- Gabor Karsai
Eelco Visser (Eds.)

Generative
Programming and
Component Engineering

Third International Conference, GPCE 2004
Vancouver, Canada, October 2004
Proceedings

LNCS 3286

@ Springer

TP311-47
| .. Gabor Karsai Eelco Visser (Eds.)

i
e T
«f PAY
{ /44""\-‘
b’]
. y b
OV t
/V’

Generative
Programming and
Component Engineering

Third International Conference, GPCE 2004
Vancouver, Canada, October 24-28, 2004
Proceedings

\\\\\\\l\\\l\\\\\\\\\\\\\\\\\\\

E200404726

@ Springer

Volume Editors

Gabor Karsai

Vanderbilt University

Institute for Software Integrated Systems (ISIS)
Nashville, TN 37235, USA

E-mail: gabor.karsai @vanderbilt.edu

Eelco Visser

Universiteit Utrecht

Institute of Information and Computing Sciences
P.O. Box 80089, 3508 TB Utrecht, The Netherlands
E-mail: visser@acm.org

Library of Congress Control Number: 2004113646

CR Subject Classification (1998): D.2, D.1, D.3, K.6

ISSN 0302-9743
ISBN 3-540-23580-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11338000 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK
Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler ’
University of Surrey, Guildford, UK
Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3286

Preface

Generative and component approaches have the potential to revolutionize soft-
ware development in a similar way as automation and components revolutionized
manufacturing. Generative Programming (developing programs that synthesize
other programs), Component Engineering (raising the level of modularization
and analysis in application design), and Domain-Specific Languages (elevating
program specifications to compact domain-specific notations that are easier to
write and maintain) are key technologies for automating program development.

GPCE arose as a joint conference, merging the prior conference on Genera-
tive and Component-Based Software Engineering (GCSE) and the Workshop on
Semantics, Applications, and Implementation of Program Generation (SAIG).
The goal of GPCE is to provide a meeting place for researchers and practitioners
interested in cutting edge approaches to software development. We aim to foster
further cross-fertilization between the software engineering research community
on the one hand, and the programming languages community on the other, in
addition to supporting the original research goals of both the GCSE and the
SAIG communities.

This volume contains the proceedings of the Third International Conference
on Generative Programming and Component Engineering, held in Vancouver,
Canada from October 24 to 28, 2004, where it was co-located with OOPSLA
2004 and ISSM 2004.

Responding to the call for papers 89 abstracts were submitted, 75 of which
materialized as full paper submissions. The papers were reviewed by program
committee members and their co-reviewers who together produced a total of 250
reviews, between 3 and 5 per paper. Reviews were often thorough and sometimes
actually included the views of multiple co-reviewers. Consensus about the papers
to be accepted was reached during the online program committee meeting held
in the second week of May 2004. The meeting consisted of a discussion by email
of each of the papers by the entire PC so that members could get an overall
impression of the quality of the submitted papers, beyond the ones they reviewed
themselves. The committee selected 25 of the 75 papers for presentation at the
conference and publication in the proceedings. Of the accepted papers, two are
co-athored by PC members (from a total of six PC submissions). We tried hard to
ensure fairness and held PC submissions to a high standard. Paper submission
and reviewing were supported by the open source version of the CyberChair
conference system installed at the webserver of the Institute of Information and
Computing Sciences of Utrecht University, The Netherlands.

In addition to the technical paper presentations the conferences featured two
invited speakers, a panel, four tutorials, five workshops, and six demonstrations.

Invited Speakers. The keynote talk by Jack Greenfield examined the software
factory approach to rapidly develop domain-specific languages and tools to auto-

VI Preface

mate the production of applications in specific domains, combining innovations
in adaptive assembly, software product lines, and model driven development.

The invited talk by Peter Mosses gave an overview of the state of the art
in modular language description, i.e. the specification of the semantics of pro-
gramming language features in separate modules such that new languages can
be defined by module composition. .

Panel. A panel chaired by Gabor Karsai and further consisting of Don Batory,
Krzysztof Czarnecki, Jeff Gray, Douglas Schmidt, and Walid Taha examined
the current state of the field of generative programming, addressing issues such
as its relevance for information technology practice, incorporating generative
approaches in education, evaluation and comparison of generative technologies,
and research challenges.

