RELATIONAL DATABASES:
Concepts, Selection and
Implementation

RELATIONAL DATABASES:
Concepts, Selection and
Implementation

SIGMA PRESS - Wilmslow, United Kingdom

Copyright ©, Jon Page, 19%)
All Rights Reserved. No part of this publicatzon may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means, clectronic, mechanical,
photocopying, recording or otherwise, without prior written permission

First published in 1990 by
Sigma Press, 1 South Oak Lanc, Wilmslow, Cheshire SK9 6AR| England
British Library Catalbguing in Publication Data

| A CIP catalogue record for this book is avaiiable from the British Library.

ISBN: 1-85058-140-1

Typesetting and design by
Sigma Hi-Tech Services Lid

Printed in Malta by

Interprint Ltd.

Distributed by

John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex, England

Acknowledgement of copyright names

Within this book, various proprietary trade names and names protected by copyright
are mentioned for descriptive purposes. Full acknowledgment is heichy made of all
such protection.

Preface

| remember vividly, when sitting 4 board interview with the Civil Service many years
ago, being askcd o desceibe a Relational Database Of course at that time I didn’t
know how to reply to the (uestion. so it is a hittle ironic that I now come to wri: this
book, which above ali seeks to answer just this question. Between that time and now,
[have gained extensive experience of three Relational products, namely [ngres,
Oracle and perhaps o less Luown, bul equaily significant product, the DBC/1012
Database Computer and have often presented or demonstrated these products to
potential purchasers. I+ w2 in faci these presentations and conversations with people
interested in investing in relational technology, that made me decide to write this
book. It seemed to me (o that, although great amounts of tinie, effort and care were
taken in evaluating different relational products, very rarely was I convinced that the
purchasers either knew the comnlete story or were basing decisions on reality rather
than theory.

The book is thus born out ¢f my own experience and focuses on three themes. Firstly
on relatonal concepts including both some history and possible future developments.
Sccondly it detaiis some of the more imporiant faciliues that a Relational Database
Management System (RDBMS) should provide and, lastly, real-life examples and
viewpoints illustraic the practicalitics of using an RDBMS.

There are two major paris. Part | sceks to deline both what databases are and how
they are-used. 1t describes the differences between Relational Databases and their
predecessors, and details the relational model by describing its close affiniity with data
norimalisation techniques. Chapier 5 describes the different the various database
architectures vsed to suppont current products, and in this | rely heavily on my
experiences with Oracle, Ingres and the Teradata DBC/1012, 1 realise that itn time my
‘>ceriptions of these products will become out of date, but this is unavoidable.

A logical step from database arciitectures takes us into a chapter devoted to On-Line
Transacuon Processing and 0 complete Part 1, T have illustrated the 12 rules that
were formulated by E. F. Codd 1o define a Relational Database.

Part 2 is devoied to deseribing some of the more common and important facilities that
should be provided in an (RDBMS). | have used the three aforementioned products
to illustrate these facilities, and agzain [lay mysclf open to the possibility (indecid
certainty), that my descripuons wili secome out of date. I have not attempted to cover
all the facilities that shouid ¢ on ofor, and perhaps the two most noteworthy that [
have omitted are the use of Struciered Query Language (SQL) from inside Third
Generation T anguages (embedded SOL) and the close affinity of relational systems”
with Fourth Ceneration 1anguages ‘2GL), Both of these subjects deserved a greater
degree of discussion than | can manage 1n a book of this nagure.

Topics that are covered in Part 2 include a discussion on SQL (Chapter 8) followed
by Chapters 9 and 10 covering the topics of indexing and optimisation. Following
these performance-oriented chapters, the next two are concerned with transaciion
management and detail both the concept of a transaction and the required locking
mechanisms that can make them work. Next I have included a chapter covering
security and follow this with a description of integrity constraints. Journalling,
Auditing and Dictionaries are each dealt with in separate chapters. Finally, I have
brought the book to a close with a chapter on the subject of the Distributed Relational
Database which may be of use to people involved in the evaluation of such
architectures.

I have started each chapter with an indicator of its subject matter, and have tried at
the end of each, to summarise the major points to be found within the chapter and
points that should be considered in more depth when reviewing that particular subject.

