PROGRESS ‘
~ SIMULATION

'VOLUME 1
edited by

0 George W. Zobrist
- James V. Leonard

TD
L

N (7

Z 3

£\
(W%

PROGRESS IN
SIMULATION

VOLUME |

LT

E9261813
edited by

George W. Zobrist
Department of Computer Science
University of Missouri-Rolla
Rolla, MO -

James V. Leonard
P.O. Box 1075
Florissant, MO

S

% 1\
(/&?' |

j
.,
P A AR o,

i T PR i

@ ABLEX PUBLISHING CORPORATION
NORWOOD, NEW JERSEY

Copyright © 1992 by Ablex Publishing Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, pho-
tocopying, microfilming, recording, or otherwise, without permission of the publisher.

Printed in the United States of America

Library of Congress Cataloging-in-Publication Data

Progress in simulation / edited by George W. Zobrist, James
V. Leonard.
p. cm.
Includes bibliographical references and index.
ISBN 0-89391-652-8
1. Computer simulation. 1. Zobrist, George W. (George Winston),

1934- . 1I. Leonard, James V.
QA76.9.C65P77 1992
003’.3—dc20 91-44710

CIP

Ablex Publishing Corporation
355 Chestnut Street
Norwood, New Jersey 07648

To Jessica, Tori, Roy, and Ryan
they make life worthwhile

Contents

Preface vii

1

Analysis of the Structure of Simulation Software Systems 1
Sorin Davidovici and Paul W. Lee

Parallel Trace-Driven Simulation of Multiprocessor Cache Performance:
Algorithms and Analysis 44
Yi-Bing Lin, Edward D. Lazowska, and Jean-Loup Baer

Knowledge-Based Support for Automating the Simulation Life
Cycle 81
Michael Ketcham and Shaji John

Power Plant Modeling and Simulation Using Artificial Intelligence and
Neural Networks 100
A. Martin Wildberger and Kenneth A. Hickok

An Object-Oriented Approach to the Simulation of Artificial Neural
Networks 126
Gregory L. Heileman, Harley R. Myler, and Michael Georgiopoulos

Reusing Simulation Logic in System Development Projects 159
Roger McHaney

Portable Simulation Programs for Parallel Computers 186
Voratas Kachitvichyanukul and JrJung Lyu

vi Contents
8 Object-Oriented Decision Support System in Logic

Programming 217
Harbans Lal

9 Simulation and Analysis of Controlled-Environment Agriculture:
Phytofarm Technology 248
George H. Abdou and S.A. Sherif
Author Index 291

Subject Index 295

Analysis of the Structure of
Simulation Software Systems

Sorin Davidovici

O’Neill Communications, Inc.
Princeton, NJ

Paul W. Lee

Bell Laboratories
Holmdel, NJ

1 INTRODUCTION

Multiprocessor systems represent an approach used to obtain the computational
speed of a very fast computer by using several slower computers operating in
parallel. No optimum methods exist by which N computers or processors can be
made to operate together on a single problem in order to achieve speed increases
on the order of N. It is conceivable to put together several computers or pro-
cessors. The fundamental questions lie in how to interconnect them and program
them in order to obtain fast, reliable, and economical computation.

The multiprocessor represents a very flexible computer architecture. But flex-
ibility does not itself guarantee high efficiency. There are still many open re-
search problems concerning how to organize parallel computations on a multi-
processor system so as to make the best use of N cooperating processors in the
solution of a single problem. Here we investigate a software analysis and design
methodology for the case where the multiprocessor is the targeted execution
environment. Ultimately we address the issue of scheduling computations such
that the computer system resources are utilized efficiently. The software design

2 DAVIDOVICI & LEE

and analysis approaches presented in this chapter are arrived at through ele-
mentary graph theoretical approaches applied to data flow representations of
simulation software systems. The usefulness of the graph theoretical analysis
approach as applied to the data flow representation of a software system lies not
only in greatly simplifying the derivation of the algorithms in this chapter, but
also in clarifying the philosophy which underlies the software design and analy-
sis tools developed here.

The chapter starts with a review of basic concepts and terminology followed
by a short review of graph theoretical concepts as they pertain to this subject
matter. This is followed by a description of the characteristics of simulation
software which justify this approach.

