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Stokes system. Most of the results are based on coercivity estimates with explicit,
sometimes sharp, constants.
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to Springer-Verlag for publication. I would like to express my appreciation to Mr. R.
Show for taking the time to review my limited English.

St.Petersburg — Stuttgart, 1995 A.Koshelev
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Introduction

The smoothness of solutions for quasilinear systems is one of the most important prob-
lems in modern mathematical physics. It is impossible to overestimate the significance
of these questions not only for theoretical purposes, but for different applications as
well. It is clear that the problem of regularity is a part of a more general problem
concerning the existence and uniqueness of solutions for systems of partial differential
equations.

In this book we concentrate on the second order elliptic and parabolic systems. The
last chapter is devoted to the Navier - Stokes system.

The problem of regularity of solutions for elliptic systems was originally formulated
by Hilbert as one of his famous problems which at first, was concerned only with the
analyticity of solutions for a single general elliptic analytic differential equation of
second order with two variables

(0.0.1) F(z, Y, U, Uz, Uy, Uzz, “zw“w) =0.

The problem was to prove that any twice continuously differentiable solution must
be analytic. If we formulate the same statement in a modern way, it sounds as
follows: the ellipticity and analyticity of equation (0.0.1) guarantees that a weak
(twice continuously differentiable) solution must be a strong (analytical) one.

The problem was solved by S.Bernstein [1] for at least quasilinear equations. His
method was based on the following main principles: 1) maximum principle, which
was known earlier for analytic functions, 2) method of continuation of parameter;
later this method was generalized by Leray and Schauder [1] and formulated as a
homotopy principle, 3) method of apriori estimates. The apriori estimates belong to
the so-called class of coercivity.

We can illustrate these estimates for the Poisson equation in a bounded domain 2

(0.0.2) Au=f

with the condition
(003) u Ian: 0.

Let X be a space of functions which are defined on 2 and let the derivatives D?*u of
these functions also be defined. Suppose that f belongs to X. The estimate

(0.0.4) |D?ullx < Cx||fllx + Cllullx

where Cx and C are positive constants which do not depend on f and u we shall
call a coercivity estimate. S.Bernstein was the first to show that inequality (0.0.4)
holds true for X = £, and C., = 1. Of course, it was supposed by S.Bernstein that
f is at least continuous and the second derivatives of the solution of the problem
(0.0.2),(0.0.3) are also continuous.

As we shall see later, C'x has a crucial influence on the regularity of solutions for the
systems which we consider in this book.

As we have mentioned earlier, S.Bernstein obtained his results for the two-dimensional
case. It took about fifty years to find the solution of the Hilbert problem considered for
one second-order elliptic equation with an arbitrary number of independent variables.
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In 1930, Petrovsky [1] proved that the smooth solution of an analytic elliptic system
is also analytic. The paper by Oleinik [1] gives a survey of results relating to the
smoothness of solutions for boundary value problems of elliptic equations and systems.
The results of Schauder [1], Leray, Schauder [1], De Giorgi [1], Moser [1], Nirenberg [1],
Campanato [1] and many other mathematicians are of great importance with regard
to this problem. The most complete results concerning this problem can be found in
the book by Ladyzhenskaya, Ural'tseva [1].

The situation with parabolic equations of second order is even more complex. Here
the breakthrough result was obtained by Nash [1]. Important results and surveys can
be found in the monographs of Ladyzhenskaya, Solonnikov,Ural’tseva [1] and Krylov
[1]. It is not the purpose of this book to give a description of complete results obtained
in the problem of regularity for second order elliptic and parabolic equations. The
reader can get a more or less complete picture from the monographs mentioned.

At the present time, the problem of regularity can be formulated as follows. Let a 2!
order system in m-dimensional space have a weak solution belonging to some Sobolev
space W. The question is: what should the additional restrictions on the coefficients
of the systems, boundary surface and boundary conditions be in order for the weak
solution to become regular, i.e. Holder continuous, differentiable, etc?

In recent years, a significant number of papers have been devoted to the study of
smoothness of solutions for the above mentioned systems.

