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PREFACE OF THE SECOND EDITION

This book is the second edition of a text written in 1986,
1987 and reproduced in 1988 in the preprint series Notas de Matema-
tica of the Universidade Estadual de Campinas. This second edition
has benefitted from a few improvements but it is not substantially
different. The set of references has however been enriched by many

more recent papers.

INTRODUCTION

In the year 1954 L.Schwartz published a celebrated result
on the "impossibility of the multiplication of distributions", prov-
ing that there does not exist a differential algebra A containing
the space @ of distributions (on the real line) and having the
classical properties relative to differentiation and to the alge-—
braic operations of addition and multiplication. At that time it
had been recognized that physicists had been using "illegal multi-
plications of distributions'", even in classical physical theories
such as Continuum Mechanics. In many cases this leads to satisfac-
tory results, some of them consisting of numerical codes used 1in
industry. This situation suggests to mathematicians that they should
reconsider the problem so as to try to find a solution in form of
a suitable underlying mathematical theory.

Seven years ago, a differential algebra % containing 9,
and having all natural properties (of course one of them is in a
weakened form relative to Schwartz' impossibility result), has been
constructed. Recently it was recognized that this theory was perfect-
ly well-adapted to the solution of problems of physics and engfneer
ing involving such multiplications.

The aim of this book is to provide a simple introduction
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to this nonlinear theory of generalized functions introduced by

J.F.Colombeau. Now this theory extends from pure mathematics to
physics, passing through the theory of partial differential equa-

tions, both from the theoretical and the numerical viewpoints.

pure mathematics: the theory presents a faithful generalization

of the classical theory of C® functions, encompassing all of its
main properties. Further it provides a synthesis of most existing

multiplications of distributions.

physics: in some cases in which the equations of physics involve
"multiplications of distributions" and give "ambiguous results"
this theory allows and suggests more precise formulations of the
equations, thus leading to new (and unambiguous) formulas, in

agreement with the experimental facts.

theoretical solutions of partial differential equations: in this

theory one can obtain general existence-uniqueness results for
large classes of equations which have no solutions in the setting
of distributions. These new solutions are coherent with the clas-
sical solutions when they exist. In the case of equations of phys
ics it has often been checked that these new solutions are in
fact classical functions, for instance piecewise C® functions ,
corresponding to the solutions expected by physicists and engi-

neers.

numerical solutions: this theory provides new numerical methods

which permit one to compute solutions of systems used in industry
(numerical simulations of collisions for instance). It gives the
possibility of mastering the treatment of systems in nonconserva-
tive form, which is made more important by the fact that this
theory allows one to transform conservative systems into equivalent
systems in nonconservative form (in certain circumstances one
obtains in this way very efficient numerical schemes even for Ehe

classical system of fluid dynamics).



This text presents basic concepts and results that until
now were only published in article form. It is intended for mathe-
maticians, but, since we do not dissociate the theory from its appli
cations, it may also be useful for physicists and engineers. The
needed prerequisites for its reading are essentially reduced to the
classical notions of differential calculus and the theory of integ-
ration over n-dimensional euclidean space %, . Since it is recent
and very original, this theory is not widely understood; we give
an account of the basic points using its simplest presentation.

The applications are yet more recent and most of them still in
preprint form. We give a sketch of some of them: semilinear hy-
perbolic systems, nonlinear parabolic equations, systems in non-
conservative form, new formulas and new numerical schemes. There-
fore we believe this survey will be useful to a wide audience and
should facilitate the reading of articles and books on this sub-

ject.

Chapter 1 is an introduction to these generalized functions
on an arbitrary open subset £ of the euclidean space B, . In § 1.1
we sketch how J.F.Colombeau has obtained this concept from a study of
C® or holomorphic functions over the locally convex spaces @(Q) and
& (Q) . Fortunately the reader who is not familiar with the concept
of locally convex spaces may drop this section without any trouble
for the understanding of the remainder of the book. For readers
acquainted with infinite dimensional spaces, we believe this sec-
tion might be useful to explain how this original concept can be
obtained, in a natural way, from a purely mathematical viewpoint.
We also expose successive natural simplifications of the first
construction and then an elementary definition is studied in §§ 1.2
to 1.6 in a way which is significantly different from the other
texts on this subject. We obtain all the desired properties (co-
ordinate invariance, free restrictions to subspaces and composi-
tion products, independence of the set of generalized numbers of
the dimension of E_ ). In §1.7 we introduce natural topologies on
% (Q), as well as concepts of strong and weak convergence in this

