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Preface

This book contains the somewhat extended lecture notes of an introductory
course in proof theory I gave during the winter term 1987/88 at the University
of Miinster, FRG. The decision to publish these notes in the Springer series has
grown out of the demand for an introductory text on proof theory. The books
by K.Schiitte and G.Takeuti are commonly considered to be quite advanced and
J.Y.Girard's brilliant book also, is too broad to serve as an introduction.

I tried, therefore, to write a book which needs no previous knowledge of proof
theory at all and only little knowledge in logic. This is of course impossible,
so the book runs on two levels - a very basic one, at which the book is
self-contained, and a more advanced one (chiefly in the exercises) with some
cross—references to definability theory. The beginner in logic should neglect
these cross-references .

In the presentation I have tried not to use the 'cabal language' of proof theory
but a language familiar to students in mathematical logic.

Since proof theory is a very inhomogeneous area of mathematical logic, a choice
had to been made about the parts to be presented here. I have decided to opt
for what I consider to be the heart of proof theory - the ordinal analysis of
axiom systems. Emphasis is given to the ordinal analysis of the axiom system
of the impredicative theory of elementary inductive definitions on the natural
numbers. A rough sketch of the 'constructive' consequences of ordinal analysis
is given in the epilogue.

Many people helped me to write this book. J.Columbus suggested and checked
nearly all the exercises. A.Weiermann made a lot of valuable suggestions
especially in the section about alternative interpretations for Q. A.Schliiter did
the proof-reading, drew up the subject index and the index of notations and
suggested many corrections especially in the part about the autonomous ordinals
of Z,.

I am also indebted to the students of the workshop on proof theory in
Miinster who suggested many more corrections. Last but not least I want to
thank all the students attending my course of lectures during the winter term
1987/88. It was their interest in the topic that encouraged me to write this
book.

A first version of the typescript was typed by my secretary Mrs. J.Probsting
using the Signum text system. She also wrote the table of contents. Many
thanks to all these persons.

July 19, 1989 W. P.
Miinster
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INTRODUCTION

The history of proof theory begins with the foundational crisis in the first
decades of our century. At the turn of the century, as a reaction to the
explosion of mathematical knowledge in the last two centuries, endeavours
began to provide the growing body of mathematics with a firm foundation.
Some of the notions used then seemed to be quite problematic. This was especially
true of those which somehow depended upon that of infinity. On the one hand
there was the notion of infinitesimals which embodied 'infinity in the small'.
The elimination of infinitesimals by the introduction of limit processes repre-
sented a great progress in foundational work (although one may again find a
justification for infinitesimals as it is done today in the field of nonstandard
analysis). But on the other hand there were also notions which, at least implicitly,
depended on 'infinity in the large'. G.Cantor in his research about trigono-
metrical series was repeatedly confronted with such notions. This led him to
develop a completely new mathematical theory of infinity, namely set theory.
The main feature of set theory is the comprehension principle which allows
to form collection of possibly infinitely many objects (of the mathematical
universe) as a single object. Cantor called the objects of the mathematical
universe 'Mengen' usually translated by 'sets'. Set theory, however, soon
turned out to be a source of doubt itself. Since Cantor's comprehension
principle allows the collection of all sets x sharing an arbitrary property E(x)
into the set {x: E(x)} one easily runs into contradictions.!” For instance if we
form the set M := {x: x ¢ x}, then we obtain the well-known Russellian antinomy:
MeM if and only if M¢M. It is easy to construct further antinomies of a

1) Cantor himself was well aware of the distinction between sets and other
collections which may lead to contradictions. See his letter to Dedekind from
27.7.1899 [Purkert et al. 1987]
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similar sort. Another annoying fact was that the plausible looking axiom of
choice

