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PREFACE

This book is the outcome of a seminar organized by Michael
Freedman and Karen Uhlenbeck (the senior author) at the Mathematical
Sciences Research Institute in Berkeley during its first few months of
existence. Dan Freed (the junior author) was originally appointed as
notetaker. The express purpose of the seminar was to go through a
proof of Simon Donaldson's Theorem, which had been announced the
previous spring.  Donaldson proved the nonsmoothability of ceslein
topological four-manifolds; a year earlier Freedman had constructed
these manifolds as part of his solution to the four dimensional
Poincare conjecture. The spectacular application of Donaldson's and
Freedman's theorems to the existence of fake R%'s made headlines
(insofar as mathematics ever makes headlines). Moreover, Donaldson
proved his theorem in topology by studying the solution space of
equations -- the Yang-Mills equations -- which come from
ultra-modern physics. The philosophical implications are unavoidable:
we mathematicians need physics!

The seminar was initially very well attended. Unfortunately, we
found after three months that we had covered most of the published
material, but had made little real progress towards giving a complete,
detailed proof. After joint work extending over three cities and 3000
miles, this book now provides such a proof. The seminar bogged down
in the hard analysis (86 - §9), which also takes up most of
Donaldson's paper (in less detail). As we proceeded it became clear
to us that the techniques in partial differential equations used in the
proof differ strikingly from the geometric .and topological material.
The latter can be obtained from basic information in standard
references and graduate courses, while no standard accessible set of
references exists for all the nonlinear analysis. We have attempted to
remedy this by including background material in all subjects, but

particularly in analysis (meaning nonlinear elliptic partial aifferential

' equations).

Specific mathematical debts are owed. First of all, our proof

does follow Donaldson in most essential matters, although we provide



much greater detail. On the other hand, we give a more concrete
proof of the transversality theorems ($3-84), a slightly different
proof of the orientability theorem (%5), and a completely new proof
of Taubes' existence theorem using noncompact manifolds (87). As a
byproduct we obtain a new, easy proof of the Removable Singularities
Theorem (Appendix D). We are also able to include the newer
important technique of Fintushel and Stern (§10). Our second debt
is to Michael Freedman. The seminar was his idea. He has also been
our Chief Topological Consultant throughout the entire project.
Chapter One foliows his first lecture, and large parts of the
introduction are due to him. Also, we thank the original speakers in
the seminar: Michael Freedman, as well as Andreas Floers, Steve
Sedlacek, and Andrejs Treibergs. Many other mathematicians
contributed ideas, suggestions, and references. ~We list a few here,
extending to them our heartfelt appreciation, and pray that we have
not insulted anyone by inadvertent omission: Bob Edwards, Rob Kirby,
Richard Lashof, John Lott, Mark Mahowald, Ken Millett, Tom Parker,
Mark Ronan, Rick Schoen, Ron Stern, Cliff Taubes, and John Wood.
Dan would particularly like to thank his advisor, Iz Singer, for his
aévice, information, inspiration, and perspective. =~ The bulk of the
proofreading was carried out by David Groisser, and the reader will
want to join us in praising David and Louis Crane, who have caught
several mysterious statements and incomplete proofs.

MSRI has cheerfully and generously provided us many services,
from office space and typing on up; their support even covered some
airfares. Larry Castro deserves a special award for enduring all of
our corrections and revisions -- thank God for the word processor!
Both Harvard and Northwestern provided shert-term office space. Evy
Kavaler drew the creative illustrations. Finally, thanks from Dan to

Ragul Bott for his warm hospitality and continued guidance.

Berkeley, California Dan Freed
January, 1984 Karen Uhlenbeck
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INTRCDUCTION