space. In §1.8 we define a subspace of %9(Q), 9.,(Q), which al-
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though simpler than %(Q) , is a sufficient setting for most of the
applications in Chapter 3. There is no natural inclusion of the
space 9’ (Q) of the distributions on @ in %.;(Q) : several elements
of %,(Q) may represent equally well any given distribution. Never-
theless this is perhaps clearer and more adequate for some physi-
cal applications. We work in %:(Q) in this book since it gives
shorter proofs; anyway we could have worked in % (Q) just by modi-
fying the proofs in a routine way. One might prefer (§1.10) a
slightly more sophisticated definition of %(Q) in which general-
ized solutions of algebraic equations are automatically classical
solutions; the price to pay consists in straightforward additional
technicalities in some proofs of results in Chapters 2 and 3. In the
Appendix of Chapter 1 we expose how Colombeau's theory unifies the
previous definitions of multiplications of distributions proposed by

various authors in special cases.

A novelty relative to distribution theory 1is that the defi-
nition of these generalized functions extends easily to any not neces
sarily open subset X of R", thus generalizing the classical C® func-
tions on X in Whitney's sense. Chapter 2 is devoted to this natural
extension, which is used in some applications and which has not yet
been published in book form. We recall the classical concept of the
Whitney C® functions on X and state without proof the Whitney exten-
sion theorem. A similar result holds for Colombeau's generalized func
tions. The proof we sketch is obtained from an analysis of a proof of
the classical Whitney extension theorem (§2.4). We prove in detail
two particular cases: when X 1is reduced to a single point (Borel's
theorem) and when X is a closed half space (by following a very

simple proof due to R.T.Seeley).

Several applications are exposed in Chapter 3. They con-
cern nonlinear partial differential equations; some of them consist
in new formulas and new numerical schemes of interest to physicists
and engineers. In elasticity and elastoplasticity engineers state’
Hooke's law in nonconservative form, see Appendix 1. Numerical tests

make it evident that the systems of partial differential equations
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thus obtained have shock-wave solutions, represented mathematically
by classical discontinuous functions. Since these systems are 1in
nonconservative form, the concept of discontinuous solutions does

not make sense mathematically: this gives rise to '"meaningless'" or
"ambiguous" multiplications of distributions. Colombeau's general-
ized functions provide a setting in which these problems can be
treated successfully. This has been done recently by Colombeau, Le
Roux and their co-authors, and a sketch of their theory is given

in §§3.1 to 3.4 and Appendices 2,3 and 4. In §§3.1 and 3.4 we show

in models of elasticity and elastoplasticity how we can compute

jump formulas for systems in nonconservative form. In §3.2 we show
for these systems how we may solve Cauchy problems with discontinuous
Cauchy data, in agreement with the observations of numerical analysis,
see Appendix 2. In §3.3 we obtain a new (nonconservative) formulation
of hydrodynamics which 1is equivalent to the classical formulation and
which gives rise to new numerical schemes, described in Appendix 3.
These new formulas and numerical schemes are in agreement with the
experimental observations. They are used for numerical simulations

of collisions; these phenomena last only a few microseconds, which
makes the experimentation very difficult (besides the obvious fact
that such experimentation is extremely expensive) hence the interest
of these numerical simulations. Of course 1in this book we only sketch
a few schemes 1n one space dimension. We refer the reader to special-
ized papers for more results and for schemes in two and three space
dimensions. In §3.5 we present a general existence-uniqueness result
for semilinear hyperbolic systems with Cauchy data distributions. In
§3.6 we present an existence-uniqueness result for a nonlinear para+t
bolic equation with Cauchy data distributions. It 1s known that in
general such equations do not have solutions in the classical sense;
the solutions we obtain agree with the classical solutions when they
exist. We only give the simpler results and we refer the reader to

more specialized papers.

In short we hope that this book gives an easy and reason-
ably self-contained panorama of this new theory (thereby making its

applications accessible to a wider audience).
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We became convinced of the interest of Colombeau's non-

linear theory of generalized functions because it satisfies at the
same time the following requirements of mathematical beauty and of
efficiency:
a) %(Q) is a differential algebra containing natural-

ly a copy of the vector space 2’ (Q) (see Rosinger's recent book

[4] for the natural character of this inclusion) on which it induces
the classical concept of distributional derivatives, and C” () is a
subalgebra of %(2) . This is the best possible situation for a dif-
ferential algebra containing 9’ (). The algebra €(Q) of all contin-
uous functions cannot be a subalgebra in any case (Schwartz's impos
sibility result) but in Colombeau's theory this difficulty is master-

ed and overcome.

b) at the same time this theory provides a very conve-
nient setting for finding and studying solutions of nonlinear partial
differential equations, both from a purely mathematical viewpoint
(existence, uniqueness, coherence with classical solutions when they
exist) and from the viewpoint of numerical analysis, engineering and
physics (explicit computations of solutions, new numerical schemes).
Often one can prove that the "abstract solutions'" have a very clas-
sical aspect, for instance, discontinuous functions representing
shock waves; even in physical cases these solutions often do not
exist within distribution theory since they are not solutions in
the sense of distributions.

