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Preface

The tenth anniversary of the LOPSTR! symposium provided the incentive for
this volume. LOPSTR started in 1991 as a workshop on logic program synthesis
and transformation, but later it broadened its scope to logic-based program
development in general, that is, program development in computational logic,
and hence the title of this volume.

The motivating force behind LOPSTR has been the belief that declarative
paradigms such as logic programming are better suited to program development
tasks than traditional non-declarative ones such as the imperative paradigm.
Specification, synthesis, transformation or specialization, analysis, debugging
and verification can all be given logical foundations, thus providing a unifying
framework for the whole development process.

In the past 10 years or so, such a theoretical framework has indeed begun to
emerge. Even tools have been implemented for analysis, verification and special-
ization.

However, it is fair to say that so far the focus has largely been on programming-
in-the-small. So the future challenge is to apply or extend these techniques to
programming-in-the-large, in order to tackle software engineering in the real
world.

Returning to this volume, our aim is to present a collection of papers that
reflect significant research efforts over the past 10 years. These papers cover the
whole development process: specification, synthesis, analysis, transformation and
specialization, as well as semantics and systems.

We would like to thank all the authors for their valuable contributions that
made this volume possible. We also thank the reviewers for performing their
arduous task meticulously and professionally: Annalisa Bossi, Nicoletta Cocco,
Bart Demoen, Danny De Schreye, Yves Deville, Sandro Etalle, Pierre Flener,
John Gallagher, Samir Genaim, Gopal Gupta, Ian Hayes, Patricia Hill, Andy
King, Vitaly Lagoon, Michael Leuschel, Naomi Lindenstrauss, Nancy Mazur,
Mario Ornaghi, Dino Pedreschi, Alberto Pettorossi, Maurizio Proietti, CR Ra-
makrishnan, Sabina Rossi, Abhik Roychoudhury, Salvatore Ruggieri, Tom Schri-
jvers, Alexander Serebrenik, Jan-Georg Smaus, Wim Vanhoof and Sofie Ver-
baeten.

April 2004 Maurice Bruynooghe and Kung-Kiu Lau

! http://www.cs.man.ac.uk/~kung-kiu/lopstr/
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Specifying Compositional Units for Correct
Program Development in Computational Logic

Kung-Kiu Lau! and Mario Ornaghi?

! Department of Computer Science, University of Manchester
Manchester M13 9PL, United Kingdom
kung-kiu@cs.man.ac.uk
2 Dipartimento di Scienze dell’Informazione, Universita’ degli studi di Milano
Via Comelico 39/41, 20135 Milano, Italy
ornaghi@dsi.unimi.it

Abstract. In order to provide a formalism for defining program cor-
rectness and to reason about program development in Computational
Logic, we believe that it is better to distinguish between specifications
and programs. To this end, we have developed a general approach to
specification that is based on a model-theoretic semantics. In our pre-
vious work, we have shown how to define specifications and program
correctness for open logic programs. In particular we have defined a no-
tion of correctness called steadfastness, that captures at once modularity,
reusability and correctness. In this paper, we review our past work and
we show how it can be used to define compositional units that can be
correctly reused in modular or component-based software development.

1 Introduction

In software engineering, requirements analysis, design and implementation are
distinctly separate phases of the development process [18], as they employ dif-
ferent methods and produce different artefacts. In requirements analysis and
design, specifications play a central role, as a frame of reference capturing the
requirements and the design decisions. By contrast, data and programs only ap-
pear in the implementation phase, towards the end of the development process.
There is therefore a clear distinction between specifications and programs.

