Maurice Bruynooghe
Kung-Kiu Lau (Eds.)

e
S
iy
(«B)
o wn
T
Sl
7
(<P
st
(4]
et
v

Survey

Program Development
in Computational Logic

A Decade of Research Advances

LNCS 3049

in Logic-Based Program Development

Maurice Bruynooghe Kung-Kiu Lau (Eds.)

Program Development
in Computational Logic

A Decade of Research Advances
in Logic-Based Program Development

VAN

E200404113

©: Springer

Volume Editors

Maurice Bruynooghe

Katholieke Universiteit Leuven

Department of Computer Science
Celestijnenlaan 200A, 3001 Heverlee, Belgium
E-mail: Maurice.Bruynooghe @cs.kuleuven.ac.be

Kung-Kiu Lau

University of Manchester

Department of Computer Science
Manchester M13 9PL, United Kingdom
E-mail: kung-kiu@cs.man.ac.uk

Library of Congress Control Number: 2004107507

CR Subject Classification (1998): F3.1,D.1.1,D.1.6,1.2.2, F4.1,D.2,D.3

ISSN 0302-9743
ISBN 3-540-22152-2 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11012061 06/3142 543210

Lecture Notes in Computer Science 3049

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Faris

Tokyo

Preface

The tenth anniversary of the LOPSTR! symposium provided the incentive for
this volume. LOPSTR started in 1991 as a workshop on logic program synthesis
and transformation, but later it broadened its scope to logic-based program
development in general, that is, program development in computational logic,
and hence the title of this volume.

The motivating force behind LOPSTR has been the belief that declarative
paradigms such as logic programming are better suited to program development
tasks than traditional non-declarative ones such as the imperative paradigm.
Specification, synthesis, transformation or specialization, analysis, debugging
and verification can all be given logical foundations, thus providing a unifying
framework for the whole development process.

In the past 10 years or so, such a theoretical framework has indeed begun to
emerge. Even tools have been implemented for analysis, verification and special-
ization.

However, it is fair to say that so far the focus has largely been on programming-
in-the-small. So the future challenge is to apply or extend these techniques to
programming-in-the-large, in order to tackle software engineering in the real
world.

Returning to this volume, our aim is to present a collection of papers that
reflect significant research efforts over the past 10 years. These papers cover the
whole development process: specification, synthesis, analysis, transformation and
specialization, as well as semantics and systems.

We would like to thank all the authors for their valuable contributions that
made this volume possible. We also thank the reviewers for performing their
arduous task meticulously and professionally: Annalisa Bossi, Nicoletta Cocco,
Bart Demoen, Danny De Schreye, Yves Deville, Sandro Etalle, Pierre Flener,
John Gallagher, Samir Genaim, Gopal Gupta, Ian Hayes, Patricia Hill, Andy
King, Vitaly Lagoon, Michael Leuschel, Naomi Lindenstrauss, Nancy Mazur,
Mario Ornaghi, Dino Pedreschi, Alberto Pettorossi, Maurizio Proietti, CR Ra-
makrishnan, Sabina Rossi, Abhik Roychoudhury, Salvatore Ruggieri, Tom Schri-
jvers, Alexander Serebrenik, Jan-Georg Smaus, Wim Vanhoof and Sofie Ver-
baeten.

April 2004 Maurice Bruynooghe and Kung-Kiu Lau

! http://www.cs.man.ac.uk/~kung-kiu/lopstr/

Lecture Notes in Computer Science

For information about Vols. 1-2997

please contact your bookseller or Springer-Verlag

Vol. 3096: G. Melnik, H. Holz (Eds.), Advances in Learn-
ing Software Organizations. X, 173 pages. 2004.

Vol. 3094: A. Niirnberger, M. Detyniecki (Eds.), Adaptive
Multimedia Retrieval. VIII, 229 pages. 2004.

Vol. 3093: S.K. Katsikas, S. Gritzalis, J. Lopez (Eds.),
Public Key Infrastructure. XIII, 380 pages. 2004.