2 BASICCONCEPTS

Computer simulation is a widely used tool in all engineering and scientific fields.
Starting from simple, well understood interactions, the output of a simulation
describes the behavior of systems far too complex to quantize using purely
analytical techniques. Thus the larger and more complex the contemplated sys-
tem, the more important the simulation process to the design and evaluation
process. The simulation of large systems can tax the resources of even the largest
computers. In many applications it is desired (and cost effective) to reduce the
simulation time. One available alternative is to use a multiprocessor which, if
executing the proper software, could provide supercomputer performance at a
fraction of the cost.

Multiprocessors fall in the class of MIMD (multiple instructions, multiple
data) machines. This class of machines tend to be extremely effective provided
that the software exhibits a sufficient degree of concurrency and that this concur-
rency is properly exploited. The meaning of sufficient above depends primarily
on the number of processors which will concurrently execute the simulation. The
improvement in the simulation run time obtained by utilizing more Pprocessors is
referred to as speedup. As long as enough inherent concurrency exists in the
simulation software, adding an additional processor to the resource pool avail-
able to the simulation will decrease the execution time (or speedup the process-
ing). The existence of a degree of concurrency in the simulation software which
is sufficient to efficiently support N processors will produce a linear speedup as
the N processors are introduced one at a time. Thus, the addition of each addi-
tional processor reduces the simulation execution time to a fraction approxi-
mately equal to 1/M of the original simulation execution time, where M is the
number of processors utilized. Utilizing more than some number of processors,
N, which can be supported by the available degree of concurrency in the simula-
tion software will provide diminishing returns. Thus, before either, choosing a
multiprocessor to run some specific simulation software, or during the design of

ANALYSIS OF THE STRUCTURE OF SIMULATION SOFTWARE SYSTEMS 3

simulation software, it is useful to ascertain the degree of concurrency inherently
present in the software structure.

The simulation software analysis can be approached using data-flow comput-
ing concepts. The concept of data-flow computing is fundamentally different
from the conventional Von Neumann sequential control computing. Data flow
computing is a data-driven computation mode in which the instruction execution
is driven by data availability. Data-driven execution of any software system
(including simulation software) inherently exhibits the degree of concurrency
inherent in the software. The degree to which this inherent concurrency exists in
the specific software will determine the ultimate limitations of the system’s
throughput regardless of its complexity. This chapter regards the simulation
software to be executed as the software implementation of an algorithm. The
algorithm itself describes the specific way that the simulated system changes its
state as a result of external stimuli. Many algorithms used to simulate systems
share certain common traits. This commonality of traits enables the building of a
common approach which permits the evaluation of the degree of concurrency
present in a large class of algorithms.

Simulation software is highly iterative; the system which is simulated is moved
from its initial state to a different state during each iteration (or each execution of
the simulation algorithm). Associated with the execution of each successive
evaluation of the state of the simulated system is the state of the multiprocessor
executing the simulation. A complete execution of the algorithm, or one iteration
of the simulation, brings the multiprocessor back to its initial state, ready to begin
the next iteration. Thus, the execution of all the tasks until the multiprocessor
returns to its initial state is referred to as one basic cycle of the simulation. The
execution of one complete iteration of the simulation usually involves the execu-
tion of a number of different tasks (where each task may be, for example, a
subroutine). A buffer may be necessary to store data passed from one task to
another. An algorithm is derived which is used to obtain these intertask buffering
requirements as well as the number of executions of each task during one basic
cycle of the simulation. The algorithm uses a graph theoretical approach and,
when analyzed, it is shown to exhibit linear complexity. Following the determina-
tion of a basic cycle (i.e., the determination of the number of repetitions of each
task within a basic cycle) a second algorithm is derived which generates the
precedence relationships among these tasks within one or more basic cycles. The
number of basic cycles over which these task precedence relationships are deter-
mined constitute a scheduling cycle. The simulation consists of the repeated
execution of these scheduling cycles. Various scheduling criteria which can be
applied to this scheduling cycle in order to generate a feasible deterministic, non-
preemptive schedule are discussed and examples of the entire procedure are given.
Finally, the resulting feasible schedule is used to extract such figures of merit of the
multiprocessor simulation software implementation as average processor utiliza-
tion and execution time of a complete scheduling cycle.

4 DAVIDOVICI & LEE

These figures of merit are obtained as a function of the number of processors
used in the concurrent execution of the simulation software, N. An examination
of these figures of merit is shown to reveal such quantities of interest as approxi-
mate run time of the simulation versus the number of processors employed as
well as the maximum number of processors which can be efficiently supported by
the degree of concurrency present in the simulation software. If the simulation
software is in a development stage it is shown how these (and other intermediate)
results can be used to optimize the simulation software package for execution on
multiprocessor systems.