In Computational Logic, however, this distinction is usually not maintained.
This is because there is a widely held view that logic programs are executable
specifications and therefore there is no need to produce specifications before the
implementation phase of the development process. We believe that undervalu-
ing specifications in this manner is not an ideal platform for program devel-
opment. If programs are indistinguishable from specifications, then how do we
define program correctness, and how do we reason about program development?
We hold the view that the meaning of correctness must be defined in terms of
something other than logic programs themselves. We are not alone in this, see
e.g., [17, p. 410]. In our view, the specification should axiomatise all our rele-
vant knowledge of the problem context and the necessary data types, whereas,

M. Bruynooghe and K.-K. Lau (Eds.): Program Development in CL, LNCS 3049, pp. 1-29, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 Kung-Kiu Lau and Mario Ornaghi

for complexity reasons, programs rightly capture only what is strictly neces-
sary for computing. In the process of extracting programs from specifications,
a lot of knowledge is lost, making programs much weaker axiomatisations. This
suggests that specifying and programming are different activities, involving dif-
ferent methodological aspects. Thus, we take the view that specifications should
be clearly distinguished from programs, especially for the purpose of program
development. Indeed, we have shown (in [28,29]) that in Computational Logic,
not only can we maintain this distinction, but we can also define various kinds
of specifications for different purposes. Moreover, we can also define correctness
with respect to these specifications.

Our semantics for specification and correctness is model-theoretic. The declar-
ative nature of such a semantics allows us to define steadfastness [34], a notion of
correctness that captures at once modularity, reusability and correctness. Open
programs are incomplete pieces of code that can be (re)used in many different
admissible situations, by closing them (by adding the missing code) in many
different ways. Steadfastness of an open program P is pre-proved correctness of
the various closures of P, with respect to the different meanings that the spec-
ification of P assumes in the admissible situations. For correct reuse, we need
to know when a situation is admissible. This knowledge is given by the prob-
lem context. We have formalised problem context as a specification framework
[27], namely, a first-order theory that axiomatises the problem context, charac-
terises the admissible situations as its (intended) models, and is used to write
specifications and to reason about them.

In this paper, we review our work in specification and correctness of logic pro-
grams, including steadfastness. Qur purpose is to discuss the role of steadfastness
for correct software development. In particular, we are interested in modularity
and reuse, which are key aspects of software development. Our work is centred
on the notion of a compositional unit. A compositional unit is a software com-
ponent, which is commonly defined as a unit of composition with contractually
specified interfaces and context dependencies only [46]. The interfaces declare
the imported and exported operations, and the context dependencies specify the
constraints that must be satisfied in order to correctly (re)use them. Through-
out the paper, we will not refer to compositional units as software components,
however, for the simple reason that as yet there is no standard definition for the
latter (although the one we used above [46] is widely accepted). So we prefer
to avoid any unnecessary confusion. In our compositional units, the interfaces
and the context dependencies are declaratively specified in the context of the
specification framework F axiomatising the problem context. F gives a precise
semantics to specifications and allows us to reason about the correctness of pro-
grams, as well as their correct reuse. Thus, in our formalisation, a compositional
unit has a three-tier structure, with separate levels for framework, specifications
and programs.

We introduce compositional units in Section 2, and consider the three levels
separately. We focus on model-theoretic semantics of frameworks and specifica-
tions, and on steadfastness (i.e., open program correctness).
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In Section 3, we show how the proposed formalisation of compositional units
can be used to support correct reuse. Our aim is to highlight the aspects related
to specifications, so we consider only the aspects related to the framework and
the specification levels, while assuming the possibility of deriving (synthesising)
steadfast programs from specifications.

At the end of each section we briefly discuss and compare our results with
related work, and finally in the conclusion we comment on future developments.

2 Compositional Units

In our approach, compositional units represent correctly reusable units of specifi-
cations and correct open programs. Our view is that specifications and programs
are not stand-alone entities, but are always to be considered in the light of
a problem context. The latter plays a central role: it is the semantic contexrt
in which specifications and program correctness assume their appropriate mean-
ing, and it contains the necessary knowledge for reasoning about correctness and
correct reuse. This is reflected in the three-tier structure (with model-theoretic
semantics) of a compositional unit, as illustrated in Figure 1.