In 1930-1940, Morrey [1]-[3] obtained the most complete results for the second-order
elliptic systems ( ! = 1 and m = 2 ), concerning the analyticity and differentiability of
weak solutions. In Giaquinta [2] regularity for the solutions of some general variational
problems, so-called minimizers, is proved.

In his paper [1], Frehse showed that if u € W) and Is = m, then the weak solution of
the problem is bounded. Under the same or slightly different conditions bounding [,
s and m, Widman [1]-[2] proved the solution is Hélder continuous. A somewhat more
general result was obtained by Solonnikov [1].

In 1968, Almgren [1] proved for second-order systems that if the data of the boundary
value problem are smooth, the weak solution can lose its smoothness only on a set
with the Hausdorff (m — 1)-dimensional measure equal to zero. Later these results
were extended by Morrey [4] to arbitrary ordered systems. Significant results in this
direction obtained by Giusti [1], Giaquinta [1],[2] and other mathematicians formed
the so-called theory of partial regularity of solutions.The partial regularity approach
for the Navier-Stokes systems was implemented by Caffarelli, Kohn and Nirenberg [1].
The situation for parabolic systems was more uncertain. For example, Campanato
[2] proved in the two-dimensional case that under certain natural conditions the weak
bounded solution of some class of parabolic systems will be Holder-continuous, both
in space and time. An additional asumption concerning weak solution boundedness
in L(Q) makes this result different from the analogous theorem proved by Morrey
for elliptic systems in the two-dimensional case.

However, Giaquinta and Giusti [1] proved earlier that the weak solution for the
parabolic system is regular with the possible exception of a singular closed set. They
studied its Hausdorff measure.

Recently in an article by Necas and Sverak [1] the regularity of solutions was proved for
parabolic systems of small dimensions (m < 4) where the coefficients depended only
on the gradient of solutions. The Haolder continuity of the first derivatives was also
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obtained for the two-dimensional case with respect to space variables. The situation
for systems is considerably different from the case of a single second-order quasilinear
elliptic or parabolic equation with natural smoothness conditions on the coefficients
and the domain in which the boundary value problem is solved.

In 1968, it was established in a series of examples for the case when the dimension m
of the space in which the problem is solved is sufficiently large (m > 3), that there
exists a nonsmooth solution for the smooth boundary value problem (Mazja [1], Giusti
and Miranda [1]). This fact holds true even for a linear elliptic system of divergent
form (De Giorgi [2]). For parabolic systems a similar result was obtained by Stara,
John, Mali [1].

Hence, there arises the question of singling out the more or less precise class of systems
for which the weak solution is at least Holder continuous. Such an approach was
applied by Cordes [1] for a singular second-order linear elliptic non-divergent form
equation with bounded coefficients. He proved that if the dispersion of the spectrum
for the ellipticity matrix is bounded by some explicit constant, then the solution will
be Hélder continuous.

We shall also consider systems for which the spectrum of the so-called ellipticity or
parabolicity matrix satisfies stronger conditions than positiveness and boundedness.
The dispersion of the spectrum should be connected with the rate of asymmetry of
the matrix mentioned above. For this class of systems, we prove the weak solution
is regular ( Holder continuous, differentiable with Holder continuous derivatives, .. .).
We have shown that the conditions which single out this class are sharp for elliptic
systems and are at least unavoidable for parabolic systems.

It is well known that the maximum principle is not valid for general elliptic and
parabolic systems. Hence, this most fruitful and strong analytical method, which has
been applied to scalar second order equations, cannot be used here.

The results obtained in this book are based on two main ideas:

1) The universal iterative method which converges to the solution not only in weak
(“energetic”) norms, but also in strong ones. 2)Coercivity estimates of the type (0.0.4)
in singular weighted Sobolev spaces with explicit, sometimes precise constants Cx.
The sharpness of some results indicates this approach may in some sense provide an
optimal method for investigation. However, the author was not able to prove the
conditions and estimates obtained lead to precise results in parabolic systems and
the Navier-Stokes system. On the other hand, the estimates which are presented in
this book allow us to find explicit constants for the norms of some singular integral
operators and to prove the Liouville theorem for both elliptic and parabolic systems.
Below, we outline in brief the contents of each chapter.