Vol. 3092: J. Eckstein, H. Baumeister (Eds.), Extreme Pro-
gramming and Agile Processes in Software Engineering.
XVI, 358 pages. 2004.

Vol. 3091: V. van Oostrom (Ed.), Rewriting Techniques
and Applications. X, 313 pages. 2004.

Vol. 3089: M. Jakobsson, M. Yung, J. Zhou (Eds.), Applied
Cryptography and Network Security. XIV, 510 pages.
2004.

Vol. 3086: M. Odersky (Ed.), ECOOP 2004 — Object-
Oriented Programming. XIII, 611 pages. 2004,

Vol. 3085: S. Berardi, M. Coppo, E. Damiani (Eds.), Types
for Proofs and Programs. X, 409 pages. 2004.

Vol. 3084: A. Persson, J. Stirna (Eds.), Advanced Infor-
mation Systems Engineering. XIV, 596 pages. 2004.

Vol. 3083: W. Emmerich, A.L. Wolf (Eds.), Component
Deployment. X, 249 pages. 2004.

Vol. 3078: S. Cotin, D.N. Metaxas (Eds.), Medical Simu-
lation. XVI, 296 pages. 2004.

Vol. 3077: F. Roli, J. Kittler, T. Windeatt (Eds.), Multiple
Classifier Systems. XII, 386 pages. 2004.

- Vol. 3076: D. Buell (Ed.), Algorithmic Number Theory.
XI, 451 pages. 2004.

Vol. 3074: B. Kuijpers, P. Revesz (Eds.), Constraint
Databases and Applications. XII, 181 pages. 2004.

Vol. 3073: H. Chen, R. Moore, D.D. Zeng, J. Leavitt
(Eds.), Intelligence and Security Informatics. XV, 536
pages. 2004.

Vol. 3072: D. Zhang, A K. Jain (Eds.), Biometric Authen-
tication. XVII, 800 pages. 2004.

Vol. 3070: L. Rutkowski, J. Sickmann, R. Tadeusiewicz,
L.A. Zadeh (Eds.), Artificial Intelligence and Soft Com-
puting - ICAISC 2004. XXV, 1208 pages. 2004. (Sub-
series LNAI).

Vol. 3068: E. André, L. Dybkj\ae r, W. Minker, P. Heis-
terkamp (Eds.), Affective Dialogue Systems. XII, 324
pages. 2004. (Subseries LNAI).

Vol. 3067: M. Dastani, J. Dix, A. El Fallah-Seghrouchni
(Eds.), Programming Multi-Agent Systems. X, 221 pages.
2004. (Subseries LNAI).

Vol. 3066: S. Tsumoto, R. Stowiriski, J. Komorowski, J.W.

Grzymala-Busse (Eds.), Rough Sets and Current Trends
in Computing. XX, 853 pages. 2004. (Subseries LNAI).

Vol. 3065: A. Lomuscio, D. Nute (Eds.), Deontic Logic in
Computer Science. X, 275 pages. 2004. (Subseries LNAI).

Vol. 3064: D. Bienstock, G. Nemhauser (Eds.), Integer
Programming and Combinatorial Optimization. XI, 445
pages. 2004.

Vol. 3063: A. Llamosi, A. Strohmeier (Eds.), Reliable
Software Technologies - Ada-Europe 2004. XIII, 333
pages. 2004.

Vol. 3062: J.L. Pfaltz, M. Nagl, B. Béhlen (Eds.), Applica-
tions of Graph Transformations with Industrial Relevance.
XV, 500 pages. 2004.

Vol. 3060: A.Y. Tawfik, S.D. Goodwin (Eds.), Advances in
Artificial Intelligence. XIII, 582 pages. 2004. (Subseries
LNAI).

Vol. 3059: C.C. Ribeiro, S.L. Martins (Eds.), Experimental
and Efficient Algorithms. X, 586 pages. 2004.

Vol. 3058: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 233
pages. 2004.

Vol. 3057: B. Jayaraman (Ed.), Practical Aspects of
Declarative Languages. VIII, 255 pages. 2004.

