Lecture Notes in

Mathematics

H. P. Yap

Total Colourings
of Graphs

©: Springer



H. P. Yap

Total Colourings
of Graphs

6 Springer



Author

Hian-Poh Yap

National University of Singapore
Department of Mathematics

Lower Kent Ridge Road

Singapore 0511, Republic of Singapore

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Yap, Hian Poh:
Total colourings of graphs / Hian Poh Yap. - Berlin ;
Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ;
London ; Milan ; Paris ; Tokyo : Springer, 1996

(Lecture notes in mathematics ; 1623)

ISBN 3-540-60717-X
NE: GT

Mathematics Subject Classification (1991): 05C15, 05C35, 05C75

ISBN 3-540-60717-X Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1996
Printed in Germany

Typesctting: Camera-ready T X output by the author
SPIN: 10479714 46/3142-543210 - Printed on acid-free paper



Preface

I started writing this book in 1990 and completed the first draft in October 1991.
It then took me another one and a half years (June 1992 to December 1993) to revise
the first draft. My objective in writing this book is to give an up-to-date account
of total colourings of graphs which can be used as a graph theory course/seminar
materials for advanced undergraduate and graduate students and as a reference for
researchers. To achieve the objectives, easy-to-read, detailed proofs of almost all
of the theorems presented in this book, and numerous examples and exercises are
provided here. Many open problems are also mentioned. I hope that through this
rapid introduction I shall be able to bring the readers to the frontier of this currently

very active field in graph theory.

After the first draft of this manuscript was completed, I used it as lecturing
material in my graph theory course offered to the advanced undergraduate students
of the National University of Singapore (NUS). I thank my students for their patience

in attending my lectures and for giving me their valuable feedback.

[ would like to thank the NUS for granting me a 10-month (1 July 1991 to
30 April 1992) sabbatical leave so that I could concentrate on writing and revising
the manuscript. I would also like to thank the NUS for granting me conference leaves
(June 1993 and June 1995) and to the Japan Society for the Promotion of Science for
sponsoring my visit to three universities in Japan (12 April to May 1, 1993) so that I
could have direct discussions with many graph theorists working on total colourings,
and at the same time popularize this subject by giving many survey talks on various
topics covered in this book. I had altogether given at least forty survey talks on total
colourings of graphs to the following 18 institutions in Taiwan, People’s Republic of
China, USA, Japan and Singapore during the past three and half years: Academia
Sinica (Taipei) and National Chiao Tung University, Hsingchu, Taiwan (1 - 30 Novem-
ber, 1991); Beijing Institute of Technology, Tsinghua University, Institute of Applied
Mathematics, Academia Sinica (Beijing), Lanzhou Railway Institute, Lanzhou Uni-
versity, Shaanxi Normal University (Xian), Zhengzhou University and Institute of
Systems Science, Academia Sinica (Beijing) (8 December 1991 to 6 January 1992);
West Virginia University, USA (14 January to 8 March, 1992); Spring School and
International Conference on Combinatorics held at Lushan Mountain and Hungshan

Mountain, People’s Republic of China (10 April to 30 April, 1992); Science University



of Tokyo, Ibaraki University and Keio University, Japan (12 April to May 1, 1993);
Inner Mongolia University and Taiyuan Institute of Machinery, People’s Republic of
China (June, 1993); Spring School and International Conference on Combinatorics
held at Hefei, People’s Republic of China (May 22 to June 3, 1995). It is also a
great pleasure for me to acknowledge the helpful comments and suggestions received
from many friends who hosted my visits : Dr. Bor-Liang Chen, Professors A. J. W.
Hilton, Zhang Zhongfu, Yoshimi Egawa, Mikio Kano, Hikoe Enomoto, Ku Tung-Hsin
and Li Jiong-Sheng. I would like to express my deepest gratitude to Dr. Hugh R.
Hind for carefully reading the first draft and making many valuable comments and
suggestions. I am also thankful to Dr. Abdén Sanchez-Arroyo, Mr. Zhang Yi and
Professor A. D. Keedwell in proofreading the second draft, to Mr. Liu Qizhang for
using computers to draw the figures, to Professors J. C. Bermond, O. V. Borodin,
A. V. Kostochka and C. J. H. McDiarmid for sending preprints and reprints of their
papers to me, and to Miss D. Shanthi for typing this book in PCTEX.