2.1 Basic Concepts in Graph Theory

Any discussion of graph theory must start with the definition of a graph.

Definition: Let N be a finite set, and L be a binary operation on N. A graph is
defined as an ordered pair (N, L). The elements in N are called
nodes, and the ordered pairs in L are called the links of a graph.

A graph can be represented by a matrix, either a node-node matrix or a node-
link matrix. A node-node matrix is a matrix in which columns and rows both
represent nodes in a graph. In a node-link matrix, either, rows represent nodes
and columns represent links or rows represent links and columns represent
nodes. The entries in the matrix represent the connection between nodes or
between nodes and links.

Consider a graph G with n nodes and m links. For the node-node matrix A, we
have:

AGj) = { 1, if a link exists between node A, and A ;
el 0, if a link does not exist between node A, and Aj
where 1 = i,j < n. For the node-link matrix B, we have:

B(i.j) = { 1, if node B, is connected with link L;

o 0, if node B, is not connected with link L;
where 1 =i =< pnand1 < j < m. Here rows represent nodes and columns repre-
sent links. And for the link-node matrix C, we have:

i ;) _ { 1, if node C; is connected with link /;

i 0, if node C; is not connected with link L
where 1 =i <mand 1 < j < n. Here rows represent links and columns repre-
sent nodes.

ANALYSIS OF THE STRUCTURE OF SIMULATION SOFTWARE SYSTEMS 5

As an example of the node-node matrix and the node-link matrix, consider the
graph shown in Figure 1.1. The node-node matrix is:

—— O D
- O = W

S = = 0
SNS—

The node-link matrix is:

L1 L2 L3

A/1 10
3—3(101)

c \o 11
c
0
)
1

For a graph with n nodes and m links, the node-node matrix is a n X n matrix
and the node-link matrix is either a n X m matrix or a m X n matrix. Algorithms
which use these matrix representations of a graph will require at least O(n2) time
for a node-node matrix and O(nm) time for a node-link matrix.

A graph can also be represented by linked lists structures in computer imple-
mentations. This representation faithfully represents the full graph including the
nodes and links. An algorithm using this representation has two major advan-
tages: it can be understood more easily since it uses simple graphical operations

And the link-node matrix is:

A
Ll (1
€= Lz(l
0

L3

- o -~ W

L3
Figure 1.1. Example of a Graph

6 DAVIDOVICI & LEE

and the complexity of algorithms using this representation is usually less than the
complexity of algorithms using matrix representations. For details of this repre-
sentation, see [1, 2, 3].

The notion of a graph or, equivalently, of nodes connected by links, lends
itself to use as a descriptor of program flow. Indeed, if nodes are associated with
tasks and links are associated with data transfer paths between tasks, it is easily
seen that a graph could naturally describe the flow of data in a program. This
notion is not novel. Data flow concepts have long been used in visualizing
computational activity in parallel machines. This is in contrast to the basic
conceptual model used to represent computers which was introduced by John von
Neumann (also known as control-driven computation).

Data flow computers are based on the concept of data-driven computation,
which is drastically different from control driven computation. The concepts of
control flow and data flow computing are distinguished by the mechanism which
controls the flow of computation sequences. In the traditional sequential control
flow model, there is a single thread of control which is passed from instruction to
instruction. This means that the program has complete control over instruction
sequencing. Synchronous computations are performed in control flow computers
using centralized control. In the data flow computing environment instructions
are activated by data availability. Instructions are examined to reveal the operand
availability, upon which they are executed immediately if the functional units are
available. This implies that many instructions can be executed simultaneously
and asynchronously. A high degree of implicit parallelism is expected in a data
flow computer.

A data flow program may be mapped to a graph, called a data flow graph, to
exploit parallelism in a program more naturally. This asynchronous parallelism
can be exploited not only at the instruction level but also at the procedure level. A
data flow graph representation of a software unit is a directed graph whose nodes
represent tasks and links represent data paths. A task may be an instruction, a
procedure, or even a program. The actual meaning of a task is dependent on the
application. However, it should be consistent throughout the entire graph.