Signature X

Axioms X
Theorems T

idy :S-,r1 = S51{Cl}; sy Pidh 5 Sﬂ—h = Sghv{ch}

Fig. 1. A three-tier formalism.

At the top level of a compositional unit K, we have a specification framework
F, or framework for short, that embodies an axiomatisation of the problem
context. F has a signature X, a set X of azioms, a set T of theorems, a list
Iy of open symbols, and a list Ap of defined symbols. The syntax IIr = Arp
indicates that the axioms of F fix (the meaning of) the symbols Ar whenever F
is composed with frameworks that fix ITr. The defined and open symbols belong
to the signature ¥, which may also contain closed symbols, namely symbols
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defined completely by the axioms (i.e., independently from ITr). Frameworks
are explained in Section 2.1, and framework composition is explained in Section
3.1.

In the middle, we have the specification section. Its role is to bridge the gap
between the framework F and the chosen programming language. So far, we have
considered only logic programs, and the corresponding specification formalism
is explained in Section 2.2. The specification section contains the specifications
Spys -+ - Sp,, of the program predicates occurring in the program section. It may
also contain a set of specification reduction theorems theorems RD;y,...,RDy,
that are useful to reason about correct reuse. Specification reduction is explained
in Section 3.2.

At the bottom, we have the program section. Programs are open logic (or con-
straint logic) programs. An open program Pg, : Sy, = S5, {C;} (1 <@ < h) has
an identifier id;, an interface specification Sy, = S5, and a set {C;} of implemen-
tation clauses. Sy, and Ss, are lists of specifications defined in the specification
section. An interface specification contains all the information needed to correctly
reuse a correct program. Programs and correctness are explained in Section 2.3.
Correct reuse is explained in Section 3.3.

2.1 Specification Frameworks

A specification framework F is defined in the context of first-order logic, and
contains the relevant knowledge of the necessary concepts and data types for
building a model of the application at hand.

We distinguish between closed and open frameworks. A closed framework
F = (X, X, T) has a signature X, a set X of axioms, and a set T of theorems.
It has no open and defined symbols, that is, all the symbols of X' are closed.

Ezample 1. An example of closed framework is first-order arithmetic NAT =
(¥ Nat>» X Nat, TNat), introduced by the following syntax:?

Framework NAT;
DECLS: Nat : sort;
0:[] — Nat;

s : [Nat] — Nat;
_+_, *_: [Nat, Nat] — Nat;
AXS:  Nat : construct(0, s : Nat);

+: 1+0=74;
i+ s(j) = s(i + j);
1% 0 =0;

ixs(f) =ixj+1;
THMS: i+ J =7 +71;

% In all the examples, we will omit the outermost universal quantifiers, but their omni-
presence should be implicitly understood.
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The signature X ng¢, introduced in the declaration section DECLS, is the signature
of Peano’s arithmetic. The axioms X yqt, introduced in the AXS section, are the
usual ones of first-order arithmetic. 0 and s are the constructors of Nat and their
axioms, which we call the constructor arioms for Nat, are collectively indicated
by construct(0,s : Nat). The latter contains Clark’s equality theory [35] for 0
and s, as well as all the instances of the first-order induction schema. MAT has
been widely studied, and there are a lot of known theorems (in section THMS),
including for example the associative, commutative and distributive laws.

Theorems are an important part of a framework. However, they are not
relevant in the definitions that follow, so we will not refer to them explicitly
here.

For closed frameworks we adopt isoinitial semantics, that is, we choose the
intended model of F = (X,X) to be a reachable isoinitial model, defined as
follows:

Definition 1 (Reachable Isoinitial Model [5]). Let X be a set of X-axioms.
A S-structure 1 is an isoinitial model of X iff, for every model M of X, there is
a unique isomorphic embedding i : 1 — M.

A model 1 is reachable if its elements can be represented by ground terms.