Finally, a few words on the reference system and the exercises of this book. When
aresearch paper by XX is referenced in the text as XX [93], it denotes that the paper
by XX in the List of References was published in 1993. When a paper is referenced
as YY [-a], it is unpublished and the ordering a, b, c, ... reflects the ordering of the
unpublished papers of YY in the List of References. When an exercise is marked with
a minus sign or a plus sign, it means that the exercise is easy or hard /time-consuming
respectively; and if it is marked with a star, it means that it is an open problem or

a conjecture.

H. P. Yap
November 8, 1995
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CHAPTER 1

BASIC TERMINOLOGY AND
INTRODUCTION

§1. Basic terminology

In this section we define some basic terms that will be used in this book. Other

terms will be defined when they are needed.

Unless stated otherwise, all graphs dealt in this book are finite, undirected,
simple and loopless. Let G' = (V, E) be a graph, where V = V(&) is its vertex set
and £ = E(G) is its edge set. Ior a graph G, we denote VE(G) = V(G) U E(G).
The order of G is the cardinality |V| of V and is denoted by |G| or v(G). The size
of G is the cardinality |E| of E and is denoted by e(G'). Two vertices u and v of
G are said to be adjacent if wv € E. If € = uv € E, then we say that v and v are
the end-vertices of e and that the edge e is incident with u and v. Two edges e and
¢’ of (& are said to be adjacent if they have one common end-vertex. If uv € E,
then we say that v is a neighbour of u. The set of all neighbours of u is called the
neighbourhood of u and is denoted by Ng(u) or simply by N(w) if there is no danger

of confusion. The degree (valency) of a vertex u is [N (u)| and is denoted by dg(u) or

simply by d(u). The maximum (resp. minimum) of the vertex degrees of (i is called

the maximum (resp. minimum) degree of GG and is denoted by A(G) (resp. 6(G)).

A graph H is said to be a subgraph of a graph G if V(H) C V(G) and E(H) C
E(G). We write H C G if H is a subgraph of . A subgraph I of G such that
whenever u,v € V(') are adajcent in G then they are also adjacent in H is called

an induced subgraph of G. We write I < G if [ is an induced subgraph of G. An

induced subgraph of ¢ having vertex set V"' is denoted by G[V']. The subgraph of G
induced by V(G)\{v1, ..., i}, where {v1, ..., v} C V({), is written as G —{vy, ..., vx }
or G — vy — ... — vy when k is small. The subgraph of GG having edge set E' C E(G)

and vertex set the set of end-vertices of all edges in E’ is denoted by G[E']. The
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subgraph of G having vertex set V(G) and edge set E(G)\ E’, where E' C E(G), is
denoted by G — E’, and in particular, if E' consists of only a small number of edges
€1,...,€k, then this subgraph is denoted by G — e; — ... — ex. The complement G of
G is the graph having vertex set V(G) and edge set {uv|u,v € V(G),uv ¢ E(G)}. If
E' C E(G), then G + E' is the graph having vertex set V(G) and edge set E(G)UE'.

If all the vertices of a graph G have the same degree d, then we say that G is

regular of degree d, or G is a d-regular graph. The degree of a regular graph G is

written as deg(G). A regular graph of degree 3 is called a cubic graph. If G is regular
graph of order n such that deg(G) = 0 (resp. n — 1), then G is called a null graph
(resp. complete graph) and is denoted by O, (resp. I'y,).

A set of vertices S of a graph (G is said to be independent if any two vertices
v and v in S are not adjacent in (. The maximum cardinality of an independent

set of vertices of G is called the vertex-independence number and is denoted by

a(@). Analogously, a set of edges E' of a graph G is said to be independent if
any two edges e and €' in E’ are not adjacent in G. The maximum cardinality

of an independent set of edges of G is called the edge-independence number of G' is

denoted by a'(G). An independent set of edges of G is also called a matching in G. A
matching in GG that includes (saturates) every vertex of G is called a perfect matching
or a 1-factor of G. A matching of G' that saturates every vertex, except one, of G

is called a near-perfect matching of G. Thus G has a perfect matching only if |G| is

even and G has a near perfect matching only if |G| is odd.