Tutorials. The four GPCE tutorials gave introductions to important areas of
the generative programming field:

— Adaptive object-model architecture: Dynamically adapting to changing re-
guirements by Joe Yoder

— Multi-stage programming in MetaOCaml by Walid Taha and Cristiano Cal-
cagno

— Generative software development by Krzysztof Czarnecki and Jack Green-
field

— Program transformation systems: Theory and practice for software genera-
tion, maintenance, and reengineering by Ira Baxter and Hongjun Zheng

Workshops. Prior to GPCE 2004 six workshops were held, providing an oppor-
tunity for attendees to exchange views in subareas of generative programming.

With the introduction of software product line approaches into the prac-
tice, variants and variability add a new dimension of complexity to the software
development process. The combinatorial explosion of possible variants in sys-
tems with a high degree of variability requires improved and changed concepts
for specifying, modeling, and implementing these systems to assure quality and
functionality. In the OOPSLA /GPCE Workshop on Managing Variabili-
ties Consistently in Design and Code participants discussed and identified
efficient ways for dealing with highly variable software systems on design and
code level by evaluating existing approaches and new ideas from the research
community and industrial practice.

The Software Transformation Systems Workshop was designed to in-
vestigate the use of software transformation tools to support generative pro-
gramming by looking at various generative techniques and suggesting how these
may be supported by various general purpose transformation tools, leading to
a more general understanding of common principles for supporting generative
methods.

Preface VII

MetaOCaml is a multi-stage extension of the widely used functional pro-
gramming language OCaml. It provides a generic core for expressing macros,
staging, and partial evaluation. The First MetaOCaml Workshop provided
a forum for discussing experience with using MetaOCaml as well as possible
future developments for the language.

The 6th GPCE Young Researchers Workshop provided a platform for
young international researchers to present their work and receive feedback from
experienced panelists.

The OOPSLA/GPCE Workshop on Best Practices for Model-
Driven Software Development brought together practitioners, researchers,
academics, and students to discuss the best practices for the development of
model-driven software, and to discuss the state of the art of tool support for
MDSD, including emerging Open Source tool products for model-driven devel-
opment of software systems.

Demonstrations. The following demonstrations were held in parallel to the
technical paper program:

— Implementation of DSLs using staged interpreters in MetaOCaml by Kedar
Swadi from Rice University

— MetaEdit+: Domain-specific modeling for full code generation demonstrated
by Juha-Pekka Tolvanen from MetaCase

— Towards domain-driven development: the SmartTools software factory by
Didier Parigot from INRIA Sophia-Antipolis

— Xire: Cross-artifact information retrieval by Michael Eichberg, and Thorsten
Schaefer from Darmstadt University of Technology

— C-SAW and GenAWeave: A two-level aspect weaving toolsuite by Jeff Gray,
Jing Zhang, and Suman Roychoudhury, from the University of Alabama at
Birmingham and Ira Baxter from Semantic Designs

— The concern manipulation environment by Peri Tarr, Matthew Chapman,
William Chung, and Andy Clement, from the IBM Thomas J. Watson Re-
search Center and IBM Hursley Park.

— Program transformations for re-engineering C++ components by Ira Baxter,
Larry Akers, Semantic Designs, and Michael Mehlich from Semantic Designs.

The program of this year’s conference is proof that the GPCE community is a
vibrant, lively group that produces significant new contributions.

August 2004 Gabor Karsai
Eelco Visser

Organization

GPCE 2004 was organized by the Assocation for Computing Machinery (ACM),
the OGI School of Science & Engineering at OHSU (USA), Utrecht University
(The Netherlands), Vanderbilt University (USA), Intel (USA), University of Al-
abama at Birmingham (USA), and the University of Waterloo (Canada). The
event was sponsored by ACM SIGPLAN, ACM SIGSOFT, and Microsoft and
co-located with OOPSLA 2004 and ISSM 2004 in Vancouver, Canada.