Vol. 3056: H. Dai, R. Srikant, C. Zhang (Eds.), Advances in
Knowledge Discovery and Data Mining. XIX, 713 pages.
2004. (Subseries LNAI).

Vol. 3055: H. Christiansen, M.-S. Hacid, T. Andreasen,
H.L. Larsen (Eds.), Flexible Query Answering Systems.
X, 500 pages. 2004. (Subseries LNAI).

Vol. 3054: 1. Cmkovic, J.A. Stafford, HW. Schmidt, K.

Wallnau (Eds.), Component-Based Software Engineering.
XI, 311 pages. 2004.

Vol. 3053: C. Bussler, J. Davies, D. Fensel, R. Studer
(Eds.), The Semantic Web: Research and Applications.
XIII, 490 pages. 2004.

Vol. 3052: W. Zimmermann, B. Thalheim (Eds.), Abstract

State Machines 2004. Advances in Theory and Practice.
XII, 235 pages. 2004.

Vol. 3051: R. Berghammer, B. Mdller, G. Struth (Eds.),
Relational and Kleene-Algebraic Methods in Computer
Science. X, 279 pages. 2004.

Vol. 3050: J. Domingo-Ferrer, V. Torra (Eds.), Privacy in
Statistical Databases. IX, 367 pages. 2004.

Vol. 3049: M. Bruynooghe, K.-K. Lau (Eds.), Program
Development in Computational Logic. VIII, 539 pages.
2004,

Vol. 3047: F. Oquendo, B. Warboys, R. Morrison (Eds.),
Software Architecture. X, 279 pages. 2004.

Vol. 3046: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,

C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1016 pages. 2004.

Vol. 3045: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1040 pages. 2004.

Vol. 3044: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1140 pages. 2004.

Vol. 3043: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1180 pages. 2004.

Vol. 3042: N. Mitrou, K. Kontovasilis, G.N. Rouskas, I.
Iliadis, L. Merakos (Eds.), NETWORKING 2004, Net-
working Technologies, Services, and Protocols; Perfor-
mance of Computer and Communication Networks; Mo-
bile and Wireless Communications. XXXIII, 1519 pages.
2004.

Vol. 3040: R. Conejo, M. Urretavizcaya, J.-L. Pérez-de-
la-Cruz (Eds.), Current Topics in Artificial Intelligence.
X1V, 689 pages. 2004. (Subseries LNAI).

Vol. 3039: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
1271 pages. 2004.

Vol. 3038: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
1311 pages. 2004.

Vol. 3037: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LX VI,
745 pages. 2004.

Vol. 3036: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
713 pages. 2004.

Vol. 3035: M.A. Wimmer (Ed.), Knowledge Management
in Electronic Government. XII, 326 pages. 2004. (Sub-
series LNAI).

Vol. 3034: J. Favela, E. Menasalvas, E. Chdvez (Eds.), Ad-
vances in Web Intelligence. XIII, 227 pages. 2004. (Sub-
series LNAI).

Vol. 3033: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.),
Grid and Cooperative Computing. XXXVIII, 1076 pages.
2004.

Vol. 3032: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.), Grid
and Cooperative Computing. XXXVII, 1112 pages. 2004.

Vol. 3031: A. Butz, A. Kriiger, P. Olivier (Eds.), Smart
Graphics. X, 165 pages. 2004.

Vol. 3030: P. Giorgini, B. Henderson-Sellers, M. Winikoff
(Eds.), Agent-Oriented Information Systems. XIV, 207
pages. 2004. (Subseries LNAI).

Vol. 3029: B. Orchard, C. Yang, M. Ali (Eds.), Innovations
in Applied Artificial Intelligence. XXI, 1272 pages. 2004.
(Subseries LNAI).

Vol. 3028: D. Neuenschwander, Probabilistic and Statis-
tical Methods in Cryptology. X, 158 pages. 2004.

Vol. 3027: C. Cachin, J. Camenisch (Eds.), Advances in
Cryptology - EUROCRYPT 2004. XI, 628 pages. 2004.