Topologists study three types of manifolds -- topological or
continuous (TOP), piecewise linear (PL), differentiable (DI‘FF) -- and
the relationships among them. A basic problem is to ascertain when a
topological manifold admits a PL structure and, if it does, whether
there is also a compatible smooth structure. By the early 1950's it
was known that every topological manifold of dimension less than or
equal to three admits a unique smooth structure. In 1968 Kirby and
Siebenmann determined that for a topological manifold M of dimension
at least five, there is a single obstruction a(M)j € H4(M;Zz) to the
existence of a PL structure. There are further discrete obstructions
to lifting from PL to DIFF; these have coefficients in groups of
homotopy spheres. Fortunately, a simplification in dimension four
absolves us from having to consider the piecewise linear category
again: every PL 4-manifold carries a unique compatible differentiable
structure. Now the Kirby-Siebenmann obstruction a(M), which lives
on the 4-skeleton of an n-manifold M, relates in special cases to a
result of Rohlin dating back to 1952. Rohlin's Theorem states that
the signature of a smooth spin 4-manifold is divisible by 16. The
arithmetic of quadratic forms shows that the signature of a topological
"spin” (= almost parallelizable) 4-manifold M is divisible by 8, and
a(M)_ €2, = 82/162 is the signature mod 16.° If M is not spinable,
the Kirby-Siebenmann invariant is an extra piece of information not
related to the intersection form.

Recently, a new type of "obstruction” to the smoothability of
4-manifolds was discovered by Simon Donaldson. He proved that if
the intersection form w of a compact, simply connected smooth
4-manifold is definite, then w is equivalent over the integers to the
standard diagonal form +diag(1,1,...,1). One year earlier Michael
Freedman had classified all compact, simply connected topological
4-manifolds, and he found that every unimodular symmetric bilinear
form is realized as the intersection form of some topological
4-manifold. Together these results give many examples of

nonsmoothable 4-manifolds with vanishing Kirby-Siebenmann invariant.



Freedman and others saw that Donaldson's Theorem, in view of work
done by Andrew Casson and others in the early 1870's, implies an even
more striking result: the existence of exotic differentiable structures
on RY At this time it is not known how many such fake R¥'s exist,
although several have been found. According to Freedman, topologists
speculate that there may be an uncountable number. If this turns out
to be true, then the classification of smooth structures, which in
higher dimensions is accomplished with characteristic classes and is
therefore a discrete problem, could stray into the realm of geometry;
just as there are (continuous) moduli spaces of complex structures on
liemann surfaces, so too there may be the moduli spaces of smooth
structures on 4-manifolds! Regardless, Donaldson's Theorem makes
clear the impossibility of characterizing smooth structures in four
dimensions in terms of bundle lifting (i.e. characteristic classes). ~ As
--:}nct;etia examples where bundle lifting fails, we cite IEseEel
and fake RY It is striking that Rohlin's Theorem and Donaldson's
Theorem can both be proved by studying a class of decidedly
wondiscrete objects: elliptic operators on smooth 4-manifolds. In fact,
it remains a challenge for topologists to find a proof of Donaldson's

Theorem which does not rely so heavily on geometry and analysis.

The study of elliptic operators on compact manifolds often
leads to theorems relating the geometry of the manifold to its
topology. We begin with the cornerstone of linear elliptic theory, the
Hodge-de Rham Theorem. A smooth n-manifold M comes equipped

with a natural elliptic complex of differential operators
0 — '™ -4 ol 4, ... 94, o — o

where at the qtf stage d: 0IM) — 0%1(M) is exterior
differentiation from gq-forms to (g+1)-forms. For compact M this de

Rham complex has finite dimensional cohomology groups

(1) HY (M) = Ker d: (M) 3! o)y
- Im d: 0970 (M) —s 0%(M)

which are isomorphic to the real singular cohomology groups HY(M;R).



Hence these spaces HgR(M), which a priori depend on the
differentiable structure, are actually invariants of the topological
structure. When M has a Riemannian metric, there .is a canonical
representative of each cohomology class. This is chosen by minimizing

the energy
2
£(a) = lal

i
over a given cohomology class (i.e. over @ = a_  + d8 where
B € nq'l(M) and a, is any closed g-form in the given class). The
Hodge-de Rham Theorem states that in each cohomology class there is
a unique minimizing a, which satisfies the Euler-Lagrange equations

=

(2) da=0.

Since we also have da = 0, equation (2) is equivalent to

3) Aa = (dd" + d"d)a

0.

Here A = dd + d d is the Laplace-Beltrami operator on forms. Any a
satisfying (3) is called harmonic.  Applications of Hodge-de Rham
Theory to global differential geometry often obtain by expressing the
‘ difference of the Laplace operator on forms, dd.+d'd, and a
differential operator formed from the full covariant derivative, v'v, as
an algebraic operator involving curvature. Applying this to 1-forms, for
example, Bochner proved in 1946 that HI(M:IR) = 0 for compact M
which carry a metric of positive Ricci curvature.