This monograph consists of six chapters. Chapter 1 is devoted to principal definitions
and some results concerning the existence of solutions and convergence of the universal
iterative methods in “energetic” spaces.

We consider a bounded domain  in the m-dimensional Euclidean space R™(m >
2), whose boundary is a sufficiently smooth closed surface I'. Inside {2 a system of

equations with respect to the vector function u = (u®, ... ut™)
(0.0.5) Lw)= ¥ (-1)¥DPag(z; DPu) =0 (0 <|B| <),
o<iAl<t

is given. Here 8 = (By,...,Pm) and B = (E,ﬁm) are multi-indices,



DP = Df '...DPm D; is the operator of differentiation with respect to z;, D° is the
identity operator and || =61 + ... + Bn-

With regard to N-dimensional coefficients ag(z, 7 ), we assume that certain conditions
of smoothness are satlsﬁed We assume that for any collection of N-dimensional real

vectors {g = (55 yee ), any = € , and P the inequalities
> 945 &) . o2 2
(0'0'6) Z E (k)€ 6 > po (1 + Ipl ) 2 Z |£ﬁ| )
ik=1o<|g),15i<t 9P Opz : <Al

Il II < w1+ |pf*)%

N
with s > 1, po,1o = const > 0 and |p|* = 3> ¥ |p(')|2 hold true. This means
=1 0<|B<!

the system is strong elliptic. In addition to the latter conditions, certain conditions
relating to the behaviour of functions aﬁ,—ﬂ are necessary when p — oo. They
provide the existence and uniquieness of the weak solution for the system (0.0.5) with
the following boundary conditions

2 = =M
ov T i1

where v is the normal to ' and ¢ is a trace of some function from W{)(Q). The
existence of a weak solution of problem (0.0.5), (0.0.7) for any dimension m was first
proved in a number of papers (Vishik [1] , Browder [1], Minty [1] ... ).

Among these papers, the most important for us is the paper by Vishik in which the
existence of a weak solution, belonging to the space of W{'+!)(Q') (with £’ essentially
contained in §2 ) is proved.

Taking into account the numerical applications, the existence of the weak solution
can be obtained by the application of the following iterative process

(0.0.7) (u—)|r = Ir =0,

! 1

(0.0.8) S (=D* A*upyy = 3 (1) A* u, — eL(uy) (¢ = const > 0),

k=0 k=0
where the iterations satisfy conditions (0.0.7). This process was proposed by the au-
thor (Koshelev [3], [4]).
This process converges for s = 2 in the energetic norm under simple natural restric-
tions beginning with an arbitrary initial iteration uo € W2 (Q) Therefore, we call
process (0.0.8) a universal one.
For I = 1,1 < s < 2, when the system (0.0.5) can degenerate, we also consider an
iterative process with penalty

(0.0.9) © DUy s = Dups —eLs(uns), 8= const >0,

where L; = L+6A. In the author’s paper (Koshelev [4]), it is proved that there exists
a subsequence d,, such that if n — 400 then u,s, tends to the solution of (0.0.5),(0.0.7)
in the energetic norm. Further, this allows us to obtain the regularity of solutions for
the problem under consideration from the boundedness of strong norms for uyg,.

In chapter 1 we also discuss the parabolic system

(0.0.10) O — L(u) =0
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in a cylinder @ = (0,T") x @ with boundary conditions (0.0.10) and initial conditions
t]¢=o = 0. (The coefficients of L(u) can also depend on t). Under general assumptions,
an iterative method

(0011) eagu,.ﬂ e A’U,H.l =—A Un + aL(u,.)

with the above-mentioned boundary and initial conditions converges. We provide the
proof of convergence of this method in the energetic norm. Initially, it was done by
Chistyakov[1].
The second chapter is devoted mainly to Hélder continuity of weak solutions for
nondegenerate second-order elliptic systems with bounded nonlinearities in divergence
form where A is the matrix of the left-hand side quadratic form in (0.0.5), i.e. the
matrix
8al?