Finally, let me say that writing this book was a very educational and enjoyable
experience for me. I thank all who helped me and those who simple put up with me
during those long hours in front of a PC, and I hope that all who read this book will
leam something, no matter how small. I also thank the people in Oracle, Ingres and
Teradata who have helped me directly or otherwise, in my understanding of their
products — I hope I have done them justice in this book.

Jon Page

- Conients

Introduction

PART 1:
WHAT IS A DATABASE?

1. The Use of Databases
The Role of the Database
Levels of Database Implementation
Level 1 Environment
Level 2 Environment
Levecl 3 Environment
Level 4 Environment
Level 5 Environment
The Utilisation of Databases
Summary

2. What is a Database?

File Management

The Database Management System

To Begin at the Beginning

The Three-layered Database
The Logical or External Layer
The Physical or Conceptual Layer
The Native or Internal Layer

Summary

3. Some DBMS History
Database Models

The Hierarchical Model
The Network Approach
Access Languages
Summary

4. The Relational Model
Horses for Courses
Third Nominal Form Analysis

11
11
12
12
12
12
13
13
14
16

17
17
18
19
20
21
21
22
23

25
25
26
34
39
41

43
43

~J

First Normal Form
Second Norma! Form
Third Norma! Form
Turning TNF Output into a Relational Database Modcl

P

L A T -
-

Two Vital Relational Concepts Revisited 52
Relational Structures 54
Relational Operators 56
Summary &0
5. Relational Database Architectures 6]
Retlaticnal Database Aims 6i
The Server Architechture 62
The Single Server Architecture . 62
The One-to-Cne Client/Server Architecture C oM
The Muliiple Server Architecture 63
The Oracle Architecture 65
The Ingres Architecture 69
Comparing the Two Approaches 71
Summary 71
6. On-Line Transaction Processing 73
Principles of Transaction 73
OLTP Characteristics 7
Hardware Solutions 77
Software Solutions %1
Compiled Transactions %1
Multi-Volume Tables 81
Deferred Write . ' 82
The Benefits of Parallelism 83
Summary RS
7. When is a Database Relational? 87
Relational Definition 87
The Twelve Rules 88
Rule 1: The nformauoen ruie %8
Rule 7: The nule of guaraniced access 39
Rule 3; The sysiumatic treatment of null valucs %9
Rule 4: The datsbase description rule 89
Rule 5: The comprehensive sub-language rule G
Rule 6: The view updating rule 90
Rule 7: The mscrt and update rule 91
Rule 8 The physical independencce rule 91
Rule 9: The logical data independednce rule 91
Rule 10: integrity independence rule 92
Rule 11: Distribution rule 93

Rule 12: No subversion rule 93

PART 2:
RELATIONAL DATABASE
MANAGEMENT SYSTEMS

8. HQL

Why SQL 1s Favoured

Ease of Use
The Data Definition Statements
The Data Manipulaton Siatements
The Data Control Statements

The Portability Issue

Some Imporiant SQL Extensions
Hicrarchical Data Structure Support
Outer Joins
Correlated Queries

Some other Anomalies in SQL
Entity Integrity
SQL and Duplicate Rows
Upscrts

Summary

9. Indexing

What is an Index?
The Biree Index
The ISAM Index
Row Uniqueness
Compression
Fillfactors

Modily

Hash Organisation
Bit-mapped Indexing
Summary

10. Optimisation

The Role of the Optumiser

Join Processing
Cartestan Products
Product Joins
Sort/Merge Joins

Primary Index Look-Up (Nested Joins)

Suimmary

11. Transaction Management
Basic Principles
How Are Transactions Managed?

95

97
97
97
98
98
99
101
103
103
104
106
107
107
108
110
111

113
113
115
118

© 120

120
121
121
121
123
125

127
127
131
131
132
132
133
135

139
139
141

COMMIT and ROLLBACK
The Lost Update
The Uncommitted Dependency Problem
The Inconsistent Analysis Problem
Transactions per Second
Summary

12. Locking
Tackling Concurrency
The Lost Update
The Uncommitted Dependency Problem
The Inconsistent Analysis Problem
Deadlocks
Locking Granularity
Page Level Locking
Row Level Locking
Row Level Locking Supported by Oracle (V5)
Locking Modes
Access Mode
Lock Escalation
Summary

13. Access Control

Selective Security

Operating System Access Control
Database Access Control
Controlling Privilege

Function Control

Data Restrictions

Summary

14. Data Integrity

Integrity Constraints

Domain Constraints

Entity Integrity

Column Constraints

User-defined Integrity Constraints

Referential Integrity
Self-Referencing Tables
Implementing Referential Integrity
The Timing Factor