Vol. 3026: C. Ramamoorthy, R. Lee, K.W. Lee (Eds.),
Software Engineering Research and Applications. XV,
377 pages. 2004.

Vol. 3025: G.A. Vouros, T. Panayiotopoulos (Eds.), Meth-
ods and Applications of Artificial Intelligence. XV, 546
pages. 2004. (Subseries LNAI).

Vol. 3024: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3023: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIIL, 611 pages. 2004.

Vol. 3022: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCYV 2004. XXVIII, 621 pages. 2004.

Vol. 3021: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 633 pages. 2004.

Vol. 3019: R. Wyrzykowski, J.J. Dongarra, M. Paprzy-
cki, J. Wasniewski (Eds.), Parallel Processing and Applied
Mathematics. XIX, 1174 pages. 2004.

Vol. 3018: M. Bruynooghe (Ed.), Logic Based Program
Synthesis and Transformation. X, 233 pages. 2004.

Vol. 3016: C. Lengauer, D. Batory, C. Consel, M. Odersky
(Eds.), Domain-Specific Program Generation. XII, 325
pages. 2004.

Vol. 3015: C. Barakat, 1. Pratt (Eds.), Passive and Active
Network Measurement. XI, 300 pages. 2004.

Vol. 3014: F. van der Linden (Ed.), Software Product-
Family Engineering. IX, 486 pages. 2004.

Vol. 3012: K. Kurumatani, S.-H. Chen, A. Ohuchi (Eds.),
Multi-Agnets for Mass User Support. X, 217 pages. 2004.
(Subseries LNAI).

Vol. 3011: J.-C. Régin, M. Rueher (Eds.), Integration of Al
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 415 pages. 2004.

Vol. 3010: K.R. Apt, F. Fages, F. Rossi, P. Szeredi, J.
Vincza (Eds.), Recent Advances in Constraints. VIII, 285
pages. 2004. (Subseries LNAI).

Vol. 3009: F. Bomarius, H. lida (Eds.), Product Focused
Software Process Improvement. XIV, 584 pages. 2004.

Vol. 3008: S. Heuel, Uncertain Projective Geometry.
XVII, 205 pages. 2004.

Vol. 3007: J.X. Yu, X. Lin, H. Lu, Y. Zhang (Eds.), Ad-
vanced Web Technologies and Applications. XXII, 936
pages. 2004.

Vol. 3006: M. Matsui, R. Zuccherato (Eds.), Selected Ar-
eas in Cryptography. XI, 361 pages. 2004.

Vol. 3005: G.R. Raidl, S. Cagnoni, J. Branke, D.W. Corne,
R. Drechsler, Y. Jin, C.G. Johnson, P. Machado, E. Mar-
chiori, F. Rothlauf, G.D. Smith, G. Squillero (Eds.), Ap-
plications of Evolutionary Computing. XVII, 562 pages.
2004.

Vol. 3004: J. Gottlieb, G.R. Raidl (Eds.), Evolution-
ary Computation in Combinatorial Optimization. X, 241
pages. 2004.

Vol. 3003: M. Keijzer, U.-M. O’Reilly, S.M. Lucas, E.
Costa, T. Soule (Eds.), Genetic Programming. XI, 410
pages. 2004.

Vol. 3002: D.L. Hicks (Ed.), Metainformatics. X, 213
pages. 2004.

Vol. 3001: A. Ferscha, F. Mattern (Eds.), Pervasive Com-
puting. XVII, 358 pages. 2004.

Vol. 2999: E.A. Boiten, J. Derrick, G. Smith (Eds.), Inte-
grated Formal Methods. XI, 541 pages. 2004.

Vol. 2998: Y. Kameyama, P.J. Stuckey (Eds.), Functional
and Logic Programming. X, 307 pages. 2004.