(0.0.12) A={—k% (i,j=1,..,N;k,1=0,...,m).

{ op”) }
We assume At and A~ are respectively the symmetric and skew-symmetric parts of A.
Denote the eigenvalues of A* by \; and the infimum and supremum of ); respectively
by A and A. We also denote the upper boundary of the eigenvalues of the matrix
C =A*A~ — A~A* — (A7)? by o and suppose that A > 0 and A < co. Let

. AA=)
2 _ U(/\2+0') la UZ_(Tls
(0.0.13) K* = { (A(—A,:-li-){da’ o <, 2=

a=2-m—-2y(0<~vy<1)and

_ofla+m—2)

(0.0.14) ==

> 0.

In chapter II, we prove that if some natural conditions concerning the coefficients
ax(z,p), domain  and boundary conditions are satisfied, and

(0.0.15) Kyf1- “E;"_‘f) [1 - “(;’(;'f 1—)2) Y

is true, then the weak solution of (0.0.5), (0.0.7) ([ = 1) is Holder continuous with
exponent

_2-m-—a

(0.0.16) y= 5

This was proved by the author in [11] and [15]. The above mentioned result follows
from the coercivity estimate (0.0.4) for X = £, ,(Bs) where L2 ,(Bs) is the space of
square summable functions with the weight |z — zo|* and Bs is a ball in R™ with the
center zo and radius 6. More precisely, the solution of the problem

(0.0.17) Au = di'l)f, ulaB, =0
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satisfies the inequality

(0.0.18) B/ IVulle — zol*dz < [1 . "] [1 B %?) _

x [ 1£Ple = zoldz +C [ |flda
B B;

where 7 is an arbitrary small positive constant ( C is as usualy an unessential nonneg-
ative constant). From this inequality follows the analogous estimate for the singular
operator

(0.0.19) J(f) = [ 1@l = 2Py,

6.1: (m — 2)|S |
where |S| is the surface of a unit sphere. More precisely

ala+m—2)|"

(0.0.20) J(f) < [1——m—l Hl‘ m—1)

x [ 1fPle = zolde + C [ |f[*da.
B B;

This and analogous estimates can be obtained using the Stein’s result [1], but his
method does not provide us with an explicit constant in either (0.0.18) or (0.0.20). It
should also be mentioned that the estimate (0.0.15) is sharp for a small 4. In fact,
for a symmetric A (A~ = 0) we have

and the condition (0.0.15) gives

(0.0.21) Amd gy g m=df

A+ m—1 <L

The example given in 2.5 shows this condition to be sharp, which means that if (0.0.21)
is false, then there exists such a system for which the weak solution is discontinuous.
Chapter III is devoted to the applications of the results obtained in chapters I and II.
Here we consider some elasto-plastic problems for media with hardening. It is proved
that the method of elastic solutions converges both in energetic and strong norms if
the anisotropy of the material is small enough. This is guaranteed by an inequality of
type (0.0.15). It is shown that if this condition is false, there exists a system, whose
solution has a finite energy and a discontinious displacement. Analytically, the result
is based on the so-called Korn inequality for weighted spaces

(e +m)? 2m+cv})<

(@+m)2—4a’ m

(0.0.22) 2 / [Diu® + D; u"‘>] rodz > mm{2
t,k=1 ﬂ

x> [1vu®Prede — ¢ [(3 1Vu®] + uf?)de.
k=19 Q k=1
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The main results of this Chapter are published in the author’s monograph [15] and in
[13],[14]. Chapter III also contains an exact form of the Liouville theorem, which was
proved by the author in [15] (Chapter 4).

In chapter IV, we consider additional regularity properties of a weak solution for
second-order elliptic systems, for example, Holder continuity of the first derivatives
up to the boundary of the domain.