If the tasks are operators, then the data flow graph demonstrates sequencing
constraints, consistent with data dependencies, among instructions. Each task
can be performed on the data depending solely on data availability; each instruc-
tion can be executed as soon as its operands become available provided that a
processing unit is also available. Hence, a maximal concurrency can be found
from a data flow graph representation of a set of instructions. Similar results can
be obtained if the tasks are procedures or functions in a program. By using data
flow concepts and the data flow graph, the sequencing constraints among pro-
cedures or functions in a program can be found, as well as the maximal concur-
rency among them. In this case, the sequencing constraints are an outcome of the
existing precedence relationships among these procedures or functions. This
level of parallelism in system simulation software can be naturally exploited with

ANALYSIS OF THE STRUCTURE OF SIMULATION SOFTWARE SYSTEMS 7

basic functions contained in the simulation algorithm represented as tasks in the
data flow graphs. These computational tasks are then suitable for parallel pro-
cessing using multiprocessor architectures.

Even though the data flow graph representation of software applies to large
classes of software systems there are additional constraints which are met by the
general class of simulation software systems and which are fundamental to our
approach. These additional constraints are characteristics exhibited by system
simulation algorithms and rigorously justify our approach.

2.2 Characteristics of Algorithms Used in System Simulation

An inspection of algorithms used in system simulation reveals some useful
characteristics. The nature of the algorithms themselves combines with the pro-
gramming language characteristics to generate some common traits which can be
used to broadly characterize a class of software used to implement system simu-
lations. The programming language characteristics used in this characterization
are general in nature and are not used to restrict the programming language to the
more sophisticated set of languages. These characteristics are:

1. Periodic with infinite number of cycles. In systems simulation tasks, a
continuous stream of incoming data samples is processed to produce an-
other continuous stream of outgoing data samples. The same simulation
algorithm will be executed repeatedly to handle this endless stream of input
data. Each execution of the algorithm can be viewed as a cycle or period.
So, the entire simulation can be viewed as a periodic task with an infinite
number of cycles with respect to the lifetime of the simulation.

2. Data structures are in block form.

3. Processing of data in block form. One of the natural and efficient ways to
handle the simulation’s input data is to divide this data into blocks and
process them one block at a time. Each data block is then naturally repre-
sented by a one or multiple dimension array.

4. Heavily iterative. Due to the concept of state (or signal) space and to the
convenient way of representing a system of simultaneous linear equations
using matrices, the matrix is the dominant tool used in system simulation.
A matrix can be naturally represented by a multiple dimensional array. The
processing of any matrix operation requires a fixed number of repeated
operations. These iterative operations can be naturally handled by DO
loops. Hence, the algorithm is highly iterative.

5. Nonrecursive. Recursion in a programming language requires a dynamic
run-time storage management schéme. However, in many programming
languages, only a static run-time storage management scheme is used;
recursion, in the programming language sense, can not be implemented.

8 DAVIDOVICI & LEE

This is not a major constraint in the design of simulation software since the
major trait of such software systems is their iterative feature.

6. Numerical computation intensive. One obvious property of digital simula-
tion algorithms is that they are numerical computation intensive. The per-
formance of this type of algorithm is computation-bound and not in-
put/output (I/0) bound.

7. Decomposable into a set of meaningful basic tasks. Each digital simulation
algorithm is composed from a set of basic tasks. A basic task can be
implemented as a subprogram.

8. Fixed amount of input and output sample data. Each task takes a fixed
amount of input data samples to perform a specific function and generates a
fixed amount of output samples. This is not only desirable but it is also
imposed by a characteristic shared by many programming languages.

9. Data value independent. Each sample processed by a digital simulation
processing task will go through exactly the same operations. So, the value
of the sample data will not affect the sequencing of operations. This is a
very desirable characteristic.

10. Constant execution time. Since each task will perform the same amount of
operations each time it executes, the execution time of each task is fixed for
each execution. Hence, the execution time of the entire algorithm is also
fixed for each execution.

Having developed all the preliminary concepts necessary for the remainder of
the chapter, we are now ready to apply them to the development of the simulation
software design and analysis approaches.

3 DATA FLOW GRAPHS IN SIMULATION SOFTWARE

The data flow graph discussed earlier is adapted to represent system simulation
algorithms with the restriction that the nodes of the data flow graph now repre-
sent basic tasks or functions contained in the algorithm. The general concepts are
discussed and two associated problems are outlined. The following definitions
will facilitate the rest of the presentation. Whenever possible, a common nomen-
clature is maintained with previous literature.

Definition: A cycle of a system simulation algorithm is defined as the complete
execution of the algorithm without repeating its state.

Déefinition: The sample rate is defined as the required number of samples either
for input or output of a node in a link.