If the vertex set of a graph G can be partitioned into r independent sets V..., V;
then G is called an r-partite graph (when r = 2, G is called a bipartite graph having

bipartition (V),V5)). Moreover, if every vertex of V; is joined to every vertex of Vj,

j # i, then G is called a complete r-partite graph. We denote a complete r-partite
graph by O,, +Op, +...40,, where p; = |Vi|,i=1,2,...,r. G = 0p, +0p,+...40,,

and p; = pp = ... = p,, then we call G a balanced complete r-partite graph and

we denote such a graph by A'(r,n), where n = p; = p» = ... = pr. A spanning

subgraph of a balanced complete r-partite graph is called a balanced r-partite graph.

A bipartite graph having bipartition (V;,V2) such that |Vi| = m and [V;| = n is
denoted by K, ,. The graph Iy, is called a star and is denoted by S.,.

A cycle of length n is denoted by €', and a (shortest) path of length n is denoted
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by P,. If G has a cycle C that includes every vertex of G, then C is called a
Hamilton cycle of G and G is said to be hamiltonian. If G’ has a path P that
includes every vertex of G, then P is called a Hamilton path of G. Two graphs G
and H are said to be disjoint if they have no vertex in common. The join G + H of
two disjoint graphs G and H is the graph having vertex set V(G)U V(H ) and edge
set E(G)UE(H)U{zy|z € V(G),y € V(H)}. The union GU H of two disjoint graphs
G and H is the graph having vertex set V(G)U V(H) and edge set E(G)U E(H).

Suppose G and H are two disjoint graphs. If there exists an injection ¢ : V(G) —
V(H) such that ¢(z)¢(h) € E(H) if zy € E(G), then we say that ¢ is an embedding
of G'in H. If such an embedding exists, then we say that G is embeddable in H.

A multigraph permits more than one edge joining two of its vertices. In a
multigraph G the number of edges joining two vertices z and y of G is called the
multiplicity of zy and is denoted by u(z,y). The multiplicity u(G) of a multigraph

G is max yu(z,y) taken over all pairs of adjacent vertices z and y of G.

A (proper) vertex-colouring (resp. edge-colouring) of a graph G is a mapping
@ from V(G) (resp. E(G)) to a set C such that no adjacent vertices (resp. edges)
of G have the same image. If ¢ : V(G) — C (resp. ¢ : E(G) — C) is a vertex-
colouring (resp. edge-colouring) of G' and |C| = k, a positive integer, then we say

that G is k-colourable (resp. k-edge-colourable), and ¢ is called a k-colouring or

k-vertex-colouring (resp. k-edge-colouring) of G. The minimum cardinality of C

for which there exists a vertex-colouring ¢ : V(G) — C (resp. an edge-colouring

¢ : E(G) — C) is called the chromatic number (resp. chromatic index) of G, and is

denoted by y(G) (resp. x'(G)). If ¢ is a k-vertex-colouring (resp. k-edge-colouring)
of i, then ¢ yields a partition of V(G) (resp. E(G)) into independent sets Vi, ..., Vi
(resp. Ej,...,Ex). These independent sets Vi, ...,V of vertices (resp. Eji,..., E) of

edges) of GG are called the colour classes of ¢.

Suppose Z, = {0,1,...,n—1} is the group under addition modulo n. Let § C Z,
be such that 0 ¢ S and if s € S, then —s € . The circulant graph G(Z,,5) is the
simple graph having vertex set Z, and edge set {{g,h} | h—g € S}. The set S is
called the symbol of the circulant graph G(Z,,5).

A planar graph G is outerplanar if it can be drawn on a plane in such a way

that G has no crossings and that all its vertices lie on the boundary of the same face.
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§2. Total-colouring of a graph - introduction

A total-colouring 7w of a graph G is a mapping from VE(G) toa setC
satisfying :
(i) no two adjacent vertices or edges of G have the same image; and

(ii) the image of each vertex of G is distinct from the images of its incident edges.

If 7 : VE(G) — C is a total-colouring of G and |C| = k, a positive integer, then we
say that G is k-total-colourable. The minimum cardinality of C for which there exists

a total-colouring 7 : VE(G) — C is called the total chromatic number of G, and is

denoted by x7(G). Thus if 7 is a total-colouring of G, then 7|y (g), the restriction
of m on V(G), is a vertex-colouring of G. Similarly, 7|g(g) is an edge-colouring of
G. From this, it follows that a total-colouring 7 of G yields a partition of VE(G)
into independent sets V; U Ey, Vo U E,, ..., where Vi, Vs, ... are independent sets of
vertices of G and Ey, E,, ... are independent sets of edges of (G, and that no vertex in
V; is incident with any edge in F;. These independent sets V; U Ey, Vo U Ey, ... are
called the colour classes of 7. Conversely, any partition of V E(G) into independent

sets Vi U Ky, Va U Es, ..., Vi U Ey. gives rise to a k-total-colouring of G.