(AC) For any family (Sy)y .y of non empty sets there is a choice function
f: I — U{Sy: kel} such that f(k)eS, for all kel
had as a consequence the apparently paradoxical possibility of wellordering any
set. Nobody could imagine what a wellordering of the reals could look like and
D.Hilbert, in his famous list of mathematical problems presented in Paris in
1900, stated in his remarks concerning problem one (the Continuum Hypothesis)
that it would be extremely desirable to have a direct proof of this mysterious
statement.
Today we know that there is no elementary construction of a wellordering of
the reals. Any wellordering of the reals has the same degree of constructiveness
as the choice function itself. The existence of a choice function, however, is
not even provable from the Zermelo Fraenkel axioms for set theory.
All these facts contributed to a feeling of uncertainty among members of the
mathematical society about the notion of a set that they were opposed to set
theory in general. But it was of course not possible to simply ignore Cantor's
discoveries. Hermann Weyl in his paper 'liber die neue Grundlagenkrise der
Mathematik’ [Weyl 1921] tried to convince his contemporaries that the founda-
tional problems arising in set theory were not just exotic phenomena of an
isolated branch of mathematics but also concerned analysis, the very heart of
mathematics. It was he who introduced the term ‘foundational crisis' into the
discussion. In his book ‘Das Kontinuum' [Weyl 1918] he had already suggested a
development of mathematics which avoided the use of unrestricted set construc-
tions. In more modern terms one could say that he proposed a predicative
development of mathematics. Others, like L.E.J.Brouwer, already doubted the
logical basis of mathematics. Their point of attack was the law of the excluded
middle. With the help of the law of the excluded middle it becomes possible
to prove the existence of objects without constructing them explicitly. Brouwer
suggested developing mathematics on the basis of alternative intuitive principles
which excluded the law of the excluded middle. Their formalization - due to
Heyting — now is known as intuitionistic logic. Both approaches, Weyl's as well
as Brouwer's, meant rigid restrictions on mathematics. D.Hilbert, then one of
the most prominent mathematicians, was not willing to accept any foundation
of mathematics which would mutilate existing mathematics. To him the founda-
tional crisis was a nightmare haunting mathematics. In his opinion mathematics
was the science, the model for all sciences, whose 'truths had been proven on
the basis of definitions via infallible inferences' and therefore were 'valid overall
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in reality'. He felt that this position of mathematics was in danger and therefore
wanted to preserve it as it was. He was especially unwilling to give up Cantor's
set theory, a paradise from which no one would expel him. In his opinion Cantor's
treatment of transfinite ordinals was one of the supreme achievements of human
thought. Therefore he planned a program to save mathematics in its existing
form. He charted his program in a couple of writings and debated it in several
talks (cf. [Hilbert 1932-1935]). Therefore it would be inadequate to try to sketch
Hilbert's program in only a few sentences. For a serious evaluation of the status
of Hilbert's program today deeper considerations are necessary (cf. JSL 53 (1988)).
The part of Hilbert's program, however, which was essential for the development
of the kind of proof theory we want to give an introduction to in this lecture
may be roughly characterized by the following steps:

I. Axiomatize the whole of mathematics

II. Prove that the axioms obtained in step I are consistent.

Hilbert proposed that step Il of his program, the consistency proof, should be
carried out within a new mathematical theory which he called 'Beweistheorie',
i.e. Proof Theory. According to Hilbert, proof theory should use contentual
reasoning in contrast to the formal inferences of mathematics. Hilbert himself
was aware of the fact that the reasoning of proof theory must itself not become
the subject of criticism. He therefore required proof theory to obtain its
results by methods beyond the shadow of a doubt. He suggested using only
finitistic methods. By finitistic methods he understood those methods 'without
which neither reasoning nor scientific action are possible'. In my personal
opinion, finitistic reasoning may be interpreted as combinatorial reasoning over
finite domains. Some of Hilbert's students (e.g. Ackermann, ].v.Neumann,
P.Bernays) soon obtained concrete results. Following Hilbert's maxim of first
developing the mathematical tools necessary for the solution of a general problem
by studying special cases of the problem they first tackled subsystems of
elementary arithmetic. In fact they succeeded in obtaining consistency proofs
for subsystems not containing the scheme of complete induction. It thus seemed
to be just a matter of technical refinement to extend these consistency proofs
to systems containing the full induction scheme. However, the systems containing
complete induction stubbornly resisted all attempts to prove their consistency.
That this failure was neither an accident nor was due to the incompetence of
the researchers, became clear after the publication of Kurt Gddel's paper
'liber formal unentscheidbare Sitze der Principia Mathematica und verwandter
Systeme' [G&del 1931]). In this paper Goédel proved his famous theorems which,
roughly speaking, say the following:
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I. In any formal system, satisfying certain natural requirements, it is possible
to formulate sentences which are true in the intended structure but are also
undecidable within the formal system (i.e. neither the sentence nor its negation
are provable in the formal system).