General Chair

Tim Sheard, OGI School of Science & Engineering at OHSU, Portland, Oregon,
USA

Program Chairs

Gabor Karsai, Vanderbilt University, USA
Eelco Visser, Utrecht University, The Netherlands

Program Committee

Uwe ABimann (Linképings Universitet, Sweden)

Don Batory (University of Texas, USA)

Jan Bosch (Universiteit Groningen, The Netherlands)
Jean Bezivin (Université de Nantes, France)

Jim Cordy (Queen’s University, Canada)

Krzysztof Czarnecki (University of Waterloo, Canada)
Mathew Flatt (University of Utah, USA)

Robert Gliick (Kgbenhavns Universitet, Denmark)
George Heineman (Worcester Polytechnic Institute, USA)
Michael Leuschel (University of Southampton, UK)

Karl Lieberherr (Northeastern University, USA)

Simon Peyton Jones (Microsoft Research, UK)

Douglas R. Smith (Kestrel Institute, USA)

Gabriele Taentzer (Technische Universitat Berlin, Germany)
Todd Veldhuizen (Indiana University, USA)

Kris de Volder (University of British Columbia, Canada)
Dave Wile (Teknowledge Corporation, USA)

Alexander Wolf (University of Colorado at Boulder, USA)

Workshop Chair

Zino Benaissa, Intel, USA

Tutorial Chair

Organization

Jeff Gray, University of Alabama at Birmingham, USA

Demonstrations Committee

Simon Helsen (chair), University of Waterloo, Canada

William Cook, University of Texas at Austin, USA
Frédéric Jouault, Université de Nantes, France

Co-reviewers

Nils Andersen

Anya H. Bagge

Ivor Bosloper
Martin Bravenboer
Niels H. Christensen
Alessandro Coglio
S. Deelstra

Juergen Dingel
Eelco Dolstra
Alexander Egyed
Dan Elphick
Lindsay Errington
Natalya Filatkina
Murdoch Gabbay
Hugh Glaser

Andy Gravell
Jurriaan Hage

Jan Heering

Andre van der Hoek
Kathrin Hoffmann

Steering Committee

Yvonne Howard

Anton Jansen

Michel Jaring

Dean Jin

Merijn de Jonge
Frederic Jouault
Kazuhiko Kakehi

Karl Trygve Kalleberg
Markus Klein

Andrei Klimov

Jia Liu

Roberto Lopez-Herrejon
David Lorenz

Andrew Malton
Katharina Mehner
Anne-Francoise Le Meur
Torben Mogensen

Dirk Muthig

Karina Olmos

Scott Owens

Don Batory (University of Texas)
Eugenio Moggi (Universita di Genova)

Greg Morrisett (Cornell)

Jeffrey Palm

Emir Pasalic
Andrew Pitts
Stephane Lo Presti
Armin Rigo
Matthew Rutherford
Kevin A. Schneider
Jorg Schneider

Ulrik Pagh Schultz
Johanneke Siljee

M. Sinnema
Therapon Skotiniotis
Mike Sperber

Walid Taha

Edward Turner
Mauricio Varea
Andrzej Wasowski
Andreas Winter
Pengcheng Wu

Janos Sztipanovits (Vanderbilt University School of Engineering)
Krzysztof Czarnecki (University of Waterloo)
Walid Taha (Rice University)

Bogdan Franczyk (Universitét Leipzig)

Ulrich Eisenecker (Fachhochschule Kaiserslautern)

IX

X Organization
Previous Events

GPCE emerged as the unification of the SAIG workshop series and the GCSE
conference series.

GPCE 2003, Erfurt, Germany
GPCE 2002, Pittsburgh, Pensylvania, USA
GCSE 2001, Erfurt, Germany SAIG 2001, Firenze, Italy

GCSE 2000, Erfurt, Germany SAIG 2000, Montréal, Canada
GCSE 1999, Erfurt, Germany

See also the permanent website of the conference series http://www.gpce.org

Sponsors

ACM SIGPLAN and ACM SIGSOFT

Microsoft

Lecture Notes in Computer Science

For information about Vols. 1-3181

please contact your bookseller or Springer

Vol. 3305: PM.A. Sloot, B. Chopard, A.G. Hoekstra
(Eds.), Cellular Automata. XV, 883 pages. 2004.

Vol. 3293: C.-H. Chi, M. van Steen, C. Wills (Eds.), Web
Content Caching and Distribution. IX, 283 pages. 2004.

Vol. 3286: G. Karsai, E. Visser (Eds.), Generative Pro-
gramming and Component Engineering. XIII, 491 pages.
2004.

Vol. 3274: R. Guerraoui (Ed.), Distributed Computing.
XIII, 465 pages. 2004.