The results , which can be found in 4.5 and 4.6, are based on the explicit constants
for coercivity estimates of the type (0.0.4) with C =0in L34, =2 —m — v

(0 < v < 1). For m > 2 and Bg(zo) with boundary condition u|sp, = 0 the estimate
is as follows:

(0.0.23) / | D?ul?|z — zo|*dz < C, / | A ul?|lz — z0|*dz
Bgr Br

and C, is given by formula (4.2.35).
In spite of the explicit form of C, , which is given in 4.2, it is impossible to apply
(0.0.23) to particular cases. Therefore, we have the following additional inequalities

(0.0.24) / |D?uf*ro¢dz < (1 + M7 + 1) / | A ul*r*(dz +

Br Br

= w5
+C (B/ ID'2u|2r°§da:) (E/ |Du|2d:c) + /(IDu|2 + |ul?)dz 3,

R R Bgr

where
—_ 2 —(1- 2

(0.0.25) M? = (m—2+27){(1+7)*+[2—-(1—7)"]m}

v (m+1479)%(1—9)?

and ( is a smooth cut-off function.
The estimate (0.0.24) is based on the multiplicative inequality

=P
lu(0)|? < C (E/ |D’u|2r“da:) (E/ |u|*de
R

R

)m—i’ﬁ

and can be applied to obtain the regularity of weak solutions. In section 4.6 of chapter
IV, we obtain the following statement: let the eigenvalues A; of the symmetrix matrix

da; | ,. .
A= {a_pj} (4,7=0,...,m)

satisfy the following inequalities

A A
A <
T+pl* =7 = 1+]pl
with A, A\ = const > 0 and 0 < s < 1; if the relation

(1+232)[1 + (m —2)(m - 1)] A
(1+22) 1+ (m-2)(m—1)]-1A
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holds, then under some conditions of smallness, the weak solution of system (0.0.5)
with condition (0.0.3) satisfies the Holder condition. These results were published by
the author in [18].

Chapter V is devoted to second-order parabolic systems which we consider in cylinder
Q = (0,T) x Q with a finite T > 0. The results which are proved there are based
primarily on two lemmas for a function w(t,z) satisfying the parabolic equation

(0.0.26) edw+ Aw=f
in Qr = (0,T) x Bgr with boundary conditions
(0027) ‘wlaBR = w|¢=T =0.

Lemma 5.2.1 Let 3’ be an arbitrary number, 8 +m —4 > 0 and 0 < # < m. Then
the weak solution of the problem (0.0.26), (0.0.27) satisfies the following estimate

m

my / |fI?r?¢dzdt + C(R) / | D?w|*r? dzdt.
Qr Qr

(0.0.28) / | A wr¢dzdt <
Qr

m

Lemma 5.2.2 If 0 < 8 < m and 3+ m — 4 > 0, then for the weak solution of problem
(0.0.26), (0.0.27) the inequality

/ | & wfridedt < — 3 / |f |2 dedt
Qr Qr

holds.

In chapter V, we prove the Holder continuity of the weak solution for both ¢ and z
for the parabolic system (0.0.10) under additional assumptions concerning the differ-
entiability of the system’s coefficients with respect to z. It is also assumed that the
boundary conditions

(0029) ulaﬂ = u],=0 =0

and the inequality analogous to (0.0.15) for m >3

m [1_(2—m—27)(m—1)
2(1-9) (1-9)?

(0.0.30) ] M,K <1
are satisfied.
If we take a small «, then for m > 3 the inequality (0.0.30) has the form

m m—2
(0.0.31) T+ (m = 2)(m — 1)) (1 s

i) K<

So for m > 3, the condition (0.0.31) guarantees the Holder continuity of weak solutions
both in z and in ¢ for the problem (0.0.10), (0.0.29). It is also proved here for m = 2,
the condition (0.0.31) takes the form

(0.0.32) V2K < 1.
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This inequality was obtained with the help of S. Chelkak. The last relations were
proved by the author in [19].

As we see in contrast to the elliptic case, under conditions (0.0.31) and (0.0.32)
parabolicity does not guarantee the Holder continuity of a weak solution in the
parabolic case.

In chapter V, some coercivity inequalities are proved. We shall mention here only one
inequality of this type.