II. The consistency proof for any formal system, again satisfying canonical
requirements, may not be formalized in the system itself.

One might think that Goédel's theorems meant a sudden end to Hilbert's
program. The first theorem shows that step 1 in Hilbert's program is indeed
impossible. This, however, might be remedied by the oberservation that in fact
it is not necessary to formalize all possible mathematics. It would suffice just
to axiomatize existing mathematics. Today we know that nearly everything in
everyday's mathematics (and, except for the Continuum Hypothesis, probably all
which Hilbert may have thought of) is formalizable in one single formal
system, namely Zermelo Fraenkel set theory with the axiom of choice (ZFC).
Most parts are even formalizable in much weaker systems. Godel II, however,
is a lethal blow to Hilbert's program. Since the methods 'without which neither
reasoning nor scientific action are possible' (combinatorial reasoning over finite
domains, in our interpretation) should itself be available in mathematics, any
reasonable axiomatization of mathematics should allow the formalization of
Hilbert's finitistic methods. Therefore there is no finitistic consistency proof
for an axiomatization of stronger fragments of mathematics (i.e. essentially
those containing the scheme of complete induction). Luckily for the development
of proof theory, the researchers in the thirties did not interpret these results
als having such drastic consequences. It is hard to say why. Gddel's results
were known to the Hilbert school. For instance Bernays mentions them in
[Bernays 1935a] but although he expresses doubts about the feasibility of
finitistic consistency proofs he denies that Gédel's results imply their impossi-
bility. I conjecture that the true reasons were Hilbert's authority as well as the
vagueness of his program. Since he gave no precise definition of what he
meant by finitistic methods one could hope that these methods comprised a
kind of contentual reasoning which cannot be mathematically formalized. As a
matter of fact mathematicians did not stop searching for consistency proofs
and in 1936 Gerhard Gentzen succeeded in proving the consistency of elementary
number theory. According to Gddel's second theorem Gentzen's proof had to
use nonfinitistic means. Gentzen succeeded in concentrating all nonfinitistic
means in one single point — induction along a wellordering of transfinite ordertype.
This result confirmed the Hilbert school's opinion that just a slight modification
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of the finitistic standpoint (i.e. accepting a weak form of transfinite induction)
would suffice to make the whole program feasible. In §16 we will discuss the
consequences of this 'slight modification' for Hilbert's program. There we will
try to argue, in the spirit of Hilbert's program, that Gentzen's proof is of
little help. This, however, does not mean that Gentzen's proof and his results
are of no importance. Quite on the contrary, in our opinion Gentzen's proof is
one of the deepest results in logic. To see why, we propose a reinterpretation
of his results.

In point of fact it is very easy to prove the consistency of pure number
theory. One simply has to show that there exists a model for it. So what is the
advantage of Gentzen's consistency proof? The construction of the model
itself needs a certain framework, e.g. set theory. Thus what is obtained by
a consistency proof via a model construction in set theory (or some even
weaker theory) is that the consistency of set theory also entails the consistency
of pure number theory. Gentzen's proof, however, gives much more information.
It has already been mentioned that Gentzen's proof is finitistic apart from his
use of induction along a wellordering of transfinite ordertype. In our opinion
this is the essential contribution of Gentzen's proof. Its consequences are
twofold:

1. The induction in Gentzen's proof need only be applied to formulas of a
very restricted complexity. In addition the consistency proof never uses the law of
the excluded middle. Thus it may be formalized within a system T based on
intuitionistic logic with induction along a wellordering of transfinite ordertype
where this induction scheme is restricted to formulas of a very low complexity.
So the problem of the consistency of pure number theory may be decided within
the system T. Although the wellordering is of transfinite order type it can
easily be visualized. So it seems to be completely plain that the system T is
consistent. By Gédel's second theorem the proof theoretic strength of the
system T, as it will be defined later in this lecture, has to exceed that of
pure number theory. But the subsystem T, of T which is obtained from T by
restricting induction to initial segments of the wellordering only can be shown
to be equiconsistent with elementary number theory. Thus Gentzen's proof
provides a reduction of the consistency problem for elementary number theory
to that of a theory T,, which from a conceptual point of view may be regarded
as 'safer' than elementary number theory itself.