Vol. 3273: T. Baar, A. Strohmeier, A. Moreira, S.J. Mel-
lor (Eds.), <<UML>> 2004 - The Unified Modelling
Language. XIII, 454 pages. 2004.

Vol. 3271: J. Vicente, D. Hutchison (Eds.), Management
of Multimedia Networks and Services. XIII, 335 pages.
2004.

Vol. 3270: M. Jeckle, R. Kowalczyk, P. Braun (Eds.), Grid
Services Engineering and Management. X, 165 pages.
2004.

Vol. 3269: J. Lépez, S. Qing, E. Okamoto (Eds.), Informa-
tion and Communications Security. X1, 564 pages. 2004.

Vol. 3266: J. Solé-Pareta, M. Smirnov, P.V. Mieghem, J.
Domingo-Pascual, E. Monteiro, P. Reichl, B. Stiller, R.J.
Gibbens (Eds.), Quality of Service in the Emerging Net-
working Panorama. X VI, 390 pages. 2004.

Vol. 3265: R.E. Frederking, K.B. Taylor (Eds.), Machine
Translation: From Real Users to Research. XI, 392 pages.
2004. (Subseries LNAI).

Vol. 3264: G. Paliouras, Y. Sakakibara (Eds.), Gram-
matical Inference: Algorithms and Applications. XI, 291
pages. 2004. (Subseries LNAI).

Vol. 3263: M. Weske, P. Liggesmeyer (Eds.), Object-
Oriented and Internet-Based Technologies. XII, 239
pages. 2004.

Vol. 3262: M.M. Freire, P. Chemouil, P. Lorenz, A. Gravey
(Eds.), Universal Multiservice Networks. XIII, 556 pages.
2004.

Vol. 3261: T. Yakhno (Ed.), Advances in Information Sys-
tems. XIV, 617 pages. 2004.

Vol. 3260: 1.G.M.M. Niemegeers, S.H. de Groot (Eds.),
Personal Wireless Communications. XIV, 478 pages.
2004.

Vol. 3258: M. Wallace (Ed.), Principles and Practice of
Constraint Programming — CP 2004. XVII, 822 pages.
2004.

Vol. 3257: E. Motta, N.R. Shadbolt, A. Stutt, N. Gibbins
(Eds.), Engineering Knowledge in the Age of the Semantic
Web. XVII, 517 pages. 2004. (Subseries LNAI).

Vol. 3256: H. Ehrig, G. Engels, F. Parisi-Presicce,
G. Rozenberg (Eds.), Graph Transformations. XII, 451
pages. 2004,

Vol. 3255: A. Benczir, J. Demetrovics, G. Gottlob (Eds.),
Advances in Databases and Information Systems. XI, 423
pages. 2004.

Vol. 3254: E. Macii, V. Paliouras, O. Koufopavlou (Eds.),
Integrated Circuit and System Design. XVI, 910 pages.
2004.

Vol. 3253: Y. Lakhnech, S. Yovine (Eds.), Formal Tech-
niques, Modelling and Analysis of Timed and Fault-
Tolerant Systems. X, 397 pages. 2004.

Vol. 3250: L.-J. (LJ) Zhang, M. Jeckle (Eds.), Web Ser-
vices. X, 301 pages. 2004.

Vol. 3249: B. Buchberger, J.A. Campbell (Eds.), Artificial
Intelligence and Symbolic Computation. X, 285 pages.
2004. (Subseries LNAI).

Vol. 3246: A. Apostolico, M. Melucci (Eds.), String Pro-
cessing and Information Retrieval. XIV, 332 pages. 2004.

Vol. 3245: E. Suzuki, S. Arikawa (Eds.), Discovery Sci-
ence. XIV, 430 pages. 2004. (Subseries LNAI).

Vol. 3244: S. Ben-David, J. Case, A. Maruoka (Eds.), Al-
gorithmic Learning Theory. XIV, 505 pages. 2004. (Sub-
series LNAI).

Vol. 3243: S. Leonardi (Ed.), Algorithms and Models for
the Web-Graph. VIII, 189 pages. 2004.

Vol. 3242: X. Yao, E. Burke, J.A. Lozano, J. Smith, J.J.
Merelo-Guervés, J.A. Bullinaria, J. Rowe, P. Tifio, A.
Kabén, H.-P. Schwefel (Eds.), Parallel Problem Solving
from Nature - PPSN VIII. XX, 1185 pages. 2004.