Hbdge-—de Rham Theory extends to more general linear elliptic
operators. An elliptic complex is a finite sequence of (first order)

operators
D D D
0— C%e,) —L C(g) —24 oo ECEY) — 0

between vector bundles £ i over M such that (i) Di+1 ° Di = 0, and
(ii) on the symbol level
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is exact for nonzero & € T M. Generalized cohomology groups HY(£)
are defined as in (1), and for compact M these are finite dimensional.
If metrics *on & and a volume form on M are given, the (formal) L2
adjoints Dq are defined. The generalized Hodge-de Rham Theorem
says that again there is a unique canonical representative f in each
cohomology class satisfying

*

Dq_lf =0,
or equivalently, since qu = 0 also,

*
(Dg_1D

a-1 * DD = 0.

The Atiyah-Singer Index Theorem expresses the alternating sum

3(-1)9 dim HY¢) in terms of characteristic classes of M and £
gonstmcted from the symbol sequence. (To determine a particular
dim H9£), one usually combines this with vanishing theorems.) i

Elliptic complexes can be used to explore the relationship
between differential geometry, algebraic geometry, and topology. Of
immediate - interest is a. particular application_-involvinz only topology:
Rohlin's. Theorem. On spin manifolds M there is a natural elliptic
operator, the Dirac operator, whose index is the R—-genus of M. This
is a certain characteristic class of M evaluated on the fundamental
cycle, and for 4-manifolds it turns out to. be é times  the signature.
Since the index of an elliptic complex is an integer, the R-cenus of M
is integral. (It was precisely this problem -- to explain the
integrality of K(M) for spin manifolds M -- which led Atiyah and
Singer to the Index Theorem.) Furthermore, the spin representation in
four dimensions is symplectic, and thus the space of harmonic spinors
(the kernel and cokernel of the Dirac operator) is gquaternionic. It
follows that K(’M) is an even integer, and the signature of M is
divisible by 186.

In four dimensions there is an important twisted Dirac operator



obtained by tensoring with one of the half-spin bundles. We mention
it here as it is essentially a linearized version of the nonlinear
operator Donaidson studies to deduce his topological result.  This
_operator can be described explicitly in terms of self-duality and
differential forms. Namely, if M is an oriented Riemannian 4-manifold, .
then the six dimensional bundle A2M splits canonically into the sum
of three ' dimensional bundles AlM = A}_M 2} A?_M. This
corresponds to the Lie algebra decomposition

so0(4) = s0(3)®s0(3). We get a new elliptic complex

0 Sp 0b g 22
(4) 0 — Q'M) — O°(M) —— 0Z(M) — 0
by  composing ' d: olM) - — OZ(M) with the  projection
P21 0%M) — n"_'(M). Then the  twisted - Dirac' « operator is
d" o2d:: olvm) — oM @ 0?(M).

Nonlinear analysis has had as great an impact on geometry and
topology as linear analysis.  Basic - results come from the Morse
Theory of geodesics on Riemannian manifolds, a variational theory for
nonlinear ordinary differential equations. * One of the first applications
is the Hadamard-Cartan Theorem (1898/1928) which asserts that the
universal cover of a complete Riemannian n-manifold of nenpositive:
curvature is diffeomorphic to R™. For positively curved manifolds we
have Sumner Byron Myer's Theorem (1941): A complete Riemannian
manifold with positive Ricci curvature is compact and has finite
fundamental group. This is a stronger result than is obtained from
linear theory, since Bochner's Theorem assumes M compact and only
concludes HI(M;IR) = 0. More spectacular is the use of Morse Theory
by Bott in 1956 to study geodesics on Lie groups, which led him to
his celebrated Periodicity Theorem.