Undoubtedly, vertex-colourings and edge-colourings are among the main streams
in Graph Theory. These two topics both have long histories. They are very im-
portant, difficult, and they have many real-life applications to storage problem,
timetabling problem, electrical networks, production scheduling, and designs for
experiments etc. Since a total-colouring of (i is a vertex-colouring and at the same
time an edge-colouring of G, the degree of difficulty of this subject is obvious and
its importance is anticipated. Moreover, it is not surprising that very soon some

nontrivial and important applications of total-colourings of graphs will be found.

The notion of a total-colouring of a graph was introduced and studied by Behzad
and independently Vizing around the year 1965. Clearly, for any graph G, A(G)+1 <
x1(G), where A(G) is the maximum degree of G. The following conjecture was posed
independently by Behzad and Vizing in 1965.

Total Colouring Conjecture (TCC) : For any graph G,
vr(G) < AG) +2.

(In fact, Vizing posed a more general conjecture which says that for any multigraph



G, xr(G) < A(G)+ w(G)+1.)

The TCC was proved true for a few classes of graphs in the 1970s. Only very
recently, some new techniques have been introduced and used to prove that the TCC
holds for some more classes of graphs, especially graphs having high maximum degree.

In this book, we shall give an up-to-date account on results obtained in this area.

In chapter 2 some basic results on total-colourings of graphs are given. These
basic results will be used very often throughout this book. Amongst these basic
results are : (i) a powerful lemma which says that if a graph G contains an indepen-
dent set of vertices S such that |S| > |G| — A(G) — 1, then x7(G) < A(G) + 2 (This
lemma will be used in Chapter 3 to show that complete r-partite graphs satisfy the
TCC and it will also be used in Chapter 6 to show that graphs of high maximum
degree satisfy the TCC); (ii) a useful theorem saying that if G is a graph of order 2n
and x7(G) =t + 1, then e(G) 4+ o/(G) > n(2n —t). (This theorem will be used to
show that some complete r-partite graphs G of even order has xp(G) = A(G)+ 2 in
Chapter 3 and many other results in Chapter 6.)

In Chapter 3 the exact value of y7(G) for G = K, and G = I, ,, are determined.
The main objectives of this chapter are: (i) to prove that the complete r-partite
graphs satisfy the TCC; (ii) to prove that every complete 7-partite graph of odd
order has total chromatic number A(G) + 1; (iii) to give a complete classification of

balanced complete r-partite graphs according to their total chromatic numbers.

In Chapter 4 different proof techniques are used to show that the TCC holds for
graphs G having A(G) = 3 and A(G) = 4.

In Chapter 5 it is proved that the TCC holds for graphs G having A(G) > |G| -
and for graphs G having A(G) > 2|G]|.

In Chapter 6 the exact value of x7(G) for graphs G having A(G) > |G| — 2
are determined. The exact value of x7(G), where G = K, ,, — E(J), J C K, , and
A(G) = nis given without proof. Some partial results on the total chromatic num-
ber of graphs having A(G) = |G| — 3 are presented. Finally a complete classification
(according to their total chromatic numbers) of regular graphs G whose complement

G is bipartite is also stated without proof.

Chapter 7 is devoted to the study of total chromatic number of planar graphs.

In this chapter we prove that the TCC holds for planar graphs G having A(G) > 8
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and we also prove that for planar graphs G having A(G) > 14, x7(G) = A(G) + 1.

In Chapter 8 the following upper bounds for x7(G) are presented: (i) xr(G) <
X(G) + [3X(G)] + 2; (ii) x2(G) < X'(G) + 2[/X(G)]; (iii) xr(G) < ¥(G) + k
where k is the smallest positive integer such that &! > »(G); and (iv) yr(G) <
A(G) + 2[24(%)5] + 1. Again, the techniques used to prove these results are totally
different.

In Chapter 9 we mention some other results on/or related to total-colourings of

graphs which have not been discussed in the previous sections. Probably they too

will have some impact on future research on total-colourings.

