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INTRODUCTION

This book is intended to bridge the gap between introductory texts in
mathematical analysis and more advanced texts dealing with real and
complex analysis, functional analysis and general topology. The discon-
tinuity in the level of sophistication adopted in the introductory books as
compared with the more advanced works can often represent a serious
handicap to students of the subject especially if their grasp of the elemen-
tary material is not as firm as perhaps it might be. In this volume,
considerable pains have been taken to introduce new ideas slowly and
systematically and to relate these ideas carefully to earlier work in the
knowledge that this earlier work will not always have been fully assimilated.
The object is therefore not only to cover new ground in readiness for more
advanced work but also to illuminate and to unify the work which will have
been covered already.

Topological ideas readily admit a succinct and elegant abstract expo-
sition. But I have found it wiser to adopt a more prosaic and leisurely
approach firmly wedded to applications in the space R". The idea of a
relative topology, for example, is one which always seems to cause distress if
introduced prematurely.

The first nine chapters of this book are concerned with open and closed
sets, continuity, compactness and connectedness in metric spaces (with
some fleeting references to topological spaces) but virtually all examples are
drawn from R". These ideas are developed independently of the notion of a
limit so that this can then be subsequently introduced at a fairly high level
of generality. My experience is that all students appreciate the rest from
‘epsilonese’ made possible by this arrangement and that many students who
do not fully understand the significance of a limiting process as first
explained find the presentation of the same concept in a fairly abstract
setting very illuminating provided that some effort is taken to relate the
abstract definition to the more concrete examples they have met before. The
notion of a limit is, of course, the single most important concept in
mathematical analysis. The remainder of the volume is therefore largely
devoted to the application of this idea in various important special cases.

Much of the content of this book will be accessible to undergraduate
students during the second half of their first year of study. This material has
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xii Introduction

been indicated by the use of a larger typeface than that used for the more
advanced material (which has been further distinguished by the use of the
symbol t). There can be few institutions, however, with sufficient teaching
time available to allow all the material theoretically accessible to first year
students actually to be taught in their first year. Most students will
therefore encounter the bulk of the work presented in this volume in their
second or later years of study.

Those reading the book independently of a taught course would be wise
to leave the more advanced sections (smaller typeface and marked with a )
for a second reading. This applies also to those who read the book during
the long vacation separating their first and second years at an institute of
higher education. Note, incidentally, that the exercises are intended as an
integral part of the text. In general there is little point in seeking to read a
mathematics book unless one simultaneously attempts a substantial num-
ber of the exercises given.

This is the second of two books with the common umbrella title
Foundations of Analysis: A Straightforward Introduction. The first of these
two books, subtitled Logic, Sets and Numbers covers the set theoretic and
algebraic foundations of the subject. But those with some knowledge of
elementary abstract algebra will find that Topological Ideas can be read
without the need for a preliminary reading of Logic, Sets and Numbers
(although I hope that most readers will think it worthwhile to acquire
both).

A suitable preparation for both books is the author’s introductory text,
Mathematical Analysis: A Siraightforward Approach. There is a small over-
lap in content between this introductory book and Topelogical Ideas in
order that the latter work may be read without reference to the former.

Finally, I would like to express my gratitude to Mimi Bell for typing the
manuscript with such indefatigable patience. My thanks also go to the
students of L.S.E. on whom I have experimented with various types of
exposition over the years. I have always found them to be a lively and
appreciative audience and this book owes a good deal to their
contributions.

June 1980 K. G. BINMORE
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The diagram on p. x illustrates the logical structure of the books. Broken lines
enclosing a chapter heading indicate more advanced material which can be
omitted at a first reading. The second book depends only to a limited extent on
the first. The broken arrows indicate the extent of this dependence. It will be
apparent that those with some previous knowledge of elementary abstract
algebra will be in a position to tackle the second book without necessarily
having read the first.



13 DISTANCE

13.1 The space R"

Those readers who know a little linear algebra will find the first
half of this chapter very elementary and may therefore prefer to skip
forward to §13.18.

The objects in the set R" are the n-tuples

(Kg: Kggre woes )

in which x,, x,,..., x, are real numbers. We usually use a single symbol x
for the n-tuple and write

X =(Xy, X3,5. .., Xp,)

The real numbers x,, x,,..., x, are called the co-ordinates or the components
of x.

It is often convenient to refer to an object x in R" as a vector. When doing
so, ordinary real numbers are called scalars. If x=(x;, x,,..., x,) and
y=()ys Vas..., v, are vectors and « is a scalar, we define ‘vector addition’
and ‘scalar multiplication’ by

X+Y=(X;+Vp Xg+Vgseees X, +V,)
oX = (0Xy, 00X, .., AX,).

These definitions have a simple geometric interpretation which we shall
illustrate in the case n=2. An object xeR? may be thought of as a point in
the plane referred to rectangular Cartesian axes. Alternatively, we can think

of x as an arrow with its blunt end at the origin and its sharp end at the
point (x,, x,).