Definition 2 (Adequate Closed Frameworks [30]). A closed framework
F = (¥,X) is adequate iff there is a reachable isoinitial model 1 of X that we
call ‘the’ intended model of F.

In fact 1 is one of many intended models of F, all of which are isomorphic.
So 1 is unique up to isomorphism, and hence our (ab)use of ‘the’.

As shown in [5], adequacy entails the computability of the operations and
predicates of the signature.

Ezample 2. NAT is an adequate closed framework. Its intended model is the
standard structure A of natural numbers (N is a reachable isoinitial model of
Xnat). N interprets Nat as the set of natural numbers, and s,+ and * as the
successor, sum and product function, respectively.

The adequacy of a closed framework is not a decidable property. We have the
following useful proof-theoretic characterisation, which can be seen as a “richness
requirement” implicit in isoinitial semantics [31]:

Definition 3 (Atomic Completeness). A framework F = (32, X) is atomi-
cally complete iff, for every ground atomic formula A, either X = A or X F —A.
Theorem 1 (Adequacy Condition [38]). A closed framework F = (X, X)

is adequate iff it has at least one reachable model and is atomically complete.

Closed adequate frameworks can be built incrementally, starting from a
closed adequate kernel, by means of adequate extensions.
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Definition 4 (Adequate Extensions [30]). An adequate extension of an ad-
equate closed framework F = (X,X) is an adequate closed framework Fs =
(XU 6,X U Ds) such that:

a) Ds is a set of (¥ U §)-axioms, axiomatising a set of new (i.e., not in X)
symbols &;
b) the X-reduct 1|2 of the intended model 1 of Fs is the intended model of F.

The notions of reduct and erpansion are standard in logic [4]. The X-reduct
I' = 1|X forgets the interpretation of the symbols not in X, in our case the
new symbols 4. Conversely, 1 is said to be a (X' U §)-expansion of I, that is, a
(X U 6)-expansion is a (X U §)-interpretation that preserves the meaning of the
old ¥-symbols, and interprets the new § arbitrarily.

In Definition 4, by b), the intended model 1 of an adequate extension is an
expansion of the old intended model, that is, adequacy entails that the meaning
of the old symbols is preserved.

If the axioms Ds of an adequate extension are explicit definitions, we say that
they are adequate explicit definitions. Since they are important in our approach,
we briefly recall them.

An explicit definition of a new relation r has the form Vz,r(z) < R(z),
where z indicates a tuple of variables and (as usual) “,” extends the scope
of a quantifier to the longest subformula next to it. The explicit definition of
a new function f has the form Vz . F(z, f(z)), where R(z) and F(z,y) are
formulas of the framework that contain free only the indicated variables. The
explicit definition of f has the proof obligation X + Vz 'y ¢ F(z,y), where X
are the framework axioms (as usual, 3y means unique existence). R(z) is called
the definens (or defining formula) of v, and F(z,y) the definiens (or defining
formula) of f.

Explicit definitions have nice properties. They are purely declarative, in the
following sense: they define the new symbols purely in terms of the old ones,
that is, in a non-recursive way. This declarative character is reflected by the
following eliminability property, where X is the signature of the framework and
4 are the new explicitly defined symbols: the extension is conservative (i.e., no
new X-theorem is added) and every formula of X + § is provably equivalent to
a corresponding formula of the old signature X. Moreover, if we start from a
sufficiently expressive kernel, most of the relevant relations and functions can be
explicitly defined. Finally, we can prove:

Proposition 1. If the definiens of an explicit definition is quantifier-free, then
the definition is adequate.

If the definiens is not quantifier-free, adequacy must be checked. To state the
adequacy of closed frameworks and of explicit definitions, we can apply proof
methods based on logic program synthesis [26,27] or constructive logic [38].

Ezample 3. The kernel NAT of Example 1 is sufficiently expressive in the fol-
lowing sense. Every recursively enumerable relation r can be introduced by an