We have developed this book as an attempt to present these
facts very clearly. The overlap with Rosinger's recent book [4]
treating Colombeau's theory, of applications to partial differential
equations, and of connections with Rosinger's algebras is quite re-
duced, and so these books complete each other. The overlap with Co-
lombeau's original books [2,3] is also quite reduced since our book
treats developments and applications which did not exist at the time
those books were written. Further our presentations of Colombeau's

generalized functions is original and has not been published up to’ now.

I am very much indebted to J.F.Colombeau for having intro-
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duced me to his research already in 1982 when he was developing
it, for several discussions and for having sent me manuscripts

of his papers. I am also very much indebted to J.Aragona, J.T.
Donohue, J.E.Gale, M.Langlais, A.Y.Le Roux, A.Noussair, M.Obergug-
genberger and B.Perrot for their help and for corrections in the

text.
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CHAPTER 1

GENERAL IZED FUNCTIONS ON AN OPEN SUBSET OF E

1.1 - THE ORIGINAL DEFINITION.

J.F. Colombeau, trying to find a general multiplication
of distributions,had successive ideas until he arrived at a
simple definition which requires only a very elementary knowledge
of differential calculus.

We begin this chapter with these ideas so that the reader
might follow Colombeau’s reasoning. This paragraph may be dropped
by those who are not familiar with the theories of locally convex
spaces and distributions.

If Q denotes an open subset of R"™ and 2(Q2) the space of
(Oh complex valued functions on Q with compact support,
Colombeau’s first idea was to use C® or holomorphic functions on
2(Q) . He thought that, if T, and T, were distributions on Q,
their product might be the map

€ D(Q) > T, ,0>.<T,,p> € C ,

where KT, ¢> € C denotes the value of the distribution T on the
test function ¢ ; but this definition would not even generalize
the usual multiplication of C® functions since for f,, f, € C"(Q)
and ¢ € @(Q) we have, in general,

(1) Jfl(x) p(x) dx . JfQ(x) e(x) dx # Jfl(x) fo(x) ¢(x) dx.

Without abandoning the idea of using C® or holomorphic
functions on 2(Q) and in order to identify the two members of
(1), he considered the idea of taking a quotient.



We recall that @(Q)is contained and dense in &°(Q)(the space

of all distributions on Q with compact support €’ () isthe topological
dual ofC=(Q)), which is a strong dual of a Fréchet-Schwartz space -
C® (8 (W) and C°(PD(Q)) denote respectively the spaces of all complex

valued C® functions on &’ (Q) and on @2(2), see Colombeau [1]. Then the
restriction map

C® (& (D)) — C” (D))
B+ Bly a,

is injective, see Colombeau (1, 0.6.9 and 1.1.6]1. So we may

consider that
C* (& (Q)) C C° (@)
If f,, f, € C°(Q), the following map
T € §°(Q) v— (KT, f > KT, f,> € C

coincides in the set {8, : x € Q) (6, is the Dirac measure at x)
with the classical product f,.f,. This fact led Colombeau to
consider in C® (&8’ (Q)) the equivalence relation r

R, r R, & R, (6,) = R,(8,) for all x € Q .
If A denotes the map

C? (& (W) — C° (W
R+— (x » R(6.))

then
R € Ker A< Rr O

Therefore the algebras C® (&’ (Q))/Ker A and C°(Q) = L&’ (Q),C) are
isomorphic (if E is a locally convex space, L(E,C) denotes the
space of all continuous linear maps from E into C ; one Pproves
classically that L(& (Q),C) = C°(Q): reflexivitv of C7(Q) )

A new concept of derivatives in C°(@2(Q2)) was defined
which generalized the derivation in the sense of distributions
and which corresponded, via the map A, to the usual derivatives
in C*(Q).

For these reasons, Colombeau was seeking an ideal of
C°(D(Q)) whose intersection with C® (&’ (Q)) would be Ker A.



The following result gave a convenient characterization of Ker A:

given REKer A, gq€EN, wEﬂq := {y € P(R"™) such that JW(X) dx = 1 ,
in Y(x) dx = 0 if i € N", 1<|i|<€q) and K a compact subset of Q
(KccQ, for short) there are ¢>0 and 7>0 such that

(2) [RCo, | € ce?*!

for all x€K and 0<e<n. Here o,
defined by

denotes the element of &,

» X

e, (A = 7" p(eT(A-x))

for all A € R"™. That is, R € C® (8’ (Q)) satisfies inequality (R)
for given ¢ and K if, and only if, R € Ker A.