This is an example of reductive proof theory. In reductive proof theory one
generally tries to reduce the consistency problem of a theory T, to that of a
theory T,. For a clever choice of T, both systems will have the same proof
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theoretic strength. The principles used in T,, however, may be easier to visualize
and therefore a justification of the system T, seems more plausible. This type
of proof theory is of great foundational importance (cf. the introduction to
[BFPS] by S.Feferman). One important feature of Hilbert's program we did
not mention is the '‘elimination of ideal elements'. In this sense reductive
proof theory contributes to Hilbert's program by eliminating complicated
unperspicuous principles. Since both systems (T; and T, in the above example)
are of the same proof theoretical strength reductive proof theory is in full
accordance with Goédel's second theorem.

2. The fact that induction along the wellordering is the only nonfinitistic
means in Gentzen's proof also suggests using this wellordering as a measure
for the transfinite content of pure number theory. Pursuing this idea one had
defined the proof theoretic ordinal of a formal theory T as the ordertype of
the smallest wellordering which is needed for a consistency proof of T. This
definition, however, is somehow vague since it says nothing about the means
used besides the induction along this wellordering (one tacitly has to assume
that these at least have to be formalizable in T). To obtain a more precise
definition one calls an ordinal o provable in T if there is a primitive recursively
definable wellordering <of ordertype o such that the wellordering of < is
provable in T. It is a consequence of Goédel's second theorem, that the proof
theoretic ordinal of T (in the previous sense) cannot be a provable ordinal of
T. Therefore one may define the proof theoretic ordinal of T as the least
ordinal which is not provable in T. This is the common definition today. The
computation of the proof theoretic ordinal of T is called the ordinal analyis
of T. Gentzen's paper ' Beweisbarkeit und Unbeweisbarkeit von Anfangs-
fallen der transfiniten Induktion in der reinen Zahlentheorie' [Gentzen 1943]
indicates that he himself already interpreted his result as an ordinal analysis
(and not just as a consistency proof).

The intention of this lecture is to give an introduction to the techniques of
ordinal analysis. We suppress the aspects of reductive proof theory. Only in the
epilogue it will be indicated how the results and methods of ordinal analysis
may be used in reductive proof theory. To get acquainted with the basic notions
and techniques we reprove Gentzen's result in the first chapter. The second
chapter will discuss the limits of Gentzen's methods. There we will reprove
S.Feferman's and K.Schiitte's results on the limits of predicativity. The emphasis,
however, is on the ordinal analysis of impredicative formal systems. To demon-
strate this method we will give in chapter IIl an ordinal analysis for one of
the simplest impredicative formal systems, the system ID; for noniterated
inductive definitions by the method of local predicativity. A discussion on the
foundational significance of ordinal analysis will be added in the epilogue.

6



CHAPTER I

ORDINAL ANALYSIS OF PURE NUMBER THEORY

To begin with we follow Hilbert's program and, in a first step, try to axiomatize
- if not the whole of mathematics - but the theory of natural numbers. To
obtain a feeling how this might be done we start by some heuristic considera-
tions.