Important applications  of nonlinear elliptic partial differential
equations to geometry and topology lagged béhind until very recently.
In the last five years a number of results have appeared, -many using
techniques involving minimal surfaces. For example, Schoen and Yau's
proof of the positive mass conjecture in general relativity, which relies:
on properties of the minimal surface egquation, yields the  following

geometric by-product: if the fundamental group of a 3-manifold M



contains a subgroup isomorphic to the fundamental group of a compact
surface with genus 2 1, then M admits no metric of positive scalar
curvature. At about the same time Meeks and Yau used minimal
surfaces to give new proofs of Dehn's Lemma (the Loop Theorem) and
the Sphere Theorem, two fundamental results in 3-manifold topology.
More importantly, they proved a new theorem -- the Equivariant Loop
Theorem -~ which, added to work of Thurston, Bass, and others,
completed a proof of the Smith Conjecture, a longstanding open
problem about Z actions on $3. Recent work of Freedman and Yau
examine more general group actions on g3 using minimal surface
techniques.  Alan Edmunds has recently given a purely topological
proof of the Equivariant Loop Theorem. However, for a theorem of
Meeks, Sim‘on. and Yau of the same vintage -- if a 3-manifold has no
fake cell ; (counterexample to the Poincare conjecture), then its
universal (;over has no fake cell -~ there is stiil no purely topological
proof. Of all applications of analysis to topology via geometry, the
Equivariant Loop Theorem and its consequences in 3-manifold topology
bear the closest relationship to Donaldson's Theorem in 4-manifold
topology. The same low dimensional topologists who were learning
about minimal surfaces in 3-manifolds a few years ago are now
studying the Yang-Mills equations on 4-manifolds.

Even with hindsight afforded by the passage of time, it is
difficult to find a pattern in the important applications of analysis to
topology, and to make predictions for the future would be foolhardy.
Nevertheless, our brief historical survey omitted applications of partial
differential equations to the geometry and topology of complex
manifolds, which are even more numerous than applications to
differentiable manifolds. In fact, an extension of the self-dual
equations Donaldson uses can -be used to study stable holomorphic

vector bundles over complex Kahler manifolds.

We can formulate Yang-Mills as a nonlinear generalization of
Hodge Theory. In addition to a Riemannian 4-manifold M, we also
start with a normed vector bundle n. We set up a variational
problem for connections D on n by taking as action the energy (L2

norm) of the curvature FD:



) ym(D) = f 1Pyl 2.
M

A critical point of this Yang-Mills functional satisfies the

Euler-Lagrange equations
L) —
(6) D FD =0,

a nonlinear generalization of (2). (Recall that curvature is a quadratic
expression in the connection, so the nonlinearity is mild.) In view of

the Bianchi identity DFD = 0, we also get a Laplace-like equation
(D" + D'D)F = 0.

The second order Yang-Mills equations (6) are automatically satisfied
by solutions to first order equations which yields absolute minima of

(5). These are the self-dual (anti-self-dual) equations
(7) 'FD =+ FD‘

Donaldson's Theorem, stated above, gives a restriction on the
topology of a compact, simply connected smooth four-manifold M. The
theorem is proved by studying the solutions of tke nonlinear
semi-elliptic system of equations (7). The operators involved in the
equations are nonlinear generalizations of the four-manifold Dirac
operator described earlier, and as such are special to four dimensions.
The space of solutions is divided out by a ‘patural equivalence to
produce the "moduli space” M. As with linear elliptic systems, we
learn about the topology of M by studying the geometry of the
solution space, only now that study is much more involved -- in the
linear case the solutions form a vector space, and the geometry is
completely determined by its dimension. For the self-dual eguations,
roughly speaking, the moduli space W is an oriented five-manifold
with point singularities, neighborhoods of the singular points are cones

on EPZ, and M appears as the boundary of M. Now the argument



proceeds using cobordism. Remarkable is how neatly each bit of
topological information on M fits the analysis! The positivity of the
intersection form is necessary for Taubes' existence theorem. Our
proof that M is orientable and the fact that dim ®m = 5 both require
that the first Betti number of M vanish. The ends of M can be
identified as R X M, and postulating x1(M) = 0 ensures that there is
only’ one 'end. The proof works for exactly the hypotheses given, and
basically for no other.