Summary

15. Auditing
What is Auditing?
Security Auditing

142
144
144
145
146
148

149
149
150
151
151
152
154
155
155
155
156
156
157
158

161
161
162
162
To4
165
166
167

169
169
170
171
171
172
172
176
177
178
180

183
183
184

Data Auditing
Resource Usage Auditing
Summary

16. Backup and Recovery
When Things Go Wrong ...
Recovery Facilities

A Recovery Sequence
Summary

17. Data Dictionaries
The Information Providers
Dictionary History

The Kcy Elements
Summary

i8. The Distributed Relational Database
The Radical Approach

Distributed Processing

Distributed Database

Distributed Optimisation

Distributed Transaction Management
Distributed Locking

Helping the Communications Overhead
Homogeneous and Heterogeneous Systems
A Different Approach

Summary

Glossary

Index

186
187
188

189
189
191
192
194

195
195
197
198
200

201
201
202
203
208
208
209
209
211
713
214

217

Introduction

The worla of the programimer today stands at scmething of a crossroad.
Rarely hefore has thee Deen such o wide variety of specialisms awaiting
mastery and never betore have the rewards for those that have
mastered them been so disproportionately scaied against those that
have not Changes occur every day and the industry has gone through
many times of uncertainty. There have been battles between the
Mainframe diehards and the micro computer innovators. Mini computers
have often been used o aveoid decision making and many of our large
blue chip naustries nave changed thelr sirategic hardware and software
policies s often that lack of decision making becomies a real producti-
vity problerm

Now however, there are even maoie choices fo be made. In addition to
those that previously demanded our attention. we must now consider
Relatonul Database software, fourth Generation Languages and Expert
Systermns to name just a few. We must alsc understand that these items,
coupled with hardware, are all likely te be interrelated by some overail
compiy requirernant What is the 1ole of these Relational Databases,
Fourth Generation Languages and Expert Systems and is technology at
last advancing at a faster rate than we can assimilate? These are all valid
issues and in this book | have attempted o supply some of the answers
regarding the use of iteiationc’ Dotabases.

From the view pomnt of the DP professional there is hittie benefit in today’s climate of
cither standing ti middle ground or of being the ‘jack of all trades’. The third
generation of computer fanguages, and those that swear by them, find themselves i
the middie of the roud whereas yesterday they not only built the road but also decided
m what direction 1t was (o go. In the blink of an eye, instead of three generations of
programming language there are now at least five, and the people who mvested
everything in their third generation expertise, find themselves severely out in the cold.
These people must now learn new skills to survive, or perhaps revert 1o older ones
fong forgotien.

Not to be oudone by ihe great progress being made in the development of
programming languages, advance in the design of data storage methods has not been
slow, and 10 keep a certain symmetry, I have tried o define five generations of
database structwe o maich the well-documented five yenerations of programming
language. Whilst there :s certainiy some relationship in the way the languages and
databases have grown up, this relationship is not always ciear, as you will see.

By way of intrnducing the subject of this book, I would like to pause for a while and
examine in broad terms the software evolution that we have witnessed in the last few

decadcs.

It is common, and in fact I already have done so, to refer to the evolution of computer
languages in terms of ‘generations’, the first of which, not surprisingly cnough, called
the ‘first generation’. This refers back to the days when all computer instructions
were coded; and often toggled into the machine in binary. It was indeed a very
primitive and labour intensive activity, and one certainly prone to many errors.
Thankfully, and very quickly, it was discovered to be a lot easier to devise codes for
these long-winded binary instructions and to feed these codes to the machine to be
assembled into the binary ‘machine instructions’ required. This represented the jump
from first to second generation programming languages.

It was a large and revolutionary step. Instead of pandering to the computer and
having to spoon feed it in its own ‘yes or no’ ianguage, the programmer could write
in codes and symbols more understandable to himself and others, and let a software
tool, the assembler, convert these instructions into the explicit bit configurations
understood by the hardware. As the instructions became easier to write and
understand so productivity increased, a factor which benefited further from the fact
that single ‘assembler language' statements could represent many instructions at the
‘machine code’ level.

Just as assembler programs could thus become more sophisticated and procedural; a
progression in the idea of such programs manipulating data dawned, and although at
this stage such data tended to be simple in structure and low in volume, rapid
advancement was awaiting round the comer.