The aim of the 'working' mathematician interested in the theory of a certain
structure is to discover the 'mathematical facts' which hold in this structure.
In order to do this he first has to be able to formulate the 'mathematical
facts'. This means that he needs a language in which he may talk about this
structure. The mathematical facts which possibly may hold in the structure
will then be expressed by sentences in this language. The problem then is to
figure out which of the sentences are the true ones. This may be done by
pure intuition. But to be really sure about the truth of a sentence it needs a
proof. The only way to prove a sentence, however, is to show that it is a logical
consequence of some other sentences which already are known to be true in
the structure. Tracking back this procedure we finally end up with a set of
sentences, the mathematical axioms of the structure, which cannot be proved
themselves but either are true by definition or by common agreement. Showing
that a sentence is a logical consequence of other sentences usually is done by
deriving the sentence from those others through a series of inferences. A set
of inference rules will be called a proof procedure. Some of the inferences in
a proof procedure may have no premises. Those inferences will be called the
logical axioms of the proof procedure. The choice of the axioms and of the
proof procedure is of course not arbitrary. As a first requirement the truth of
every mathematical axiom really has to be indubitable and it also must be
clear that the truth of the premises of an inference undoubtedly entails the



truth of its conclusion (if there is no premise, then the conclusion must be
true in every structure, i.e. logically valid.). This will guarantee that all proven
sentences really are true. But the 'working' mathematician does not only want
to ensure himself about his theorem but he also wants to convince his colleagues
about its truth. Therefore there must be a way of checking a proof. Thus the
second requirement is, that it must be decidable whether a given sentence is
an axiom or not, and it also has to be decidable whether an inference is a
correct application of an inference rule or not. Otherwise we had no possibility
to check the correctness of a given proof. A proof procedure meeting these
requirements will be called decidable.

This little heuristic teaches us the following facts about axiomatization:

In order to axiomatize the theory of a structure we

- first need a formalization of the language of the structure. The formal
language of the structure has to be given in such a way that it becomes decidable
whether a symbol string is a wellformed expression or not;

- second need a decidable set of sentences in this language which undoubtedly
are true. The sentences in this set are the axioms of the structure;

- third need a decidable proof procedure which produces logical consequences
of the axioms.

A decidable formal language together with a decidable set of mathematical
axioms and a decidable proof procedure will be called a formal system or
sometimes also a formal theory for the structure. From this it immediately
follows that the set of sentences which are provable in one formal system
always is a recursively enumerable set.

By results of mathematical logic there are complete proof procedures for first
order languages, i.e. there are proof procedures which produce all logical
consequences of a given set of mathematical axioms. This of course must not
be mistaken in that way that the proof procedure together with the mathematical
axioms produce all true first order sentences of the structure. In general the
set of true sentences of a structure is not recursively enumerable but of
higher complexity. Thus in general we cannot expect a complete axiomatization
even for the first order theory of a structure. Since we have to abandon com-
pleteness anyway we may as well regard the second order language of the
structure although there is not even a complete proof procedure for second
order logic. The only important thing is that there are sound proof procedures. It
will then be the task of proof theoretical research to determine the limits of a
formal system.



§1. The language of pure number theory

In the present lecture we will not use full second order logic but first order
logic with free set variables. We will introduce the notion of a Ilj-sentence and
then examine the power of formal systems with respect to their provable IIj-
sentences.

In the first sections of the following chapter we are going to develop a quite
simple formal system for the structure of natural numbers which in the later
sections will be analyzed proof theoretically.

§1. The language & of pure number theory

A structure usually is given by a non void set together with collections of
constants, of functions and of relations on that set. In order to obtain a formal
language for the structure of natural numbers we first need to specify our
picture of this structure. The set of natural numbers is characterized by the
facts that every natural number either is zero or the successor of another
natural number and that every natural number possesses a uniquely determined
successor. Using this characterization we obtain a name (or constant as we
are going to call it) for every natural number. We start with 0 as a name for
the natural number zero and a symbol S for the successor function. Then a
constant for every natural number is obtained by successively applying the
successor function to the symbol 0. So it should be clear that we at least
need a constant for zero and the successor function in our language (and then
as well may assume that we already have a constant n for every natural
number n). The next question to be answered is which functions and relations
besides the successor function on the natural numbers we should consider. The
most general answer is of course "all possible functions and relations on the
set of natural numbers”. Since there are uncountably many such functions and
relations this already would lead to a language with uncountably many basic
symbols. In a formal system only those constants for which there are defining
axioms contribute to the power of the formal system. Therefore we would
need an uncountable set of axioms which is outside the scope of a formal
system since every decidable set already is countable. If we dispense with
defining axioms for function or relation constants we may as well treat them
as variables. In fact we will introduce a language which has such second order
variables. In our framework it will suffice just to introduce set variables. The
introduction of bare set variables (or function variables) will in general also