Due to this fine tuning between the analysis and topology, the
directions in which Donaldson's Theorem can be extended are very
limited, although there are possibilities open for treating 4-manifolds
_ with singularities or with boundary. Nevertheless, all the evidence
indicates that gauge theory is here to stay, both in mathematics and
in physics. There are several quite different reasons why gauge
theory is important in mathematics, aside from the application
discussed here. One is the beautiful dichotomy between the algebraic
twistor description of self-dual fields over self-dual 4-manifolds and
the nonlinear analysis. Here M can be studied with tools from
algebraic geometry, quaternionic linear algebra, and nonlinear PDE. In
a similar vein, holomorphic bundles over complex Kahler manifolds of
all dihxensions can be exam{ned using an extension of the self-dual
equations. Atiyah and Bott have already investigated the topology of
the moduli space of stable vector bundles over Riemann surfaces in

this framework. The three dimensional Yang-Mills equations remain a’
‘ challenge. Although abstract existence theorems guarantee solutions,
their geometrical significance has yet to be determined. ~Finally, the
equations themselves, particularly when coupled with an external
"matter field" (th'e f(anx-Mills—Hitgs équations), are really interesting
PDE's. Not only is there motivation from physics to study them, but
their topological and geometric features are both conceptually and
technically fascinating. o

Because our okpositib‘n draws on three branches of mathematics
-- topology, geometry, and analysis -- we have endeavored to supply
background material whenever possible. ' ‘The following ‘chapter by

chapter description will enable the reader ‘to make his own roadmap



through the book.

In 1 we discuss both topological and differentiable
four-manifolds. Three equivalent definitions of the intersection form
are given. At the end of this chapter we sketch Freedman's argument
for the existence of a fake re,

The basic geometry of gauge theory is set up in 82. We
choose to work with vector bundles rather than principal bundles in
order that concrete formulas be expressed. Perhaps some geometric
insight into connections is lost, though, and we take this opportunity
to explain the covariant derivative with pictures. Consider the
simplest case of real-valued functions f on ®R2. A basic principle of
modern differential geometry is simply this: we understand functions
(or sections of bundles) by studying the geometry of their graphs. In
this spirit the directional derivative Dyf of f in the direction X can

be computed By first lifting ¥ to a tangent vector foX to
T = graph f. Then the vertical part of fsX measures the rate of
.cha'nse of f in the direction X. By identifying the tangent space to R
with R, we have determined Dxf. In this example the vertical
projection, fixed by specifying its kernel, the horizontal subspace at
f(x), is sgiven canonically by the product structure of
R = RZ X R. Over topologically nontrivial manifolds there are vector
bundles which are not products, and then the horizontal distribution, or

connection, must be chosen as an additional piece of geometric data.



The obstruction to a local basis of flat sections is the curvature of
the connection, and global properties of the curvature reflect the
twisting of the bundle.

We study connections satisfying a particular system of
differential equations. The set of all connections on a bundle forms
an affine space O (the difference of two connections is a tensor field
on the base), and the group ¥ of bundle automorphisms acts naturally
on (K. The Yang-Mills equations are invariant under this action.
Therefore, our moduli space M is taken to be a subset of O/Y,
where it is finite dimensional. At the end of 82 we prove
Donaldson's Theorem modulo the topological properties of =
demonstrated in later chapters.

For a generic metric on M, the moduli space is a smooth
5-manifold with a finite number of singular points. Our approach in
83 and §4 differs from Donaldson's. His perturbation of M is‘ not
induced by a perturbation of the metric, and his more abstract setup
leads to a somewhat simpler argument. On the other hand, the space
we end up with is still the space of solutions to the Yang-Mills
equations, but now the base metric is perturbed. Both proofs use the
Sard-Smale Theorem to cons_truci: perturbations. We treat irreducible
connections in 3. The singular points of M correspond to reducible
connections, and near these points ® looks like a cone on cP2.
In 84 we redo the genericity theorem taking into account the extra
symmetry provided by the st holonomy of a reducible connection.

The arguments of 85 are mostly topological. The index bundle
of our nonlinear version of (4) is an extension of the tangent bundle
Tm, and its existence allows us to deduce the orientability of m from
the simple connectivity of O/®. This, in turn, follows from the
connectedness of ¥. The path group of Y turns out to be the set
of homotopy classes EM,Sal and this can be computed from the
Steenrod Classification Theorem. A more geometric argument based on
Pontrjagin's Construction is given in Appendix B.

§6 is an odd mix of analysis and geometry. Only the grafting
procedure is part of Taubes’ Theorem; the rest is background material.
We begin with a geometric description of the moduli space of

instantons on 84. Because the conformal group preserves the

i0