Y *x (x, x,)

-7} IP——

X as a point X s an arrow



2 Distance

Vector addition and scalar multiplication can then be illustrated as in the
diagrams below. For obvious reasons, the rule for adding two vectors is
called the parallelogram law.

| X

|
|
|
| I
|
|
|
L

I

|

I

1

X1 axy Yy X, X, +y,

The parallelogram law is the reason that the navigators of small boats
draw little parallelograms all over their charts. Suppose a boat is at O and
the navigator wishes to reach point P. Assuming that the boat can proceed
at 10 knots in any direction and that the tide is moving at 5 knots in a
south-easterly direction, what course should be set?

X £
N
194

The vector x represents that path of the boat if it drifted on the tide for an
hour (distances measured in nautical miles). The vector y represents the
path of the boat if there were no tide and it sailed the course indicated for
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an hour. The vector x +y represents the path of the boat (over the sea bed)
if both influences act together. The scalar ¢ is the time it will take to reach P.

13.2 Example Let x=(1, 2, 3) and y=(2, 0, 5). Then

x+y=(1,23)+(20,5=(3,2 8
2x=2(1, 2, 3)=(2, 4, 6).

It is very easy to check R" is a commutative group under vector addition.
(See §6.6.) This simply means that the usual rules for addition and sub-
traction are true. The zero vector is, of course,

0=(0, 0,..., 0).

The diagram below illustrates the vector y —x=(y, —x,, ¥, —X5,..., ¥, —X,)
in the case n=2.

It is natural to ask about the multiplication of vectors. Is it possible to
define the product of two vectors x and y as another vector z in a
satisfactory way? There is no problem when n=1 since we can then identify
R' with R. Nor is there a problem when n=2 since we can then identify R?
with € (§10.20). If n=>3, however, there is no entirely satisfactory way of
defining multiplication in R". Instead we define a number of different types
of ‘product’ none of which has all the properties which we would like a
product to have.

Scalar multiplication, for example, tells us how to multiply a scalar and a
vector. It does not help in multiplying two vectors. The ‘inner product’,
which we shall meet in §13.3, tells how two vectors can be ‘multiplied’ to
produce a scalar. In R3, one can introduce the ‘outer product’ or ‘vector
product’ of two vectors x and y. This is a vector denoted by x Ay or x xy.
Unfortunately, X Ay= —yAX.
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Multiplication is therefore something which does not work very well with
vectors. Division is almost always meaningless.

13.3 Length and angle in R"
The Euclidean norm of a vector x in R" is defined by
IIX[|={x,*+x,%+ ... +x

We think of ||x|| as the length of the vector x. This interpretation is justified
in R? by Pythagoras’ theorem (13.15).

[1x]|

X

The inner product of two vectors x and y in R" is defined by
Xy Y)=X1 V1 +X2V2+ .. +X Ve
It 1s easy to check the following properties:

(i) <x, x> =|x||?
(1) (X, y)=<y,Xx)
(iil) <ax+ By, z) =0lX, z) + <y, z).

The geometric significance of the inner product can be discussed using
the cosine rule (i.e. ¢>=a*+b*—2ab cos y) in the diagram below.

[Ix =yl

Rewriting the cosine rule in terms of the vectors introduced in the right-
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hand diagram, we obtain that
lIx = ¥II* =Ix]1> +[I¥1I* = 2|Ix]| - ||yl cos 7.
But,
X —¥lI> ={x =y, X —y> =X, x —y> =<y, X~ y>
=X, X) = 2¢X, ¥) +<¥, y> =|Ix|I> +]lyll* —2<x, y)
It follows that
<X, ¥y =|Ix]l-[lyll cos .

Of course, this argument does not prove anything. It simply indicates why
it is helpful to think of

X, ¥)
(1]« [lyll

as the cosine of the angle between x and y.

134 Example Find the lengths of and the cosine of the angle between
the vectors x=(1, 2, 3) and y=(2, 0, 5) in R3.
We have that

lIx||= {12 +22+32}12= /14,
Iyl = {22 +0%+5%}112 = /29,
(X, y> 1:2+2:0+3-5 17

Xy~ 14 /29 J14x29°

13.5 Some inequalities

In the previous section y was the angle between x and y. The fact
that |cos 7| <1 translates into the following theorem.

13.6 Theorem (Cauchy—Schwarz inequality) If xeR" and yeR", then

1<%, YOI Ix]I [1y]]-

Proof Let aeR. Then
0=|Ix —ay|l* =<{x—ay, x—ay)
=[IxI* = 2a{x, y> +o?lyll>.
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It follows that the quadratic equation ||x||? —2a<x, y> +a?||y||* has at most
one real root (§10.10). Hence ‘b> —4ac<0 - ie.

4¢x, y>2 —4lIx|1*lyll* <O.

It is a familiar fact in Euclidean geometry that one side of a triangle is
shorter than the sum of the lengths of the other two sides.

Xx+y

This geometric idea translates into the following theorem.

13.7 Theorem (Triangle inequality) 1If xeR" and yeR", then
[Ix +yll =[x+ llyll-
Proof
lIx+ylI>=<x+y, x+y>
=Ix|I*+2<x, y)> +Ilyll*
<|Ix[[> + 2[[x]|-|lyll +]lylI* (theorem 13.6)
= (IIxI1 + lly11)>.

13.8 Corollary If xeR" and yeR", then
[Ix = yll 2 [[x][ —[lyll-

Proof 1t follows from the triangle inequality that

x| =1l(x =y) +yll = |1x =yl +lyll.