§1. The language of pure number theory

not raise the power of a formal system (cf. exercise 3.15.4). But if we add the
defining axioms for set variables, i.e. the comprehension scheme, we will
obtain a system which is so strong that up to now we have not been able to
do its proof theoretic analysis. Therefore we will be more modest and in a
first step will restrict ourselves to a system which we are going to call the
system of pure number theory. The most important functions in number
theory are 'plus’ and ‘times’. 'Plus’' and 'times' are primitive recursive functions
and it is possible to obtain all primitive recursive functions from ‘'plus' and
'times' (cf. remark 3.12.). Therefore we are going to introduce a seemingly
stronger system in which we have a constant for every primitive recursive
function and relation. In order to do this we first will introduce names for all
primitive recursive functions. In definition 1.1. we will give the syntactical
definition of the primitive recursive function terms, while the meaning of
those terms becomes clear from definition 1.2. in which we define the evaluation
of an n-ary primitive recursive function term f on an n-tuple t,,.. .t of

natural numbers.

1.1. Primitive recursive function terms

(i) S (the symbol for the successor function)is an unary primitive recursive
function term.

(ii) P’ (the symbol for the k-th projection of an n-tuple) and C} ( the
symbol for the n-ary constant function with value k) are n-ary primitive
recursive function terms, where in the case of P‘; we require 1<k<n.

(iii) If hy,..h _  are n-ary primitive recursive function terms and g is an
m-ary primitive recursive function term, then Sub(g,h,...h ) is an n-ary
primitive recursive function term. (Substitution of functions).

(iv) If g is an n-ary and h an n+2-ary primitive recursive function term,
then Rec(g,h) is an n+l-ary primitive recursive function term. (Primitive recur-

sion).

1.2. Inductive definition of f(,,...,t,,) = t for an n-ary primitive recursive function
term f and natural numbers tg,....t,,t

(i) S(ty)=t if t is the successor of t,,

(ii) CR(t,,....t,) = t if t=k,

(i) PPlty,...ty) =t iF t=ty ,

(iv) Sub(g,h,,...,h,,) (t,,....t5) =t if there are natural numbers u,,...,u,, such
that hy(ty,....t) = u; and gluy,...,u) =t.

10



§1. The language of pure number theory

(iv) Rec(g,h) (t,,...,t;,k) = t holds if k=0 and g(t,,...t;) =t or if k is the
successor of kg and h(t,,...,t ,ko,Rec(g,h)(ty,....,t ko)) = t.

f(t,,...,t,) =t is to be read as: "The evaluation of the n-ary primitive recursive
function f on the n-tuple t,,....t;, of natural numbers yields the value t".

1.3. Definition

The graph of an n-ary primitive recursive function term f is the n+l-ary
relation {f} given by {f}(t,....t,.t) = f(t ...t ) = t.

1.4. Definition
An n-ary relation R on N is primitive recursive if its characteristic function
deefined by
1, if R(ty,....t;)
YRty nty) =
0, otherwise

is primitive recursive.

We do not want to go deeper into the theory of primitive recursive functions.
This is the topic of another lecture. The aim of the preceeding definitions was
to emphasize that it is possible to name every primitive recursive function by
a term. This also means that, via its characteristic function, we have a name
for every primitive recursive relation. We now are prepared to introduce the

formal language & for the structure of natural numbers.

1.5 Basic symbols of the language ¥
1. Logical symbols
(i) Countably many number variables denoted by u,v,w,x,y,z,...
(ii) Countably many set variables denoted by U,V,W,X,Y,Z ...
(iii) The sentential connectives 1, n,v, the quantifiers ¥,3 and the member-
ship relation symbol e .
2. Nonlogical symbols
(i) A constant n for every natural number n.
(ii) An n-ary function constant f for every n—ary primitive recursive function
term f.

(iii) An n-ary relation symbol R for every primitive recursive relation R.

1