Vol. 3241: D. Kranzlmiiller, P. Kacsuk, J.J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XIII, 452 pages. 2004.

Vol. 3240: I. Jonassen, J. Kim (Eds.), Algorithms in Bioin-
formatics. IX, 476 pages. 2004. (Subseries LNBI).

Vol. 3239: G. Nicosia, V. Cutello, P.J. Bentley, J. Timmis
(Eds.), Artificial Inmune Systems. XII, 444 pages. 2004.

Vol. 3238: S. Biundo, T. Friihwirth, G. Palm (Eds.), KI
2004: Advances in Artificial Intelligence. XI, 467 pages.
2004. (Subseries LNAI).

Vol. 3236: M. Niiiez, Z. Maamar, FL. Pelayo, K.
Pousttchi, F. Rubio (Eds.), Applying Formal Methods:
Testing, Performance, and M/E-Commerce. XI, 381
pages. 2004.

Vol. 3235: D. de Frutos-Escrig, M. Nunez (Eds.), For-
mal Techniques for Networked and Distributed Systems
— FORTE 2004. X, 377 pages. 2004.

Vol. 3232: R. Heery, L. Lyon (Eds.), Research and Ad-
vanced Technology for Digital Libraries. XV, 528 pages.
2004.

Vol. 3231: H.-A. Jacobsen (Ed.), Middleware 2004. XV,
514 pages. 2004.

Vol. 3230:J.L. Vicedo, P. Martinez-Barco, R. Muiioz, M.S.
Noeda (Eds.), Advances in Natural Language Processing.
XI1I, 488 pages. 2004. (Subseries LNAI).

Vol. 3229: 1.J. Alferes, J. Leite (Eds.), Logics in Artificial
Intelligence. XIV, 744 pages. 2004. (Subseries LNAI).

Vol. 3226: M. Bouzeghoub, C. Goble, V. Kashyap, S.
Spaccapietra (Eds.), Semantics for Grid Databases. XIII,
326 pages. 2004.

Vol. 3225: K. Zhang, Y. Zheng (Eds.), Information Secu-
rity. XII, 442 pages. 2004.

Vol. 3224: E. Jonsson, A. Valdes, M. Almgren (Eds.), Re-
cent Advances in Intrusion Detection. XII, 315 pages.
2004.

Vol. 3223: K. Slind, A. Bunker, G. Gopalakrishnan (Eds.),
Theorem Proving in Higher Order Logics. VIII, 337 pages.
2004.

Vol. 3222: H. Jin, G.R. Gao, Z. Xu, H. Chen (Eds.), Net-
work and Parallel Computing. XX, 694 pages. 2004.

Vol. 3221: S. Albers, T. Radzik (Eds.), Algorithms — ESA
2004. XVIII, 836 pages. 2004.

Vol. 3220: J.C. Lester, R.M. Vicari, F. Paraguacu (Eds.),
Intelligent Tutoring Systems. XXI, 920 pages. 2004.

Vol. 3219: M. Heisel, P. Liggesmeyer, S. Wittmann (Eds.),
Computer Safety, Reliability, and Security. XI, 339 pages.
2004.

Vol. 3217: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion — MICCAI 2004. XXX VIII, 1114 pages. 2004.

Vol. 3216: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion — MICCAI 2004. XXX VIII, 930 pages. 2004.

Vol. 3215: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVII, 906 pages. 2004. (Subseries LNAI).

Vol. 3214: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1302 pages. 2004. (Subseries LNAI).

Vol. 3213: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1280 pages. 2004. (Subseries LNAI).

Vol. 3212: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 862 pages. 2004.

Vol. 3211: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 880 pages. 2004.

Vol. 3210: J. Marcinkowski, A. Tarlecki (Eds.), Computer
Science Logic. XI, 520 pages. 2004.

Vol. 3209: B. Berendt, A. Hotho, D. Mladenic, M. van
Someren, M. Spiliopoulou, G. Stumme (Eds.), Web Min-
ing: From Web to Semantic Web. IX, 201 pages. 2004.
(Subseries LNAI).

Vol. 3208: H.J. Ohlbach, S. Schaffert (Eds.), Principles
and Practice of Semantic Web Reasoning. VII, 165 pages.
2004.