Table of Contents

Specification and Synthesis

Specifying Compositional Units for Correct Program Development in
Computational Logicooiiii e 1
Kung-Kiu Lau and Mario Ornaghi

Synthesis of Programs in Computational Logic.................oii.. 30
David Basin, Yves Deville, Pierre Flener, Andreas Hamfelt, and
Jorgen Fischer Nilsson

Developing Logic Programs from Specifications Using Stepwise

Refinement.......... 66
Robert Colvin, Lindsay Groves, Ian J. Hayes, David Hemer,

Ray Nickson, and Paul Strooper

Semantics

Declarative Semantics of Input Consuming Logic Programs............. 90
Annalisa Bossi, Nicoletta Cocco, Sandro Etalle, and Sabina Rossi

On the Semantics of Logic Program Composition 115
Antonio Brogi

Analysis

Analysing Logic Programs by Reasoning Backwards 152
Jacob M. Howe, Andy King, and Lungin Lu

Binding Time Analysis for 1% L2 011 189
Wim Vanhoof, Maurice Bruynooghe, and Michael Leuschel

A Generic Framework for Context-Sensitive Analysis of Modular

PLOBEADIE o cxy i 0i0 2285558 0 om0 319 50§ 35 8065 e s 233
Germdn Puebla, Jesis Correas, Manuel V. Hermenegildo,

Francisco Bueno, Maria Garcia de la Banda, Kim Marriott, and

Peter J. Stuckey

Transformation and Specialisation

Unfold/Fold Transformations for Automated Verification of
Parameterized Concurrent Systems...................... 261

VIII Table of Contents

Transformation Rules for Locally Stratified Constraint Logic Programs . .

Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti

Specialising Interpreters Using Offline Partial Deduction

Michael Leuschel, Stephen J. Craig, Maurice Bruynooghe, and
Wim Vanhoof

Termination

Characterisations of Termination in Logic Programming

Dino Pedreschi, Salvatore Ruggieri, and Jan-Georg Smaus

On the Inference of Natural Level Mappings.........................

Jonathan C. Martin and Andy King

Proving Termination for Logic Programs by the Query-Mapping Pairs

SOOI o 3 3 5 0152 193 0 4 0 O (05 20 S 0 T8 8 005 e 058 0 B 60 s

Naomi Lindenstrauss, Yehoshua Sagiv, and Alexzander Serebrenik

Systems

Herbrand Constraint Solving in HAL

Bart Demoen, Maria Garcia de la Banda, Warwick Harvey,
Kim Marriott, David Overton, and Peter J. Stuckey

Author Index

291

Specifying Compositional Units for Correct
Program Development in Computational Logic

Kung-Kiu Lau! and Mario Ornaghi?

! Department of Computer Science, University of Manchester
Manchester M13 9PL, United Kingdom
kung-kiu@cs.man.ac.uk
2 Dipartimento di Scienze dell’Informazione, Universita’ degli studi di Milano
Via Comelico 39/41, 20135 Milano, Italy
ornaghi@dsi.unimi.it

Abstract. In order to provide a formalism for defining program cor-
rectness and to reason about program development in Computational
Logic, we believe that it is better to distinguish between specifications
and programs. To this end, we have developed a general approach to
specification that is based on a model-theoretic semantics. In our pre-
vious work, we have shown how to define specifications and program
correctness for open logic programs. In particular we have defined a no-
tion of correctness called steadfastness, that captures at once modularity,
reusability and correctness. In this paper, we review our past work and
we show how it can be used to define compositional units that can be
correctly reused in modular or component-based software development.

1 Introduction

In software engineering, requirements analysis, design and implementation are
distinctly separate phases of the development process [18], as they employ dif-
ferent methods and produce different artefacts. In requirements analysis and
design, specifications play a central role, as a frame of reference capturing the
requirements and the design decisions. By contrast, data and programs only ap-
pear in the implementation phase, towards the end of the development process.
There is therefore a clear distinction between specifications and programs.