Let me take this opportunity of stating that, for the purpose of this introduction, my
idea of a database is simply that of a store of data, in any format and of any volume.
At the lowest level of programming, databases took the form of simple areas of
storage, defined as variables or arrays within programs. The contents of such
‘databases’ were ‘hard coded’ into the program, or otherwise created, destroyed or
manipulated without reference to any datastore outside the context of that program.
As such, data existed as combinations of lists, arrays, variables and literals and even
at this stage the limitations of such data storage techniques were easily recognisable;
a fact that led quickly to the separation of the data (database) and code (programs) as
two separate entities. Indeed,.this simple action represented a major advancement in
the concept of data storage and management, which took the sophistication of the
database itself from its first to its second generation.

It is a recognisable phenomenon within the indusiry that advancement in design
comes with a continued and increasing abstraction from lower levels of detail. Just as
assembler languages separated the programmer to a great extent from the physical
machine, whilst still within themselves remaining essentially machine specific, the
third generation of languages provided tools that went three stages further, to bring
dramatic increases in productivity. Firstly, they enable the generation of many

assembler level instructions from brief and simple commands, which were themselves
designed with much greater thought and consideration to the human interface.
Secondly, they sought to implement standard languages that were usablc across
different types of machine. Thus whilst the assembler programmer must learn largely
different assembler languages, if he should switch from IBM to ICL machines, and
indeed often between systems manufactured by the same supplier, he would find
surprisingly little difference in the dialects of COBOL in use, because all the low
level differences are ironed out by the respective COBOL compilers. The third major
enhancement saw the inclusion of standard methods, within the languages, to
structure and access data stores, which at this stage are more commonly referred to as
files. Whilst third generation languages still support the first generation of database,
by facilitating the definition and storage of data structures and values entirely within
the program, there was however, a rapid movement to hold all data externally in files.
These data files then became accessible to many different programs simultaneously. It
must be said that in achieving this, languages were extended with both a mishmash of
operating-system-specific commands, and those that were destined to become industry
standard in the field of file handling.

Very quickly dawned the realisation that the act of sioring, structuring and accessing
data could be optimised and that many rundamentai issues arising from the inherent
independence of data, such as security, currency and access control, could be
centralised. This led to the creation of the third generation database in the form of the
all encompassing Database Management Systemi, supporied originally by both
specialised software and extension to the current third generation languages.

In fact, the penetration of the Database Management System (DBMS) is now aimost
complete within data processing environment, and nearly all computer manufacturers
supply both file handling capability and DBMSs accessible to all languages supported
by their systems. However, in many ways this has represented a step back from true
advancement, because the DBMSs that were built, were designed initially to support
specific types of application on specific hardware platforms, and so did not truly
progress the concept of the independent data repository. It is true also that the
methods of accessing these structures ensured that the languages used, once again
became machine dependent simply because the DBMSs they referenced were
themselves not portable between machines or operating systems. Of course, this
problem should be seen in context. If the majority of commercial computers in the
world are IBM, the fact that, as an IBM programmer, you know IBM’s major third
generation database offering, IMS and the methods required to access it, puis you in a
very strong position compared to the person that understands well the COBOL
extensions required to access the Data General INFOS system. Portability is a
worthwhile goal only if combined with profitability, and indeed at the corporate level
perceptions change. The company that has locked its data into an IDMS database is
going to find it very difficult and expensive to change its computer strategy to
incorporate increasingly smaller, distributed machines from a different manufacturer.
The potential, however, for such changes, and the financial implications of them, are
becoming more significant as every day goes by.

The requirement at this stage for beneficial progress, was for a sunphifiicauon of the
way data was secn 1o be stored and was avadable to be accessed; in shoii, a turther
level of abstraction from the third generation database and language.

It was a simple reahisation that if the entire industry all used the same simple logical
way of representing, storing and accessing dala, then i One sweep, enormous
productivity benelits would arise, as data, code and skills became poriaole, and the
science became more easily understood and accessible to the people it servis.