Vol. 3207: L.T. Yang, M. Guo, G.R. Gao, N.K. Jha (Eds.),
Embedded and Ubiquitous Computing. XX, 1116 pages.
2004.

Vol. 3206: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIII, 667 pages. 2004. (Subseries
LNAI).

Vol. 3205: N. Davies, E. Mynatt, I. Siio (Eds.), UbiComp
2004: Ubiquitous Computing. XVI, 452 pages. 2004.

Vol. 3204: C.A. Pefia Reyes, Coevolutionary Fuzzy Mod-
eling. XIII, 129 pages. 2004.

Vol. 3203: J. Becker, M. Platzner, S. Vernalde (Eds.), Field
Programmable Logic and Application. XXX, 1198 pages.
2004.

Vol. 3202: J.-F. Boulicaut, F. Esposito, F. Giannotti, D.
Pedreschi (Eds.), Knowledge Discovery in Databases:
PKDD 2004. XIX, 560 pages. 2004. (Subseries LNAI).

Vol. 3201: J.-F. Boulicaut, F. Esposito, F. Giannotti, D.
Pedreschi (Eds.), Machine Learning: ECML 2004. XVIII,
580 pages. 2004. (Subseries LNAI).

Vol. 3199: H. Schepers (Ed.), Software and Compilers for
Embedded Systems. X, 259 pages. 2004.

Vol. 3198: G.-J. de Vreede, L.A. Guerrero, G. Marin
Ravent6s (Eds.), Groupware: Design, Implementation and
Use. XI, 378 pages. 2004.

Vol. 3196: C. Stary, C. Stephanidis (Eds.), User-Centered
Interaction Paradigms for Universal Access in the Infor-
mation Society. XII, 488 pages. 2004.

Vol. 3195: C.G. Puntonet, A. Prieto (Eds.), Independent
Component Analysis and Blind Signal Separation. XXIII,
1266 pages. 2004.

Vol. 3194: R. Camacho, R. King, A. Srinivasan (Eds.), In-
ductive Logic Programming. XI, 361 pages. 2004. (Sub-
series LNAI).

Vol. 3193: P. Samarati, P. Ryan, D. Gollmann, R. Molva
(Eds.), Computer Security — ESORICS 2004. X, 457
pages. 2004.

Vol. 3192: C. Bussler, D. Fensel (Eds.), Artificial Intel-
ligence: Methodology, Systems, and Applications. XIII,
522 pages. 2004. (Subseries LNAI).

Vol. 3191: M. Klusch, S. Ossowski, V. Kashyap, R. Un-
land (Eds.), Cooperative Information Agents VIII. XI, 303
pages. 2004. (Subseries LNAI).

Vol. 3190: Y. Luo (Ed.), Cooperative Design, Visualiza-
tion, and Engineering. IX, 248 pages. 2004.

Vol. 3189: P.-C. Yew, J. Xue (Eds.), Advances in Computer
Systems Architecture. XVII, 598 pages. 2004.

Vol. 3188: ES. de Boer, M.M. Bonsangue, S. Graf, W.-P.
de Roever (Eds.), Formal Methods for Components and
Objects. VIII, 373 pages. 2004.

Vol. 3187: G. Lindemann, J. Denzinger, 1.J. Timm, R. Un-
land (Eds.), Multiagent System Technologies. XIII, 341
pages. 2004. (Subseries LNAI).

Vol. 3186: Z. Bellahsene, T. Milo, M. Rys, D. Suciu, R.
Unland (Eds.), Database and XML Technologies. X, 235
pages. 2004.

Vol. 3185: M. Bernardo, F. Corradini (Eds.), Formal Meth-
ods for the Design of Real-Time Systems. VII, 295 pages.
2004.

Vol. 3184: S. Katsikas, J. Lopez, G. Pernul (Eds.), Trust
and Privacy in Digital Business. XI, 299 pages. 2004.
Vol. 3183: R. Traunmiiller (Ed.), Electronic Government.
XIX, 583 pages. 2004.