Theorem 5.3.2 Suppose that u € L,{0, T} Wz(:,)(BR)} satisfies only the second of the
conditions (0.0.29), (v = 0 when ¢ = 0). Then the estimate

(0.0.33) / |D?uf*r*(dzdt < (1+ M2 +1) A2, / e — AulPre(dzdt +
Qr Qr

] e

m+2y m42y

+C (q/ |D'2u|2r°’(da:dt) (Q/ |Du|’dzdt) + / | Dul?dzdt
R R Qr

holds, where C' does not dependon ¢ > 0,a=2—-m —2y (0 <y <1) and

23 24a _
(0.0.34) A?.,,..={ 1- 3% — s, m=2,

(m%)" m > 2.

In chapter V, we provide applications for problems related to the ‘blow-up’ problem
for some coupled systems. The Liouville theorem for parabolic systems is also proved
in this chapter.

Chapter VI, the last chapter in the book, is devoted to Stokes and the Navier-Stokes
system in a bounded domain €. In this chapter, we consider mainly the problem of
the existence of strong solutions for the nonstationary Navier-Stokes system. From
the results of Ladyzhenskaya [1] and Solonnikov [3] it follows that for small Reynolds
numbers and some smoothness assumptions concerning the boundary of the domain
and the massive forces, there exists for the first boundary problem a continuous reg-
ular (for example, Hélder continuous, etc.) solution. In these results the constants,
which estimate the solution pointwise, have an implicit form. With the help of the
coercivity inequalities with explicit constants, we obtain some explicit estimates of
the strong solution for finite time.

The first two sections contain coercivity estimates for both stationary and nonsta-
tionary Stokes systems. We shall now give two examples of the inequalities which are
proved in chapter VI . Some of these results were obtained with the help of A.Wagner
and published in the paper of Chelkak and Koshelev[1].

We begin by considering the stationary Stokes system

Au+Vp=f,
(0.0.35) { i == 0

with condition (0.0.3). Suppose [pdz = 0 and z, is an arbitrary point of £ with
Q
dist(xo,0) > 0 (Ro =const and R < Rp). If u € L,{4,T; Wé'la)(BR)} then the
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following estimates for weak solution u,p

2
(0.0.36) / |Vp|?|z — zo|*dz < [1 + M + 0(7)] / |fI?|z — zo|*dz +
Br(zo) Br(zo)
+C / |p|*d=
Br(zo)

and

2 1/2 2
(0.0.37) / |D?u?|z — zo|*Cdz < {1+[ %} } x
Br(zo)

<[+ 22D rot)| [ 1l wlas +

Br(zo)
+C [( [ 10|z - zolCde) 75 ([ |Duda) 55 + [ D'l + IfI’)dw]
Q Q Q

are true and C is independent of zo (theorem 6.1.1).
Further on, we consider the nonstationary Stokes system

(0.0.38) et

with conditions (0.0.29). We prove if f € Ly{0,T; Lyo(R)} with & = 2 — m — 2y
(0 < 4 < 1) satisfying (2.3.20), then the solution of the system (0.0.36) with the
boundary condition (0.0.27) satisfies the estimates

(0.0.39) / [Vplr*Cdzdt < (N2 + ) / |fProcdzdt +
Qr Qr

+C (Q/ |Vp|2r°’(dxdt) ( / | f|2dxdt) + / |f|2dzdt
R Qr Qr

{ Ou—vAu+Vp=f

and

(0.0.40) / |Duf*ro¢dzdt <

Qr
2

<

™1+ M2 +7)(1 + N,)? / |f Pre¢dedt +
Qr

wE e
c (a/ |D'2u|2r°‘(d:cdt) (Q/ |Du|’d:cdt) +
R R
e o
(p/ |Vp|2r°’§d:z:dt) (Q/ | f|2d:cdt) + / |f|2dzdt| ,
R R Qr
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where

a(a+m—2)
2(m—1)

(0.0.41) N? = max{[1 — "S:'__f)][l - 17%,2m?(1 + M2)}

and 1 —27'(a+m —2)a(m —1)~! > 0. The third and the fourth sections are devoted
to the Navier-Stokes system