I's pleasing 10 note that by and large this rcalisation has been accepted, and this
logical view of duta winch ihie new gencration of both languages and databascs
supports, is deringd on mathemaucally proven sct theory. The term relitional has
arrived, and has given opportunities o al! and sundry (o hm!(l new products. or
advance older ones, s0 that they store data logically, wa terms of {lat, two-dimeasional
tabics or relations. Simsdarly, a growth indusiry hes in providing the (ool that can
. manipulate this data through the new database access language SQLL. and o provide
new human mterfaces whuose case of use retlects the enormous strides the new cnlture
had made into sunphlicaton. We can therclore see, that te fourth gencratocn of baih

language and database arose together and &s mutuad pariners,

hotween i

Probably at this level, we see the clearest snid most dircei relationsticn
generation ol languages and its equivalent gencranion of datzbases. [Uis cortanly troe.
and has been a necessity in achieving upgrade paths, that most third ceneration
languages can access fourth generation databases (reiational), and likew e many
fourth generation Iilngr,mgcs (4GLs) can access mavy third vencration databazes, bul
in truth there is a very close kinship between the (ounth gencration products it s hued
to imagine 4GLs being successful without the inherent simplicity of the relnionad
database, and conversely it would secin {utile to plough cffort into developing more
simple database products if this simplicity could not be reflected in the programining
tools that support them. There is ceriainly great room for improvemeni here vet, and
so today there 1s both a huge presence of “GL preducts, and an increased penctration
of 4GL products and concepts. So what then for the future and the fifth vencration
database in particular?

IU's probably the case, and will continue to be for some time, that the progiammer’s
life is destined to be spent providing apphicstions speeific to very concise and often
complicated business problems, and we have sought, or been forced, to put several
barricers in between the data and the persen thad wishes o derive mformation from it
Typicaily these barriers have been in the form of hardware, software and people
whose task, in simple terms, has been to change data into such inioemation

" The role of the fifth generation, both lan . osre o database, should, 1 helieve, seek 1o
cut away this barrier, and allow the cnd-user 10 cxiract information directiy from data
quickly, with flexibility, and based on volumes unthought of at prescent.

My view therelore of fifth generation datzbase products may be fulfilled when these
databases ¢sn make betier use of specialiscd hardware, perhaps m the {orm of gencral

purpose database machines. 1 would hke to see them lowered in status to that of 2
simple utility, much perhaps as communications functions have been off-loaded from
mainframes. We now cominonly accept that many communications functions are
executed in dedicated ‘front-end” processors, and perhaps database activity should
also be ‘black boxed’ as a ‘back-end’ processor in its fifth generation. Certainly such
databases should interface to many different host computers, and many different
softwarce packages, and be served with many different development tools. It must be
relational in the logical sense, and be capable, both of holding ¢cnormous quantities of
data, and of dehivering the necessary through-put. It will be fault tolerant, available 24
hours a day, and almost cerainiy built 1n such a fashion as to provide linear
processing expandability. Perhaps as important as any, will be its ability 1o exhibit
some degree of inielhgence tn providing support for an improved version of SQL
This ‘new SOL’ must have much greater awareness itsell of data structures, so it can
relieve the end user ol this particular and tiresome burden. To iilustrate this last pomnt
let’s remember that whilst it as indecd a huge improvement to write, {or example, in
SOL:

SELECT * FROM SALARIES WHERE NAME = ‘Joi
than write the 50 or so lines needed o do the same in COBOL., when we can say:

GIVE ME Jon's SALARY

and have a quick response, we will possibly have managed the move from fourth
sencration environments and be preparing for the fifth.

However, we are not quite 4t this heady leve! as yet, and although there are producis.
or rather combinations of products, that can achieve the above to some extent today,
through the use of specialised hardware (and indeed one of thesc. namely Teradata’s
DBC/1012 database machine, is used to a small degree to iliustrate various points
made within this hook), there is still a long way to go.

Filth generation products are not my prime concern at this present time however,
when T witness how poorly we are coming to terms with the fourth genc.ation, and 1t
1s indeed at this level that this book is directed. Although, as I have illustraied, the
progression o 4GLs and Relational Database Management Systems 1s largely a
natural one, prompted very much by that of applications backlogs and the need for
mereased simplicity, it scems (0 me that ithere are a great many instaliations of these
products that are not benefiting fully from their presence .

This may be duc largely to a lack of cicar direction when evaluaung, buying using
and supporting the products. 1 think it is fair to say that the relational model of data
as dcefined by E Codd several years ago now, and explained later in this book, is
proving its practical worth, and now is implementable in a variety of software
products which have themselves proved their excellence. Indeed when combining the
rediscovered concepts of analysis and design, such as Third Normal Form (TNF) and
Enuty Rclauonship modelling, with the excellence of some of the current RDBMSs

available, and such automated development techniques as Computer Aided Systems
Engineering (CASE), DP managers should be revelling in a flurry of software
development progress.