In Computational Logic, however, this distinction is usually not maintained.
This is because there is a widely held view that logic programs are executable
specifications and therefore there is no need to produce specifications before the
implementation phase of the development process. We believe that undervalu-
ing specifications in this manner is not an ideal platform for program devel-
opment. If programs are indistinguishable from specifications, then how do we
define program correctness, and how do we reason about program development?
We hold the view that the meaning of correctness must be defined in terms of
something other than logic programs themselves. We are not alone in this, see
e.g., [17, p. 410]. In our view, the specification should axiomatise all our rele-
vant knowledge of the problem context and the necessary data types, whereas,

M. Bruynooghe and K.-K. Lau (Eds.): Program Development in CL, LNCS 3049, pp. 1-29, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Kung-Kiu Lau and Mario Ornaghi

for complexity reasons, programs rightly capture only what is strictly neces-
sary for computing. In the process of extracting programs from specifications,
a lot of knowledge is lost, making programs much weaker axiomatisations. This
suggests that specifying and programming are different activities, involving dif-
ferent methodological aspects. Thus, we take the view that specifications should
be clearly distinguished from programs, especially for the purpose of program
development. Indeed, we have shown (in [28,29]) that in Computational Logic,
not only can we maintain this distinction, but we can also define various kinds
of specifications for different purposes. Moreover, we can also define correctness
with respect to these specifications.

Our semantics for specification and correctness is model-theoretic. The declar-
ative nature of such a semantics allows us to define steadfastness [34], a notion of
correctness that captures at once modularity, reusability and correctness. Open
programs are incomplete pieces of code that can be (re)used in many different
admissible situations, by closing them (by adding the missing code) in many
different ways. Steadfastness of an open program P is pre-proved correctness of
the various closures of P, with respect to the different meanings that the spec-
ification of P assumes in the admissible situations. For correct reuse, we need
to know when a situation is admissible. This knowledge is given by the prob-
lem context. We have formalised problem context as a specification framework
[27], namely, a first-order theory that axiomatises the problem context, charac-
terises the admissible situations as its (intended) models, and is used to write
specifications and to reason about them.

In this paper, we review our work in specification and correctness of logic pro-
grams, including steadfastness. Qur purpose is to discuss the role of steadfastness
for correct software development. In particular, we are interested in modularity
and reuse, which are key aspects of software development. Our work is centred
on the notion of a compositional unit. A compositional unit is a software com-
ponent, which is commonly defined as a unit of composition with contractually
specified interfaces and context dependencies only [46]. The interfaces declare
the imported and exported operations, and the context dependencies specify the
constraints that must be satisfied in order to correctly (re)use them. Through-
out the paper, we will not refer to compositional units as software components,
however, for the simple reason that as yet there is no standard definition for the
latter (although the one we used above [46] is widely accepted). So we prefer
to avoid any unnecessary confusion. In our compositional units, the interfaces
and the context dependencies are declaratively specified in the context of the
specification framework F axiomatising the problem context. F gives a precise
semantics to specifications and allows us to reason about the correctness of pro-
grams, as well as their correct reuse. Thus, in our formalisation, a compositional
unit has a three-tier structure, with separate levels for framework, specifications
and programs.

We introduce compositional units in Section 2, and consider the three levels
separately. We focus on model-theoretic semantics of frameworks and specifica-
tions, and on steadfastness (i.e., open program correctness).

Specifying Compositional Units for Correct Program Development 3

In Section 3, we show how the proposed formalisation of compositional units
can be used to support correct reuse. Our aim is to highlight the aspects related
to specifications, so we consider only the aspects related to the framework and
the specification levels, while assuming the possibility of deriving (synthesising)
steadfast programs from specifications.

At the end of each section we briefly discuss and compare our results with
related work, and finally in the conclusion we comment on future developments.

2 Compositional Units

In our approach, compositional units represent correctly reusable units of specifi-
cations and correct open programs. Our view is that specifications and programs
are not stand-alone entities, but are always to be considered in the light of
a problem context. The latter plays a central role: it is the semantic contexrt
in which specifications and program correctness assume their appropriate mean-
ing, and it contains the necessary knowledge for reasoning about correctness and
correct reuse. This is reflected in the three-tier structure (with model-theoretic
semantics) of a compositional unit, as illustrated in Figure 1.