Ou—vAu+ u® Dyu + Vp = f(z,1),
divu =0

with homogeneous boundary conditions (0.0.29) in Qg. It is proved that if
a=2-—m—2y (0 <y < 1) and the Reynolds number

v i(sup [ 1fPle = zol*dzdt)!/?
o
Q

is sufficiently small, then there exists a Holder continuous solution in both ¢ and z of
the problem, satisfying the estimate

1/2
(0.0.42) sup L/ (|a,u|2+|D"u|2)r°dzdt] <
zoEN -

2 1/2 o 1
< “5Aam ((1+ M2+ )1 + Ny)) p L[R |fI*rdzdt + o(;;)] 3

where Ay m, M, and N, are defined by (0.0.24), (0.0.34) and (0.0.41).
It follows from (0.0.42) that max|u(z,t)| is finite.
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List of Notation

C': unessential nonnegative constant.

n : sufficiently small positive constant.

R™: m-dimensional Euclidean space.

RT(R™) = B™ N (zm > 0)((zm < 0)).
z(z1,...,%m)-vector in R™ with components z;.
zy-scalar product in R™.

|z|: length of z.

Bjs(zo) ball in R™ with center zo and radius 4.
B = BI(O).

Bf (20)(Bj5 (20)) = Bs(2o) N (zm > 0)((¢m < 0)).
Bj, 5,(%0) = Bs,(z0)\Bs, (z0)(82 < 61)-

B} 5 (20) B 5,(20)) = Biviy N (2m > 0)((@m < 0).
S: unit sphere in R™.

: bounded domain in R™.

05(170) = Q n BJ(Z()).

u(z) = {uV(z),...,u™(z)}: vector-function with N scalar functional components
u)(z) defined on Q.

D,' = al:'(l = l,...,m).

D> =[Ix, Di*(a = (a1,. ., 04,): multi-index.
Dy = D° = I: unit operator.

D*uD*v = Foqajce D*uD*v(|a| = iy ).

|D*u|?* = D*uD*u.
DuDv = D'uD.

D'*uD'% = Z D%*uD®v.
o=
|D"u|* = D"“uD"u.
D'uD'v = D"'uD".

W,S‘)(Q): Sobolev space of vector functions, defined on © with all weak p-summable
derivatives up to the order ¢; the norm is defined by the equality

1
el 0 @y = (/n D ulPdz)b.

Analogously

’ 1
||u||wg)(n) = (/n |D ‘uIPd:C)P

and
— "t 5
lully 0 ey = (1D ulPd)?
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(with sufficient homogeneous conditions).
Hy1,0() € W(; 20) for Vao € Q with finite norm

"u"Hp,l,u(n) = :oue% "u”w'(g(n;zo)

or
’ —
||u||H,,,,,,(n) = :0‘2% ”“"w,&,‘.’,’(ﬂ,xo)'
HQ'[’Q, = Hl.a-

H210=H

Ck2(Q): space of functions defined on Q with all derlvatlves of order k satisfying
Holder condition with the exponent a.

C*4 () = CX(Q)

Cc™(Q) = C(Q).
Q = (0,T) x Q: cylinder with VT = const > 0.

(t,z) € Q.

Qs(z0) = QN ((0,T) x Bs(o)).

u(t; z): functions defined on Q.

Oyu = u: derivative with respect to ¢.

Wk(Q): Sobolev space of functions, defined on @, possessing all derivatives up to
the order k with respect to ¢t and up to the order £ with respect to z, which are
p-summable; the norm is defined by the equality

lulbwgeiqy = ([ 0kl +10%up)iz)”
Analogously to W9(€; zo) and Hy, o() are defined the spaces W5(Q; zo) with the
norm
1

st grme) = ( /Q (18kulP + |DtulP)|z %,adz) -

and

||u"1-1",§(q) = 3“Pxoeﬂ||“||w:,»°‘(q;,0)-

A: matrix of ellipticity (parabolicity).
At: symmetric part of A.

A~: skew-symmetric part of A.
matrix C = ATA- — A-At — (A7)~
{\}: eigenvalues of A*.
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