However, this scenario is very rarely achieved in the real world, and it seems likely
that the reason why this is true, is that the scale and scope of the modem day
Relational Database System is not appreciated by purchasers, and is not emphasised
by the vendors. This is indeed an unfortunate combination that often ensures that the
products under-achieve in terms of their true capabilites. Let us expand this idea and
throw some light on current RDBMS usage.

In the recent past, the word database has often conjured up pictures of large
insiallations with large machines, enormous amounts of data, and thousands of on-line
terminals. Such a database, more often than not, belongs in my third generation and
would typically be built around an IMS or IDMS type product, supported by teams of
system programmers and a Database Administration team responsible for the
‘corporate data’. The database held data, structured as in the ‘corporate data’ model,
defined by an autonomous design group — the Data Administration. It is a fairly
obvious reality that an entity of this sizc represenis a large investment, in many
senses of the word, and 1s of limited flexibility. In the time frame required to build
such database applications, the business requirements to be met by them invariably
change. Unfortunately, the architecture which the data structures were founded upon
were nol easily changed, in either physical or logical terms, and certainly ihe
programming 1ools used to access these structures were complex and procedural.
Even worse, the structure of the data was directly reflected in the applications that
used that data, and so a picture emerges of a three-fold problem:

(J huge investment
W limited flexibility
U poor programming tools giving low productivity

As an aside, and when considering these problems, it is tempting to forget what I
believe to be the ultimate fallacy — that of the ‘corporate database’, but I fear that
here is not the time or the place to elaborate on this concept.

The picture illustrated above is still in major evidence now, and the realisation of
such problems in some large IBM installations for example, is responsible for a
growing move 1o the strategic relational offering from IBM: DB2. This illustrates
indced, the paradox of the RDBMS. In an IBM world, DB2 will replace (co-existing
initially with) IMS and other large DBMSs because it will be seen as their equivalent,
or greater, in all arcas of functionality including speed. For this reason DB2
installations are likely to be successful, ambitious, beneficial and productive (given of
course that the preduct itself proves to be usable), because its perceived importance as
a strategic tool will ensure the presence of staff, and commitment to make it work,
both from the user and IBM itself.

In the non-IBM world, it is rare that a RDBMSs will be seen in the same light, and it
is common to find them being used as slightly superior file handlers, losing many of
the advantages of the products, and thus down-grading their contribution and status to
something a good deal less than they deserve. Thus, we have a fairly common
scenario: in order to solve some easily perceivable problems — the applications
backlog for example — senior management is suffering from muddled thinking, by
envisaging an RDBMS as a quick and easy solution to systems building. In fact this
is a false idea, and is fundamental to the reason why realised productivity gains are
lower than expected in most cases. The answer really, and it does work when
managed realistically, is that the products can be used to help clear application
backlogs, but to be successful requires not only fourth generation products, but a
methodology ensuring their beneficial use, based on a clearly defined relational
database strategy. This should be defined in just as much detail, and with just as
much cornmitment, as one might assume from any other more traditional large-scale
database implementation.

In order to conclude this introduction therefore, and to throw some further light on
the subject, I belicve that in the long-term it is almost certain that the relational world
will split into two fragments — DB2 and the rest, and that this is not altogether a bad
thing. T think it unlikely that products, such as Oracle and Ingres, will establish and
maintain a large presence in the IBM world, and in fact history tells me that DB2 will
only have to be somewhere ‘‘as good as’’ other products to win enormous market
share. Perhaps the main threat to DB2 will be from the specialist database machines,
which will almost certainly remain quicker and more capable of handling enormous
quantities of data. These are finding their market niche right now.

The non-IBM world is currently looking no further than a handful of products,
including the well-known Ingres and Oracle systems, but with fair competition arising
from all quarters. All of these products will be offering the same types of facilities, so
whilst in this book I have illustrated facilities and architectures, often with reference
to Oracle and Ingres, I have made strenuous efforts to avoid bias to any particular
product. Indeed I have often illustrated certain facilities, knowing full well that they
will be out of datc by the time this book is published, but I feel that it is often the
background to relational products that is so interesting, and sheds light on their
current state.