It was this characterization of Ker A that would produce
the definition of an ideal of C®°(2(Q)). However, when multiplying
an element of Ker A by an element of C®(2(Q)), the product might

grow very fast with € !, when & = 0. Therefore he decided to

consider only elements of C°(@(Q)) with a moderate growth in &',

that is, elements R with the property

alkl
for every KccQ and D = ———— (0<|k| <o) partial
3x,'...3x,"

derivation operator, there is NEN such that, for each
o € #, there are c>0 and 7>0 satisfying

| (DRY (¢, D < ce ™"
for all x € K and 0<&<n.
The set of these elements of C®(@2(Q)) is denoted by
Ey(@(Q)). It is obvious that DR € &,(2(Q)) if R € &,(2(Q)) and
that the product in C®(2(Q)) of two elements of &,(2(Q)) is still

in §,(2(R)) .

As some important examples there are the elements of
C® (8’ (2)) and the distributions on Q.



Now, an ideal to be considered is the set # of all R €
&y (@(Q)) with the following property

for every KccQ and D derivation operator there is N € N
such that, for each ¢ € « , with g2N, there are ¢>0 and
(N) >0 satisfying

| (DR) (v, )| < ce? "

for all x € K and 0<&c<n.

This ideal # satisfies the initial requirement
N N C°(E (R)) = Ker A .
Finally the quotient
GQ) 1= E,@WH/HN

is an algebra containing C® (Q) as a subalgebra, since
C°(Q)=C* (&’ (Q))/Ker A, and containing @’ (Q), since #ND° (Q)={0).

Many results were proved by using this definition but,
working with representatives of elements of 9(Q), Colombeau
realized that they did not need to be defined on the whole 2(Q),
since only their values on functions of the kind Pe,x with ] €
4, (q large enough), €>0 small enough and x € Q, were required by
the definition. Then he replaced C®(2(2)) by an algebraic
inductive limit of spaces C®(U), where U is an open set of 2(Q)

with the following property

(P for every KccQ there is N € N such that for all ¢ € o
there is 7>0 with ¢, € U for all x € K and 0<e<n.
This space was denoted Dby 8(99(0)) and its moderate
elements were defined in the same manner as those of C(D(Q)),
their set being denoted by &, (R4 q,)

Again, working on applications, another difficulty used
to appear : an element of &M(Qg(n>) was obtained first on the set
(we,x}, then it had to be extended to an open subset U of 2(Q)

and sometimes this extension led to complications in proofs.



Therefore the sets C®(U) were replaced by sets &*(U),
where U might be a subset of DR, not necessarily open,
satisfying property (P,), where

#*(U) = {R : U > C such that, if ¢ € «, and €>0 are fixed
such that the set {¢, , : x € w} is contained in

U, where w is an open subset of Q, then the func-
tion x € w k> R(p, ) is C°).

In this definition differentiability in ¢ and €& 1is
dropped. We shall come back to this point later. The new
algebraic inductive 1limit was denoted by 8*(99(0))4

This is not the simplest definition yet. It was noticed
that, when a representative of a generalized function on R" was

constructed, the chosen set U was often U Tt «,, where 1T, is the
v xER™

translation operator ((T,®) (¥)=¢(y-x)). Then, why not to take this

set U as the common domain of all representatives of generalized

functions on R"™ ? It 1is proved 1in Colombeau [2], §7.7, that

the consideration of fypctions with domain R™"X#, is indeed

eéquivalent tothe morecomplicated use of the above inductive limit

Besides the simplification sketched above, there 1is also

a modification on the sets ﬂq. In order to define composition

restrictions of generalized functions to subspaces
different sets dq, which further,like the
give a concept of generalized functions
change of origin

products and
we shall define
concepts sketched above,
which does not depend on a change of basis, a
and of the norm.

Also one has to consider instead of the bound c&¢? " in

(N) more general bounds ce? (A N, where Y is an increasing

function from N into R* tending to +o at infinity. This more
technical bound is needed for certain properties,see 1.2.16 below.

The elementary definition as given in Colombeau [3] and
Rosinger [4] is exactly the one given in § 1.2 below in which our
sets Qq would be replaced by the sets &, . In the definition given
and Rosinger [4], the restriction of a generalized

subspace of dimension less than n is not
subspace, since the sets

in Colombeau [3]
function on R"™ to a
defined as a generalized function on the

4, depend too much on the spacedimension. This is quite natural