Exercise 1

1. Prove that for any integer n > 3,

3 if n=0(mod 3)
4 otherwise.

X7(Cn) = {

2. Show that x7(G) = A(G) 4+ 1 where G is a tree of order at least 3.

3. Let G be a graph having x7(G) = t. Suppose for any t-total-colouring 7 of G
and for any colour class V; U E; (V; C V(G) and E; C E(G)), we have |E;| > 2.
Prove that for any edge e of G, xr(G —€) = t.

4.* Let G be a graph having x7(G) = t. Suppose G has a t-total-colouring 7 such
that 7 has a colour class V;, U E,, for which |E,,| > 3 is minimum among all
possible colour classes of any t-total-colouring of G. Clearly if ¢’ € E,,, then by
Exercise 1(2), G' = G — ¢’ has xr(G') = t and G’ has a t-total-colouring ¢ such
that ¢ has a colour class V,,, U £/ for which |[E'| < |Ep,| — 1. Is it true that
|Em| — 1 is the minimum cardinality of E! for any colour class V] U E} of any

{-total-colouring of G'?

5. Prove that for any graph G # K, and any edge e of G,
x1(G ~ e} 2 xr(G) ~ 1.

(Behzad [71b])



CHAPTER 2

SOME BASIC RESULTS

Similar to the study of vertex-colourings and edge-colourings of graphs, in the
study of total-colourings of a graph G, we shall always assume that G is connected.
In this chapter we present some basic results which will be used very often in this

book.

The following lemma is often used either implicitly or explicitly. This lemma

requires no proof.

Lemma 2.1 For any subgraph H of a graph G, x7(H) < x7(G).

The following theorem is due to Konig [36; Chapter 11].

Theorem 2.2 Every graph (resp. multigraph) G having maximum degree k can

be embedded into a k-regular graph (resp. multigraph).

Proof. We take two copies of G and join two corresponding vertices v and v’ by
an edge if d(v) < k. (If G is a multigraph we join the two corresponding vertices
by k — d(v) edges and we straightaway obtain a k-regular multigraph H in which
G is embedded.) Now the minimum degree of this new graph G; is 6(G) + 1 and
A(G1) = A(G). We continue the same process if G is not regular and eventually

(after at most k steps) we obtain a k-regular graph H in which G is embedded. //
From Lemma 2.1 and Theorem 2.2 we can deduce the following theorem, which

is useful in proving that the TCC holds for graphs having low maximum degree.

Theorem 2.3 (Behzad [71b]) If the TCC holds for all A-regular graphs, then it

holds for any graph G having maximum degree A.

Proofs of the following theorem can be found in many books on graph theory,

for instance, in Yap [86].
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Theorem 2.4 (Vizing [64]) If (' is a multigraph having maximum degree A and

maximum multiplicity u, then
X'(G) < A+p.

In particular, if G is a simple graph having maximum degree A, then \'(G) = A or
V(G)= A+ 1

A graph G is said to be Class 1if x'(G) = A(G) and Class 2if \'(G) = A(G)+1.
If the TCC holds for a certain class of graphs G, then we say that G is Type 1 if
x7(G) = A(G)+ 1 and is Type 2 if x7(G) = A(G) + 2. This definition is analogous

to the above definition of Class 1 and Class 2 graphs in edge-colourings of a graph.

If v is a vertex of degree A(G) in G, then v is called a major vertex of G,
otherwise a minor vertex of G'. Suppose G' has maximum degree A. The core of G

is the subgraph of G induced by the major vertices of G and is denoted by Ga.

The following lemma follows immediately from some results of Vizing (Theorem

3.3 and Corollary 3.6 in Yap [86]).

Lemma 2.5 Suppose G is a graph having maximum degree A. If G4 is a forest,
then G is Class 1.

The new technique used in the proof of the following lemma was introduced
independently and almost at the same time (around 1986) by A. G. Chetwynd and
A. J. W. Hilton, as well as by H. P. Yap, Wang Jian-Fang and Zhang Zhongfu.