Vol. 3182: K. Bauknecht, M. Bichler, B. Proll (Eds.), E-
Commerce and Web Technologies. XI, 370 pages. 2004,

Table of Contents

Aspect Orientation

Generating AspectJ Programs with Meta-AspectJ...................... 1
David Zook, Shan Shan Huang, and Yannis Smaragdakis

Splice: Aspects That Analyze Programs............... ... oo, 19
Sean McDirmid and Wilson C. Hsieh :

A Generative Approach to Aspect-Oriented Programming 39
Douglas R. Smith

Generic Advice: On the Combination of AOP
with Generative Programming in AspectC++oiiuion... 55
Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk

Supporting Flexible Object Database Evolution with Aspects............ 75
Awais Rashid and Nicholas Leidenfrost

A Pointcut Language for Control-Flow............. 95
Rémi Douence and Luc Teboul

SourceWeave.NET: Cross-Language Aspect-Oriented Programming....... 115
Andrew Jackson and Siobhdn Clarke

Staged Programming

Meta-programming with Typed Object-Language Representations. 136
Emir Pasali¢ and Nathan Linger

Metaphor: A Multi-stage, Object-Oriented Programming Language. 168
Gregory Neverov and Paul Roe

Optimising Embedded DSLs Using Template Haskell 186
Sean Seefried, Manuel Chakravarty, and Gabriele Keller

Types of Meta-programming

A Fresh Calculus for Name Managementoou... 206
Davide Ancona and Eugenio Moggi

Taming Macros i ssuimimusnsmns snins smseie@spiamimsam s (0i®s NEEs SRID 225
Ryan Culpepper and Matthias Felleisen

A Unification of Inheritance and Automatic Program Specialization 244
Ulrik P. Schultz

XII Table of Contents

Meta-programming

Towards a General Template Introspection Library 266
Istvan Zdlyomi and Zoltdn Porkoldb

Declaring and Enforcing Dependencies Between .NET Custom Attributes . 283
Vasian Cepa and Mira Mezini

Towards Generation of Efficient Transformations 298
Attila Vizhanyo, Aditya Agrawal, and Feng Shi

Model-Driven Approaches

Compiling Process Graphs into Executable Code....................... 317
Rainer Hauser and Jana Koehler

Model-Driven Configuration and Deployment

of Component Middleware Publish/Subscribe Services 337
George Edwards, Gan Deng, Douglas C. Schmidt, Aniruddha Gokhale,
and Bala Natarajan

Model-Driven Program Transformation of a Large Avionics Framework ... 361
Jeff Gray, Jing Zhang, Yuehua Lin, Suman Roychoudhury, Hui Wu,
Rajesh Sudarsan, Aniruddha Gokhale, Sandeep Neema, Feng Shi,
and Ted Bapty

Product Lines

Automatic Remodularization and Optimized Synthesis
of Product-Families 379
Jia Liu and Don Batory

VS-Gen: A Case Study of a Product Line for Versioning Systems. 396
Jernej Kovse and Christian Gebauer

A Model-Driven Approach for Smart Card Configuration 416
Stéphane Bonnet, Olivier Potonniée, Raphaél Marvie,
and Jean-Marc Geib

Domain-Specific Languages and Generation

On Designing a Target-Independent DSL
for Safe OS Process-Scheduling Components.c.covuuun... 436
Julia L. Lawall, Anne-Frangoise Le Meur, and Gilles Muller

A Generative Framework for Managed Services 456
Liam Peyton and Arif Rajwani

A Generative Approach to the Implementation of Language Bindings
for the Document Object Model iiiiinnennnnnn... 469
Luca Padovani, Claudio Sacerdoti Coen, and Stefano Zacchiroli

Table of Contents XII1

Invited Speakers

Software Factories: Assembling Applications
with Patterns, Models, Frameworks and Tools 488
Jack Greenfield

Modular Language Descriptions., 489
Peter D. Mosses

Author Index ... 491

Generating AspectJ Programs
with Meta-AspectJ

David Zook, Shan Shan Huang, and Yannis Smaragdakis

College of Computing, Georgia Institute of Technology
Atlanta, GA 30332, USA
{dzook, ssh,yannis}@cc.gatech.edu

Abstract. Meta-AspectJ (MAJ) is a language tool for generating As-
pect] programs using code templates. MAJ itself is an extension of
Java, so users can interleave arbitrary Java code with AspectJ code tem-
plates. MAJ is a structured meta-programming tool: a well-typed gen-
erator implies a syntactically correct generated program. MAJ promotes
a methodology that combines aspect-oriented and generative program-
ming. Potential applications range from implementing domain-specific
languages with AspectJ as a back-end to enhancing AspectJ with more
powerful general-purpose constructs. In addition to its practical value,
MAJ offers valuable insights to meta-programming tool designers. It is a
mature meta-programming tool for AspectJ (and, by extension, Java): a
lot of emphasis has been placed on context-sensitive parsing and error-
reporting. As a result, MAJ minimizes the number of meta-programming
(quote/unquote) operators and uses type inference to reduce the need to
remember type names for syntactic entities.