Signature X

Axioms X
Theorems T

idy :S-,r1 = S51{Cl}; sy Pidh 5 Sﬂ—h = Sghv{ch}

Fig. 1. A three-tier formalism.

At the top level of a compositional unit K, we have a specification framework
F, or framework for short, that embodies an axiomatisation of the problem
context. F has a signature X, a set X of azioms, a set T of theorems, a list
Iy of open symbols, and a list Ap of defined symbols. The syntax IIr = Arp
indicates that the axioms of F fix (the meaning of) the symbols Ar whenever F
is composed with frameworks that fix ITr. The defined and open symbols belong
to the signature ¥, which may also contain closed symbols, namely symbols

4 Kung-Kiu Lau and Mario Ornaghi

defined completely by the axioms (i.e., independently from ITr). Frameworks
are explained in Section 2.1, and framework composition is explained in Section
3.1.

In the middle, we have the specification section. Its role is to bridge the gap
between the framework F and the chosen programming language. So far, we have
considered only logic programs, and the corresponding specification formalism
is explained in Section 2.2. The specification section contains the specifications
Spys -+ - Sp,, of the program predicates occurring in the program section. It may
also contain a set of specification reduction theorems theorems RD;y,...,RDy,
that are useful to reason about correct reuse. Specification reduction is explained
in Section 3.2.

At the bottom, we have the program section. Programs are open logic (or con-
straint logic) programs. An open program Pg, : Sy, = S5, {C;} (1 <@ < h) has
an identifier id;, an interface specification Sy, = S5, and a set {C;} of implemen-
tation clauses. Sy, and Ss, are lists of specifications defined in the specification
section. An interface specification contains all the information needed to correctly
reuse a correct program. Programs and correctness are explained in Section 2.3.
Correct reuse is explained in Section 3.3.

2.1 Specification Frameworks

A specification framework F is defined in the context of first-order logic, and
contains the relevant knowledge of the necessary concepts and data types for
building a model of the application at hand.

We distinguish between closed and open frameworks. A closed framework
F = (X, X, T) has a signature X, a set X of axioms, and a set T of theorems.
It has no open and defined symbols, that is, all the symbols of X' are closed.

Ezample 1. An example of closed framework is first-order arithmetic NAT =
(¥ Nat>» X Nat, TNat), introduced by the following syntax:?

Framework NAT;
DECLS: Nat : sort;
0:[] — Nat;

s : [Nat] — Nat;
+, *_: [Nat, Nat] — Nat;
AXS: Nat : construct(0, s : Nat);

+: 1+0=74;
i+ s(j) = s(i + j);
1% 0 =0;

ixs(f) =ixj+1;
THMS: i+ J =7 +71;

% In all the examples, we will omit the outermost universal quantifiers, but their omni-
presence should be implicitly understood.

Specifying Compositional Units for Correct Program Development 5

The signature X ng¢, introduced in the declaration section DECLS, is the signature
of Peano’s arithmetic. The axioms X yqt, introduced in the AXS section, are the
usual ones of first-order arithmetic. 0 and s are the constructors of Nat and their
axioms, which we call the constructor arioms for Nat, are collectively indicated
by construct(0,s : Nat). The latter contains Clark’s equality theory [35] for 0
and s, as well as all the instances of the first-order induction schema. MAT has
been widely studied, and there are a lot of known theorems (in section THMS),
including for example the associative, commutative and distributive laws.

Theorems are an important part of a framework. However, they are not
relevant in the definitions that follow, so we will not refer to them explicitly
here.

For closed frameworks we adopt isoinitial semantics, that is, we choose the
intended model of F = (X,X) to be a reachable isoinitial model, defined as
follows:

Definition 1 (Reachable Isoinitial Model [5]). Let X be a set of X-axioms.
A S-structure 1 is an isoinitial model of X iff, for every model M of X, there is
a unique isomorphic embedding i : 1 — M.