The required number of input samples for a node is called the input sample
rate and the number of samples generated at the output of a node is called the

ANALYSIS OF THE STRUCTURE OF SIMULATION SOFTWARE SYSTEMS 9

L3
L1
T
m L4
s
L2 n t
LS

Figure 1.2. Input and Output Sample Rates
Associated with a Graph Node

output sample rate. The input and output sample rates are given for a particular
link of a particular node. Therefore, different links of a node may have different
input or output sample rates. On the data flow graph, the sample rates are
attached to the links for easy reference. For example, a node with two input links
and three output links will look as shown in Figure 1.2. The links are labeled L1,
L2, L3, L4, and LS. L1 and L2 are input links and L3, L4, and L5 are output
links. The symbols m and n denote the input sample rates for node A from links
L1 and L2, respectively. The symbols r, s, and ¢ denote the output sample rates
from node A to links L3, L4, and L5, respectively. The input samples are
consumed by node A and the output samples are produced by node A. Before the
start of execution of node A we need m samples from L1 and n samples from L2.
At the end of the execution, there are r, s, and ¢ samples produced by node A on
link L3, L4, and LS, respectively.

Déefinition: A buffer is defined as a temporary storage device for a link to hold
the output samples produced by a node.

Definition: A delay is defined as the initial number of available samples stored
into a buffer before the execution of a cycle.

The size of delay present in the link is written in the middle of the link be-
tween two nodes in a data flow graph. For example, in Figure 1.3, d is the size of
the delay of the link between node A and node B, m is the input sample rate for
node A, and n is the output sample rate for node B. The minimum size of a buffer
on a link between two nodes depends on the input and output sample rates of the
link between these two nodes. This will be discussed later in more detail.

m n B
d

Figure 1.3. Delay between Two
Nodes

10 DAVIDOVICI & LEE

Definition: The repeat factor of a node is defined as the number of times that
the node will be executed within one basic cycle.

The repeat factor is unique for each node. This is due to the characteristics of
a system simulation program. In the rest of this chapter, the repeat factor will be
attached to a node as an exponent to the name of the node. For example, if the
repeat factor for node A is m, then we represent this as A™. The repeat factor is
always a positive number. Its minimum value is 1. That is, we do not consider
dead nodes in the data flow graphs (tasks which will never be executed).

Definition: A consistent sample rate is said to exist when the number of sam-
ples produced by the initial node equals the number of samples
consumed by the terminal node for each link between these nodes
during a complete cycle.

For example, consider the graph shown in Figure 1.4 where m is the input
sample rate, n is the output sample rate, k is the repeat factor for node A, 4 is the
repeat factor for node B, and d is the size of the delay for the link between nodes
A and B. For a consistent sample rate, we have:

kXm=hXn

Another example is a simple circuit with two nodes as shown in Figure 1.5.
For a consistent sample rate, we have:

kX m,=hXn,

kX my=hXn,

When all sample rates are consistent, at the completion of a cycle the size of
allocated storage in the buffer is equal to the size of the delay of a link. In other
words, the size of the delay of a link at the beginning of each cycle is constant. If
the sample rate is not consistent for a link, then the size of the sample stored in
the buffer will grow indefinitely for that link. This will create an unstable situa-
tion where all available memory will eventually be consumed at which time the
system will malfunction. In this chapter, we only consider data flow graphs with
consistent sample rates. Even after the introduction of these definitions, the data

m n
h
d B

Figure 1.4. Example of Consistent
Sample Rate

ANALYSIS OF THE STRUCTURE OF SIMULATION SOFTWARE SYSTEMS 11

m 02

™ M
Figure 1.5. Example of Consistent
Sample Rates

flow graph can still be represented by a matrix form, the node-link representa-
tion. Each column represents a node and each row represents a link. The input
sample rate is represented by a negative number and the output sample rate is
represented by a positive number. Unfortunately, the delay cannot be represented
in the matrix. For example, consider the data flow graph shown in Figure 1.6. Its
node-link matrix will be:

For more on these representation, see [4]. This representation has a significant
drawback since each algorithm using this matrix representation will have a
complexity of at least O(nm), where n is the number of nodes and m is the num-
ber of links.

For a data flow graph of a given simulation software system, there are two
issues which may significantly affect performance: the minimum size of the
buffer of each link and the repeat factor for each node. The second problem has

Figure 1.6. A Data Flow Graph for
NodeLink Matrix