1 Introduction

Meta-programming is the act of writing programs that generate other pro-
grams. Powerful meta-programming is essential for approaches to automating
software development. In this paper we present Meta-Aspect] (MAJ): a meta-
programming language tool extending Java with support for generating AspectJ
[9] programs. MAJ offers a convenient syntax, while explicitly representing the
syntactic structure of the generated program during the generation process. This
allows MAJ to guarantee that a well-typed generator will result in a syntacti-
cally correct generated program. This is the hallmark property of structured
meta-programming tools, as opposed to lexical or text-based tools. Structured
meta-programming is desirable because it means that a generator can be re-
leased with some confidence that it will create reasonable programs regardless
of its inputs.

Why should anyone generate AspectJ programs, however? We believe that
combining generative techniques with aspect-oriented programming results in
significant advantages compared to using either approach alone. MAJ can be
used for two general kinds of tasks: to implement generators using AspectJ and
to implement general-purpose aspect languages using generation. Specifically,

G. Karsai and E. Visser (Eds.): GPCE 2004, LNCS 3286, pp. 1-18, 2004.
@© Springer-Verlag Berlin Heidelberg 2004

2 David Zook, Shan Shan Huang, and Yannis Smaragdakis

MAJ can be used to implement domain-specific languages (i.e., to implement a
generator) by translating domain-specific abstractions into AspectJ code. MAJ
can also be used to implement general-purpose extensions of Aspect] (e.g., ex-
tensions that would recognize different kinds of joinpoints). Thus, MAJ enables
the use of AspectJ as an aspect-oriented “assembly language” [13] to simplify
what would otherwise be tedious tasks of recognizing patterns in an existing
program and rewriting them. A representative of this approach is our prior work
on GOTECH [18]: a system that adds distributed capabilities to an existing
program by generating AspectJ code using text templates.

The value and novelty of Meta-Aspect] can be described in two axes: its
application value (i.e., the big-picture value for potential users) and its techni-
cal contributions (i.e., smaller reusable lessons for other researchers working on
meta-programming tools). In terms of application value, MAJ is a useful meta-
programming tool, not just for AspectJ but also for Java in general. Specifically:

— For generating either AspectJ or plain Java code, MAJ is safer than any
text-based approach because the syntax of the generated code is represented
explicitly in a typed structure.

— Compared to plain Java programs that output text, generators written in
MAJ are simpler because MAJ allows writing complex code templates using
quote/unquote operators.

— MAJ is the only tool for structured generation of AspectJ programs that we
are aware of. Thus, to combine the benefits of generative programming and
AspectJ, one needs to either use MAJ, or to use a text-based approach.

In terms of technical value, MAJ offers several improvements over prior meta-
programming tools for Java. These translate to ease of use for the MAJ user,
while the MAJ language design offers insights for meta-programming researchers:

~ MAJ shows how to minimize the number of different quote/unquote oper-
ators compared to past tools, due to the MAJ mechanism for inferring the
syntactic type (e.g., expression, declaration, statement, etc.) of a fragment
of generated code. This property requires context-sensitive parsing of quoted
code: the type of an unquoted variable dictates how quoted code should be
parsed. As a result, the MAJ implementation is quite sophisticated and not
Just a naive precompiler. An additional benefit of this approach is that MAJ
emits its own error messages, independently from the Java compiler that is
used in its back-end.

— When storing fragments of generated code in variables, the user does not
need to specify the types of these variables (e.g., whether they are statements,
expressions, etc.). Instead, a special infer type can be used.

The above points are important because they isolate the user from low-level
representation issues and allow meta-programming at the template level.

We next present an introduction to the MAJ language design (Section 2),
discuss examples and applications (Section 3), describe in more depth the indi-
vidual interesting technical points of MAJ (Section 4), and discuss related and
future work (Section 5).