Lemma 2.6 (Yap, Wang and Zhang [89]) Let G' be a graph of order n and let
A = A(G). If G contains an independent set S of vertices, where |S| > n — A — 1,

then

xr(G) <A 42

Proof. Let M be a maximal matching in G — S and let G* be a graph obtained by
adjoining a new vertex v* ¢ V(G) to G — M and adding an edge joining v* to each
vertex in G — M — 5. Now A +1 > A(G*) > A. If A(G*) = A, then by Theorem
2.4, X'(G*) < A + 1. On the other hand, if A(G*) = A + 1, then the core of G* is
a forest and thus by Lemma 2.5, x'(G*) = A + 1. Let ¢ be an edge-colouring of G*
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using colours 1,2,..., A+ 1. We now modify ¢ to a total-colouring 7 of G by setting:
m(v) = p(v*v) for each v € V(G - S5),
T(v)=A+2 for each v € §,
m(e) = p(e) for each e € E(G — M), and
m(e)=A+2 for each e € M. //

The following is a generalization of a result of Hilton [89/90]. We shall see in
the subsequent chapters that this generalized result unifies several previous results
and proof techniques of J. C. Bermond, B. L. Chen and H. L. Fu, A. J. W. Hilton,
as well as K. H. Chew and H. P. Yap.

Theorem 2.7 (Hilton [89/90]; Yap [95]) Suppose G is a graph of order 2n and
x7(G) =1+ 1. Then
e(G)+ d'(G) > n(2n —t).

Proof. Let m = o/(G). Suppose ¢ is a (t + 1)-total-colouring of G. Let

V(@) = {p(v)lv € V(G)} = {er, 02,0008} = C.

It is clear that each colour class V; of vertices (of ) forms a clique in G. If
[Vi| = 2s or 25 4 1, we add s independent edges of G in G[V;]. Let E' be the set of
edges added in G[V1]U ...U G[Vi]. Then p = |E'| < m.

Next, let H be the graph obtained from G + E’ by adjoining a new vertex v*
and adding an edge joining v* to each vertex in V(G)\ V(E’). Then ¢|g), the
restriction of ¢ to E(G), can be extended to a (¢ + 1)-edge-colouring of H by setting
p(e') = p(w) if e € E' and w is an end-vertex of €/, and ¢(v*u) = (u) for any
u € V(G)\ V(E"). Observe that

e(H)=e(G)+(2n—2p)+p=(n(2n—1)—e(G))+2n—p
=n2n+1) - (e(G) + p).

Since each edge-colour class E; of ¢ contains at most [”(—:QJ = n edges and x'(H) <
(t+ 1), we have
n(2n+ 1) - (e(G) +p) < (t+ 1)n.
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Consequently,
e(G)+ '(G) > e(G)+p > n(2n—1t). //

From the last line of the proof of Theorem 2.7, we know that if e(G) + o'(G) =
n(2n —t), then p = |E'| = o/(G) = m. Hence if G does not induce Iy, then |Vj| = 2

or 3 for exactly m colour classes V;. Thus we have the following corollary.

Corollary 2.8 Let G be a graph of order 2n. If G satisfies e(G) + a'(G) =
n(2n — A(G)), G does not induce K4, and G is Type 1, then for any (A(G) + 1)-
total-colouring of G, there are m = a'(G) pairs of pairwise nonadjacent vertices
{zi,yi}, i = 1,2,...,m receiving m distinct colours. In particular, if G is regular, G
does not induce Ky, and is Type 1, then o/(G) = n and thus G contains a 1-factor
z;yi, i = 1,2,...,n such that {z;,y;}, ¢ = 1,2,...,n receive n distinct colours in any

(A(G) + 1)-total-colouring of G.

Remarks. Suppose G is a graph of order 2n and G is Type 1. Then e(G)+a'(G) >
n(2n—A(G)). However this necessary condition in general is not a sufficient condition

for G to be Type 1. Lemma 6.4 provides such examples.

The maximum cardinality of an independent set of elements in V E(G) is called

the total independence number of G and is denoted by ar(G). Suppose S is a max-

imum independent set of vertices in G and M is a perfect matching in G — S or a
near perfect matching of G — §, then clearly
1G] - 15]
ar(G) = |5+ |.—2_—_J
We observe that each element in an independent set I C V E(G) consists of either a
vertex or an edge, and if an edge is exchanged for two independent vertices, then the

size of I increases. This simple observation can be stated as a lemma.

Lemma 2.9 If G contains a maximum independent set of vertices S and G — §

contains an independent set of edges E’ such that [E’'| = [lQIZ;LS_lJ , then

ar(G) = |S] + [I_C’l_;IS_IJ

Hence, in general, ap(G) < a(G) + [MJ



