by Ira Baxter,
Larry Akers, Semantic Designs, and Michael Mehlich from Semantic Designs.

The program of this year’s conference is proof that the GPCE community is a
vibrant, lively group that produces significant new contributions.

August 2004 Gabor Karsai
Eelco Visser
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Generating AspectJ Programs
with Meta-AspectJ

David Zook, Shan Shan Huang, and Yannis Smaragdakis
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Abstract. Meta-AspectJ (MAJ) is a language tool for generating As-
pect] programs using code templates. MAJ itself is an extension of
Java, so users can interleave arbitrary Java code with AspectJ code tem-
plates. MAJ is a structured meta-programming tool: a well-typed gen-
erator implies a syntactically correct generated program. MAJ promotes
a methodology that combines aspect-oriented and generative program-
ming. Potential applications range from implementing domain-specific
languages with AspectJ as a back-end to enhancing AspectJ with more
powerful general-purpose constructs. In addition to its practical value,
MAJ offers valuable insights to meta-programming tool designers. It is a
mature meta-programming tool for AspectJ (and, by extension, Java): a
lot of emphasis has been placed on context-sensitive parsing and error-
reporting. As a result, MAJ minimizes the number of meta-programming
(quote/unquote) operators and uses type inference to reduce the need to
remember type names for syntactic entities.

1 Introduction

Meta-programming is the act of writing programs that generate other pro-
grams. Powerful meta-programming is essential for approaches to automating
software development. In this paper we present Meta-Aspect] (MAJ): a meta-
programming language tool extending Java with support for generating AspectJ
[9] programs. MAJ offers a convenient syntax, while explicitly representing the
syntactic structure of the generated program during the generation process. This
allows MAJ to guarantee that a well-typed generator will result in a syntacti-
cally correct generated program. This is the hallmark property of structured
meta-programming tools, as opposed to lexical or text-based tools. Structured
meta-programming is desirable because it means that a generator can be re-
leased with some confidence that it will create reasonable programs regardless
of its inputs.

Why should anyone generate AspectJ programs, however? We believe that
combining generative techniques with aspect-oriented programming results in
significant advantages compared to using either approach alone. MAJ can be
used for two general kinds of tasks: to implement generators using AspectJ and
to implement general-purpose aspect languages using generation. Specifically,
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MAJ can be used to implement domain-specific languages (i.e., to implement a
generator) by translating domain-specific abstractions into AspectJ code. MAJ
can also be used to implement general-purpose extensions of Aspect] (e.g., ex-
tensions that would recognize different kinds of joinpoints). Thus, MAJ enables
the use of AspectJ as an aspect-oriented “assembly language” [13] to simplify
what would otherwise be tedious tasks of recognizing patterns in an existing
program and rewriting them. A representative of this approach is our prior work
on GOTECH [18]: a system that adds distributed capabilities to an existing
program by generating AspectJ code using text templates.

The value and novelty of Meta-Aspect] can be described in two axes: its
application value (i.e., the big-picture value for potential users) and its techni-
cal contributions (i.e., smaller reusable lessons for other researchers working on
meta-programming tools). In terms of application value, MAJ is a useful meta-
programming tool, not just for AspectJ but also for Java in general. Specifically:

— For generating either AspectJ or plain Java code, MAJ is safer than any
text-based approach because the syntax of the generated code is represented
explicitly in a typed structure.

— Compared to plain Java programs that output text, generators written in
MAJ are simpler because MAJ allows writing complex code templates using
quote/unquote operators.

— MAJ is the only tool for structured generation of AspectJ programs that we
are aware of. Thus, to combine the benefits of generative programming and
AspectJ, one needs to either use MAJ, or to use a text-based approach.

In terms of technical value, MAJ offers several improvements over prior meta-
programming tools for Java. These translate to ease of use for the MAJ user,
while the MAJ language design offers insights for meta-programming researchers:

~ MAJ shows how to minimize the number of different quote/unquote oper-
ators compared to past tools, due to the MAJ mechanism for inferring the
syntactic type (e.g., expression, declaration, statement, etc.) of a fragment
of generated code. This property requires context-sensitive parsing of quoted
code: the type of an unquoted variable dictates how quoted code should be
parsed. As a result, the MAJ implementation is quite sophisticated and not
Just a naive precompiler. An additional benefit of this approach is that MAJ
emits its own error messages, independently from the Java compiler that is
used in its back-end.

— When storing fragments of generated code in variables, the user does not
need to specify the types of these variables (e.g., whether they are statements,
expressions, etc.). Instead, a special infer type can be used.

The above points are important because they isolate the user from low-level
representation issues and allow meta-programming at the template level.

We next present an introduction to the MAJ language design (Section 2),
discuss examples and applications (Section 3), describe in more depth the indi-
vidual interesting technical points of MAJ (Section 4), and discuss related and
future work (Section 5).