A model 1 is reachable if its elements can be represented by ground terms.

Definition 2 (Adequate Closed Frameworks [30]). A closed framework
F = (¥,X) is adequate iff there is a reachable isoinitial model 1 of X that we
call ‘the’ intended model of F.

In fact 1 is one of many intended models of F, all of which are isomorphic.
So 1 is unique up to isomorphism, and hence our (ab)use of ‘the’.

As shown in [5], adequacy entails the computability of the operations and
predicates of the signature.

Ezample 2. NAT is an adequate closed framework. Its intended model is the
standard structure A of natural numbers (N is a reachable isoinitial model of
Xnat). N interprets Nat as the set of natural numbers, and s,+ and * as the
successor, sum and product function, respectively.

The adequacy of a closed framework is not a decidable property. We have the
following useful proof-theoretic characterisation, which can be seen as a “richness
requirement” implicit in isoinitial semantics [31]:

Definition 3 (Atomic Completeness). A framework F = (32, X) is atomi-
cally complete iff, for every ground atomic formula A, either X = A or X F —A.
Theorem 1 (Adequacy Condition [38]). A closed framework F = (X, X)

is adequate iff it has at least one reachable model and is atomically complete.

Closed adequate frameworks can be built incrementally, starting from a
closed adequate kernel, by means of adequate extensions.

6 Kung-Kiu Lau and Mario Ornaghi

Definition 4 (Adequate Extensions [30]). An adequate extension of an ad-
equate closed framework F = (X,X) is an adequate closed framework Fs =
(XU 6,X U Ds) such that:

a) Ds is a set of (¥ U §)-axioms, axiomatising a set of new (i.e., not in X)
symbols &;
b) the X-reduct 1|2 of the intended model 1 of Fs is the intended model of F.

The notions of reduct and erpansion are standard in logic [4]. The X-reduct
I' = 1|X forgets the interpretation of the symbols not in X, in our case the
new symbols 4. Conversely, 1 is said to be a (X' U §)-expansion of I, that is, a
(X U 6)-expansion is a (X U §)-interpretation that preserves the meaning of the
old ¥-symbols, and interprets the new § arbitrarily.

In Definition 4, by b), the intended model 1 of an adequate extension is an
expansion of the old intended model, that is, adequacy entails that the meaning
of the old symbols is preserved.

If the axioms Ds of an adequate extension are explicit definitions, we say that
they are adequate explicit definitions. Since they are important in our approach,
we briefly recall them.

An explicit definition of a new relation r has the form Vz,r(z) < R(z),
where z indicates a tuple of variables and (as usual) “,” extends the scope
of a quantifier to the longest subformula next to it. The explicit definition of
a new function f has the form Vz . F(z, f(z)), where R(z) and F(z,y) are
formulas of the framework that contain free only the indicated variables. The
explicit definition of f has the proof obligation X + Vz 'y ¢ F(z,y), where X
are the framework axioms (as usual, 3y means unique existence). R(z) is called
the definens (or defining formula) of v, and F(z,y) the definiens (or defining
formula) of f.

Explicit definitions have nice properties. They are purely declarative, in the
following sense: they define the new symbols purely in terms of the old ones,
that is, in a non-recursive way. This declarative character is reflected by the
following eliminability property, where X is the signature of the framework and
4 are the new explicitly defined symbols: the extension is conservative (i.e., no
new X-theorem is added) and every formula of X + § is provably equivalent to
a corresponding formula of the old signature X. Moreover, if we start from a
sufficiently expressive kernel, most of the relevant relations and functions can be
explicitly defined. Finally, we can prove:

Proposition 1. If the definiens of an explicit definition is quantifier-free, then
the definition is adequate.

If the definiens is not quantifier-free, adequacy must be checked. To state the
adequacy of closed frameworks and of explicit definitions, we can apply proof
methods based on logic program synthesis [26,27] or constructive logic [38].

Ezample 3. The kernel NAT of Example 1 is sufficiently expressive in the fol-
lowing sense. Every recursively enumerable relation r can be introduced by an

